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Abstract

Two derivations are given of the generalized Laplace equation of capillarity, which
assume constant surface tensions and constant curvature potentials over the surface for
highly curved interfaces a priori: one based on hydrostatics and the other on thermody-
namics. The excess hydrostatic equation is integrated across the interfacial zone, leading
to the Boruvka and Neumann (BN) generalized Laplace equation. Based on the mini-
mum free energy principle, a straightforward derivation is presented, also resulting in
the BN generalized Laplace equation. The agreement between the two independent
approaches provides a confirmation of the BN generalized Laplace equation for high
curvature systems.
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1. Introduction

The previous paper [1] re-confirmed the Boruvka and Neumann (BN)
fundamental equation of their generalized theory of capillarity [2].

Based on this fundamental equation, the generalized Laplace equation
can be derived by considering the mechanical equilibrium condition in
the direction normal to the surface. The original derivation [2] for BN
generalized Laplace equation was complex because of its generality, and

the resulting Laplace equation was given in the most general form, cf.
Eq. (18) of the previous paper [1]. For a constant surface tension and
constant curvature potentials over the surface, the Laplace equation
was obtained only by simplification of the general form. Interestingly,
a derivation of the Laplace equation, which assumes constant surface
tensions and constant curvature potentials a priori, does not appear in
the literature. This paper will provide two such derivations: one based
on hydrostatics and the other on thermodynamics.

The hydrostatic approach to capillarity was developed by Buff [3]; it
is based on the analysis of an interfacial stress tensor field in which the
excess hydrostatic equation is integrated across the interface, leading
to the Laplace equation. However, Buff used his thermodynamic vari-
ables [3-5] in his hydrostatic analysis; while his thermodynamic devel-
opment [3-5] is believed to lack thermodynamic rigor [1], the Laplace
equation resulting from his hydrostatic analysis is not proper. The
present paper will employ the definitions of variables in the BN ther-
modynamic theory to develop a hydrostatic approach leading to the BN
Laplace equation. This hydrostatic approach will provide an inde-
pendent confirmation of the BN Laplace equation.

A procedure of minimizing the free energy will also be presented. The
free energy is obtained through a Legendre transformation from the
internal energy in the BN fundamental equation [6], and the resulting
Laplace equation will be compared with the hydrostatic results. The
agreement between the two approaches will provide further justification
for the BN generalized Laplace equation.

II. Hydrostatic equation
Consider a macroscopic system consisting of two fluid phases sepa-

rated by an interface. The system is in both thermal and chemical
equilibrium with the surrounding media, and the appropriate thermo-
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dynamic potential is, therefore, the grand canonical free energy [6]. The
system can be treated as a continuum mechanical system; in other
words, spatial smoothing is carried out for the variables under consid-
eration. The hydrostatic description is essentially given in the previous

paper [1], only the key relations are presented below, which are neces-
sary for the following derivation.
The basic equation of hydrostatics can be written as follows:

V.o=pVd (1)

where o is the stress tensor, p is the mass density, and ¢ is the potential
of an external body force, such as gravity. Inside a bulk phase, away
from the influence of the interface, the stress tensor becomes isotropic,
and the hydrostatic equation reduces to

VP =-pVo (2)

where P is the bulk pressure.

In order to treat the interface, one follows Gibbs [7] to span the
interfacial zone (transition zone) by a family of parallel dividing surfaces
[1]. The parallel dividing surface description has been demonstrated
thoroughly by Buff [3-5]. When generalized surface coordinates u, v are
introduced, a point r of a given dividing surface A may be represented
parametrically by r = r (z,v), while a point R of the parallel surface A’,
located at a constant distance A along the normal from the surface A, is
expressed by [3]

R =r(u,v) + \n(u,v) (3)

where n is the coincident outward unit normal to both surfaces A and A".
According to Buff [3], within the transition zone it is assumed that
the stress ellipsoid is axi-symmetrical about the direction normal n. If
the stress tensor is symmetrical, then it is always possible to find a
transformation which reduces it to a diagonal form whose components
lie along the mutually orthogonal axes of the coordinate system (u, v, A).
In addition, if the system is invariant to a rotation about the direction
normal to the interface, then these three components may be further
reduced to two: one of them, oy, normal to the interface and two equal
components, 61 = 6, = O, along the mutually orthogonal directions
parallel to the interface. Thus, the stress tensor may be expressed as



182 P. Chen et al. /Adv. Colloid Interface Sci. 63 (1996) 179-193

c=opl,+oynn (4)

where I, is the unit surface tensor [1], and 6 and o) are the tangential
and normal components of the stress tensor, respectively.

Now a dividing surface is placed within the interface and the bulk
properties such as the pressure and the density are extrapolated up to

the dividing surface. The differences between the actual system proper-
ties and the extrapolated ones are the interfacial excess quantities
assigned to the dividing surface, such as:

op=0+P,1 (5)

where I is the three-dimensional unit tensor, subscript E denotes the
interfacial excess properties and subscript e denotes the extrapolated
bulk properties. Furthermore Eq. (5) can be written, by using Eq. (4),
as [1]:

og = Org Iy + ong R (6)

Subtracting Eq. (2) from Eq. (1) and using the definition of Eq. (5), the
hydrostatic equation for the interfacial excess stress follows as:

The integration of this hydrostatic equation across the interfacial zone
will lead to the Laplace equation [3].

II1. Laplace equation

In preparation for the following analysis it will be convenient to
outline some mathematical identities for the parallel surfaces. First the
volume element dV may be written as [1,3,8]:

dV = (1 +cA) (1 +cyh) dA dh (8)

where ¢; and ¢, are the principal curvatures of the chosen dividing
surface A at A = 0, dA is the area element of the dividing surface. As
shown in Fig. 1, the radius r;(A) of the principal curvatures ¢,(A) of
surface A’ passing through point R can be expressed as:
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———

Fig. 1. Coordinate system for parallel surfaces.

where r; is the radius of curvature c; of surface A. By using the
definition: r{ = 1/cy, the following identity can be obtained from Eq. (9):

!
(M) = T+ e, (10)

Similarly, the relationship between the other principal curvature cy(A)
of surface A" and ¢, can be written as:

W)= 2 (11
02()—14-7\02 )

Choosing ¢ and j as the unit tangent vectors on the surface, correspond-
ing to the two principal curvatures, and taking x and y as the arc lengths
in these two directions, the surface gradient is defined as:
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(12)

Operation of the surface gradient on the unit normal n produces the

first scalar of the surface dyadic, Von [3,6]:

Von=c;(A) +co(A) =< (13)

where o/ is the mean curvature of surface A’ passing through point R.
The Laplace equation is the mechanical equilibrium condition along
the direction normal to the interface. It follows from Eq. (7), with the
use of Egs. (6) and (13), that the normal component of the hydrostatic
equilibrium condition is given by ([3], see also Appendix A):

(V.og) -n=V . (ogn) - Vnog
=V. (GNE n) - [Cl(X) + CZ(A’)]GTE
=pgV0 - n (14)

The dividing surface A splits the whole system into two subvolumes v,
and v, which are bounded by A and A;, and A and Ay; A; and A, are
outer boundaries of the system (Fig. 2). Integrations of Eq. (14) over the
regions v, and v,, with the use of the divergence theorem (Appendix B),
leads to

[long: dA = JJoxg dA, = [[] {les0) + exMorg + peVo n) dv, (15)

o \f)
dividing ~—-
surface

/. interfacia)
zone

Fig. 2. Schematic drawing of the dividing surface A splitting the system into two
subvolumes v, and v, which are bounded by A and A,, and by A and A,,.
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and

— [Jong dA + [Jong dag = [[f iy + cxlorg + peVo 1) dv, (16)

According to Eqgs. (5) and (6), the interfacial excess stress tensor can be
written explicitly as:

ONg =On—Oy2

Org = O — O12 (17)
where

Gy = =P1[1 — HOV)] — P,H(A) (18)
with

HM =0, X<0
=1, 120 (19)

The case A < 0 corresponds to the subvolume v;, and A > 0 corresponds
to the subvolume vy. The interfacial excess stress oy is zero inside the
bulk and away from the influence of the interface. Therefore, the
integrations at the outer boundaries A; and A, in Egs. (15) and (16)
disappear. Substituting Eq. (17) into Egs. (15) and (16), the area
integrals of oy cancel in the summation of Egs. (15) and (16). With the use
of Egs. (8), (10) and (11), this summation can therefore be expressed as:

[Ji@, - Py = (c1 + c9) | orgdh - 2¢105 oA dA
~ JogVo n(l+ch) A +eh)dNdA=0  (20)
By using the assumption of parallel dividing surfaces and considering

constant densities along each parallel surface, the area integration
drops out, and Eq. (20) is further written as:

P, - Py=dJy+2KC, + [ppVo - n(1 +JA + K\?) dL (21)

where K = c; - ¢4 is the Gaussian curvature, and yand C, are the surface
tension and the first moment about A = 0 (these can be realized by
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comparing KEq. (21) with the BN Laplace equation, e.g. Eq. (19) of the
previous paper):

Y = J‘GTEd}\’ (22)
and
Cy = Jopg A dr 23)

When the external force is gravity
Vo=gk (24)

where g is the gravitational constant and & is the unit vector directed
along the space-fixed z axis [3]. Substitution of Eq. (24) into Eq. (21)
results in

where T is the interfacial excess mass density:
F={pg(l+c0) (1 +cyh) dh (26)

It can be seen that Eq. (25) is the BN Laplace equation [2] for constant
surface tensions and constant curvature potentials. When gravity gk is
absent, or the surface mass I is negligible, Eq. (25) is identical to Eq.
(19) of the previous paper [1]. As expressed in Eqgs. (22) and (23), the
surface tension and the first moment (the mean curvature potential) are
dependent on the choice of the position of the dividing surface [1].

In the derivation of the Laplace equation, Eq. (25), the only approxi-
mation is to assume the parallel dividing surfaces for the interfacial
zone, and that all variables (properties) are transversely isotropic at
each parallel surface. This may well reflect many actual cases of fluid
interfaces. However, this assumption is not valid in the case of a solid
surface where two-dimensional anisotropy prevails.

IV. Thermodynamic derivation

The most often encountered external field is gravity. Because of the
thinness of the interface, the gravity effects on an interface are rather
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small and may be ignored. In the following treatment, the external force
field is then assumed to be negligible. For an interfacial system with a
constant surface tension and constant curvature potentials along the
surface, i.e., the interfacial system is assumed homogeneous over the

dividing surface, the free energy at constant temperature 7' and con-
stant chemical potential p; (i = 1,2,...,r) is the grand canonical potential
Q [2,6]. The grand canonical potential of a bulk phase can be written as:

Q" =U"-TS = Y N}
=-PV (27)
where superscript v denotes the bulk phase, U is the internal energy, S

the entropy, N, the mole number of component i, P the pressure, and V
the volume of the bulk phase. In differential form Eq. (27) becomes

dQY¥ = - 8¥dT - > NYdy; - PdV (28)

For a surface, on the basis of the fundamental equation derived in the
previous paper [1], the grand canonical potential can be expressed as:

QA= UA-TS - Y uNg
= YA + C1J+ CyK (29)

where superscript A denotes the surface phase, i.e., the dividing surface;
v is the surface tension, 7= JA is the total mean curvature, and X= KA
is the total Gaussian curvature. The fluid system is represented by the
dividing surface and two bulk phases extrapolated up to the dividing
surface. The differential form of the grand canonical potential for the
dividing surface can be written as:

dO* = - ST - Y Nidy, + vdA + Cidj+ Cod X (30)

The total free energy of the system consisting of one surface and two
bulk phases is

QU= QY1 4+ QY2 + QA (381)
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When minimizing the system free energy, the total volume of the system
has to be maintained constant, i.e.,

Vot = V1 4 V2 = constant (32)

where V; and V, are the volumes of the two bulk phases.
In order to apply the minimum free energy principle, a small vari-
ation 9z is produced in the direction normal to the interface, Fig. 3. The

corresponding variations of all the other variables can be obtained. In
Fig. 3, x and y are the side-lengths of a small rectangular surface with
an area A. The variation of the dividing surface area 8A due to &z can
be written as:

OA = (x + ox) (y + Oy) — xy
By 4y b (33)

Z

O

Fig. 3. The variation of the surface area due to the variation dz.
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In order to find dx and &y, the following equality can be obtained by using
the geometric similarity between AOBD and AOB’D’ in Fig. 3:

x+0x rit+oz
x r

(34)

where r, is the radius of the principal curvature ¢, corresponding to side
x. Furthermore, Eq. (34) can be written as:

o = % 8z = xc, 62 (35)

1
Similarly, dy can be found:
dy = ycydz (36)
Substitution of Egs. (35) and (36) into Eq. (33) results in
OA = xycy0z + yxc,0z

= (cq + co)xydz

=JAdz (37)

The variation of the volume of one of the bulk phases 3V can easily be
written as:

oV = Abz (38)
The variation of the total mean curvature &%
09 =8(JA) = AdJ + JOA (39)

where &J may be evaluated

1 1
&J = 0(cy +02)—6(r1+r2J
=—i26z——1§8z
rl r2

= —(c? +c%)dz = (2K - J?)8z (40)
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Substitution of Kq. (40) into Eq. (39), with the use of Eq. (37), results in

07=2KAdz (41)

Similarly, the variation of the total Gaussian curvature 6K is [9]

0K =ASK + KdA

=0 (42)

Differentiation of the free energy of the two bulk phases, Eq. (28), with
respect to z leads to

dQy dv?! dV?
dz - Tig; g,

where Eq. (38) and the constant total volume Eq. (32) have been used.
Differentiation of Eq. (30) with respect to z, with the use of Egs. (37),
(38), (41) and (42), results in

dQ*  dA dy ., dx
Tt tey,

= JYA + 2KC,A (44)

In both Egs.(43) and (44), the constancy of temperature and chemical
potentials has been used.
The minimum free energy principle implies

thot
g 0 (45)

Substitution of Egs. (31), (43) and (44) into Eq. (45) gives
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which is immediately seen to agree with Eq. (25). Thus, the Laplace
equation for high curvatures has been derived in two independent ways.
Since Eq. (25) also follows from the more general thermodynamic
derivation also starting with the fundamental equation (2], cf. Egs. (18)

and (19) of the previous paper [1], it would seem that Eq. (25) is well
founded.

V. Conclusions

The excess hydrostatic equation has been integrated across the
interfacial zone, leading to the Boruvka and Neumann (BN) generalized
Laplace equation for constant surface tensions and constant curvature
potentials. It confirms the correctness of the BN Laplace equation.
Based on the minimum free energy principle, a straightforward thermo-
dynamic derivation has been presented, also leading to the BN Laplace
equation. The agreement between the hydrostatic equation and the
minimum free energy principle provides further justification for the BN
Laplace equation.
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Appendix A. Derivation of Equation (14)

The gradient operation on the dot product of a tensor of the second
order o and a vector n can be written as [Al]:

V.(op-n)=(V-op) n+Vnog (A1)

Rearrangement of Eq. (A.1) leads to

(V-og) n=V-(of n)-Vnog (A.2)

The surface gradient V,, the two-dimensional analog of the three dimen-
sional gradient V, may be written as

V=i (A.3)

o oy

where i and j are two orthogonal unit tangent vectors on the surface,
corresponding to the two principal curvatures c;(A) and c,(A), and x and
y are the arc lengths in these two directions. Regarding n as the unit
normal to the surface, the surface dyadic Vyn can be written as

\% —i—a~n+ in
2=t o Jay

=cy(A) B+ co(M) jj
=Vn (A.4)

where the last equality of Eq. (A.4) is obtained by considering the unit
normal n as constant along its direction. Regarding o as the surface
excess stress tensor:

op = Orp(ii +Jj) + oygnn (A.5)

By using Egs. (A.4) and (A.5), the double dot product in Eq. (A.2) can be
written as

Vn:GE = [01(7\,) ii + CZ(;\‘)J-]][GTE(ii +j]) + GNEnrl]

= [c1(A) + co(Mlorg (A.6)
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Substitution of Eq. (A.6) into Eq. (A.2) results in

(V : GE) = V. (GNEn) - [Cl()\,) + CQ(A‘)]GTE (A7)

i.e., Eq. (14) of the main text.

Appendix B. The Divergence Theorem

The divergence theorem states:

Let E be a simple solid region whose boundary surface S has positive
(outward) orientation. Let F be a vector field whose component functions
have continuous partial derivatives on an open region that contains E.
Then

{jF-dS:j}{jV-FdV (B.1)

The proof of this theorem can be found in many calculus textbooks, such
as Ref. [B1].
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