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Abstract

Theories of capillarity are reviewed. The limitations of the classical theory as
developed by Gibbs are demonstrated. The generalized theories of capillarity initiated
by Buff, and later by Murphy, Kondo, Kralchevsky, and Boruvka and Neumann are
scrutinized by considering the basic requirements of formulating thermodynamic fun-
damental equations. The different generalized Laplace equations of different theories
stem from the different setups of the fundamental equation. It is concluded that only
Boruvka and Neumann’s (BN) generalized theory satisfies all the requirements of
thermodynamics and mathematics.

Further, to test the BN theory, a hydrostatic treatment of a two phase capillary
system is presented. This non-thermodynamic approach is based on the concept of
virtual work as the condition for equilibrium of a capillary system, and on the concept
of parallel surfaces for evaluating the stress tensor field and excess properties within
the interfacial region. Following a straight-forward procedure, it is shown that the
hydrostatic results for surface tension y and two bending moments, Ci, and C2, agree
with the results of the BN generalized thermodynamic theory of capillarity. This
agreement indicates that the form of the BN fundamental equation for surfaces with
the extensive geometric curvatures (7and %] total mean and total Gaussian curvatures,
respectively) is the proper expression required to generalize the theory of capillarity.
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I. Review of the Gibbsian classical theory of capillarity

The classical theory of capillarity as developed by Gibbs [1] is the
basis of all surface thermodynamics. In Gibbsian thinking, the key
element of a thermodynamic theory is the fundamental equation. In
order to describe a curved interfacial (surface) system, two curvature
terms are necessarily included in the fundamental equation. Gibbs
postulated the fundamental equation of an interface as follows [1]

U= U(S, Ni’ A, Cqis 02) (1)

where U is the internal energy of the interface, S is the entropy, N, is
the mole number of component i, A is the surface area, c¢; and ¢, are the
two principal curvatures of the surface. The differential form of Gibbs’
fundamental equation, Eq. (1), is written as

where T is the temperature of the system, ; is the chemical potential
of component i, y is the surface tension, and C;, and Cy, are the
curvature coefficients associated with the principal curvatures [1],
respectively. Rearrangement of Eq. (2) leads to

1 1
dU = T dS + ZHL dNL + YdA + 5 (Clg+C2g) d(C1+C'2) + 5 (Clg_C2g) d(cl—02)
(3)
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Next Gibbs showed that it is possible to select a particular position of
the dividing surface [1] so that C,, + Cy, is zero. This particularly
positioned dividing surface is identified as the ‘surface of tension’ [1];
the term ‘surface of pure tension’ would be a more descriptive name [1].

The second curvature term is eliminated by assuming that the interface
is moderately curved and the difference between the two principal
curvatures, ¢, — ¢g, is of the second order. Therefore, by introducing the
concept of the surface of tension and the assumption of moderate

curvature, the Gibbs fundamental equation, KEq. (3), 1s reduced to
dU=TdA + 3y, dN; + ydA (4)

which no longer contains the curvatures explicitly. Based on this reduced
fundamental equation, Gibbs derived the classical Laplace equation

where J = ¢; + ¢y is the mean curvature, and P; — P, is the pressure
difference between the two adjacent bulk phases. Equation (5) is the
mechanical equilibrium condition and determines the shape of the
interface.

I1. Different approaches to generalize the Laplace equation of
capillarity

From the above analysis, it can be seen that the classical theory of
capillarity is limited to situations of moderately curved interfaces.
However, when the curvatures of a surface are large, and their corre-
sponding radii are comparable to the thickness of the interface, the
moderate-curvature assumption does not hold, and the second curva-
ture term cannot be eliminated from the fundamental equation. When
high curvatures exist, the selection of the surface of tension also becomes
obscure, and it may not fall within the physical interfacial zone [1,2].
Therefore, Eq. (4) is not an adequate fundamental equation, and as a
consequence, the classical Laplace equation, Eq. (5), is not applicable to
high curvature systems, such as microemulsions, lipid bilayers and
certain biomembranes [3—6]. For both theoretical and practical reasons,
it is necessary to generalize the classical theory of capillarity and retain
the curvature terms in the fundamental equation of the interface, which



154 M. Pasandideh-Fard et al. /Adv. Colloid Interface Sci. 63 (1996) 151-178

in turn can be expected to play a role in the mechanical equilibrium
condition.

The first generalized version of the theory of capillarity was given by
Buffet al. [7-9]; they retained the first curvature term in the fundamen-

tal equation as the cornerstone of their theory. Buff's fundamental
equation in differential form was postulated as follows

dU=TdS+X ;dN;+ydA + Cd(c; +cy) (6)

where C was called the mean curvature coefficient [7]. The correspond-
ing mechanical equilibrium condition, i.e. Buff's Laplace equation reads

(cl+02)y—(c%+c%) C,=P,-Py N

where C; = C/A is the first curvature potential. Equation (7) can be
re-written as follows

Jy—(J?-2K)C =P, - P, (8)

where K = ¢ c, is the Gaussian curvature.

Following Buff’s strategy for retaining curvature terms, i.e. using the
intensive curvature combinations, Murphy [2] developed a generalized
theory of capillarity, with the fundamental equation postulated as
follows

U=U(S,N, A, J, K) (9)
written in differential form as

dU=TdS + Xy, dN,+ydA +C{AdJ + CyAdK (10)
where C, is the second (Gaussian) curvature potential. Thus, both
curvature terms are included in Egs. (9,10), in contrast to Buff’s funda-

mental equation, Eq. (6), where only one curvature term was retained.
The Laplace equation derived from Eq. (9) can be written as

Jy- (J% - 2K)C, - JKC, =P, - P, (11)

which differs from Buff’s Laplace equation, Eq. (7), by the term with the
second curvature potential, C,.
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Kralchevsky [10] also developed a similar generalized theory of
capillarity by considering the same two curvature terms as Gibbs, i.e.
Eq. (3). His fundamental equation (Ref.[10], Eq. (4.17)) is expressed as

dU=TdS+ 31, dN, +7dA + C, A dJ + Cy, A dK, (12)

where Cy, is the curvature potential corresponding toJ, K, =c; — ¢y, and
C,; is the curvature potential corresponding to K. Note that K; can be

related to the Gaussian curvature through K? = J  — 4K. The curvature
potentials in different approaches can be obtained through the partial
derivative definitions in the respective theories. Based on Eq. (12), the
Laplace equation is obtained as (Ref. [10], Eq. (5.10))

r]Y_(J2*2mC1]3—J&CQk=P1—P2 (13)

Kondo [11] developed a generalized theory of capillarity in terms of
spherical interfaces. In order to maintain conservation of the total free
energy of the system during the shifting of the dividing surface, he
derived his version of the fundamental equation as

dU:TdsmdedA{%]Ada (14)

where a is the radius of curvature of a spherical dividing surface. In Eq.
(14), Kondo introduced a non-physical derivative term [dy/dal, called a
formal derivative. His version of the Laplace equation is

1 dy_1 _
y+2aaa—2a(P1 P,) (15)

Boruvka and Neumann [12] in their approach started out by a consid-
eration of the requirements of thermodynamics for any fundamental
equation and of the differential geometry in three dimensional space.
They stated that, in accordance with Gibbsian thermodynamics, an
independent parameter in the fundamental equation has to be [12,13]:
(i) a scalar and (ii) an extensive property of the same type as entropy
and mass for surface systems (see the next section). They stated further
that specifically for surfaces in three dimensional space there is an
additional, mathematical requirement, that the geometric variables
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should be the lowest order scalar differential invariants of the surface
[14,15]. With these considerations, Boruvka and Neumann [12] devel-
oped a generalized theory of capillarity, and their postulated fundamen-
tal equation for a homogeneous portion of a surface is

U=U(S,Ni’A,]}?O (16)

with the differential form

dU=TdS +31;dN; +ydA + C; dj7+ CydXK (17

where 7and K are the total mean and total Gaussian curvatures of the
surface with an area A

7= [Jda,  x=]]Kda (18)
(A) (A)

and C; and C, are the potentials of and X respectively. The relations
between these extensive variables in Eq. (16) and their densities can be
explicitly written as

U=uA, S=sA, N;=nA (=1,2,.),
(19)

J=JA, K=KA

where u, s, and n; are the area density of the internal energy, the
entropy, and the mole number of component i, respectively. The above
relations are also considered to be the transformation equations be-
tween the extensive variables and their densities [12]. In the case of a
non-homogeneous surface, the density form of the fundamental equa-
tion is necessarily employed [12]

u=u(s,n;,d, K (20)

The Boruvka and Neumann (BN) generalization of the Laplace equation
which follows from Eq. (20) is written, in the most general form, as
follows
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where V, is a special surface operator [12,15], and V, is the two-dimen-
sional analog to the three-dimensional gradient. When the surface
tension and the two curvature potentials C; and C, are constant along
the surface (homogeneous surface conditions), Eq. (21) reduces to [12]

Jy+ 2KC, =P, - P, (22)

It is evident that the various versions of Laplace equation (Eqgs. (7),
(11),(13), (15) and (22)) are all different in form. To elucidate this point,

1t may be helptul to consider the special case of spherical surfaces, where
the two principal curvatures are equal, i.e. ¢ = ¢; = ¢, and the difference
between the two principal curvatures is zero. In this case, the general-
ized Laplace equations reduce to

Buff:

QCY—2C201:P1—P2 (73)
Murphy:

2cy - 2c2C, - 2c3Cy =P, - P, (11a)
Kralchevsky:

2cy ~ 2¢2Cy), = Py - P, (13a)

Boruvka and Neumann:
2cy + 2¢2C, = P; ~ P, (22a)

Note that the Kondo equation, Eq. (15), was derived for spherical
surfaces in the first place. While the Buff and the Kralchevsky equations
become identical in this special case, the Murphy and the BN equations
remain distinct. It has been argued [16-19] that any two of the above
Laplace equations can be transformed into the other equation by mathe-
matically redefining the parameters. However, this is prohibited by the
thermodynamic requirements for the fundamental equation and the
structure and proceedings of thermodynamics [13], see also below.

II1. The necessity to distinguish between extensive and
intensive properties

To work towards a resolution of the above impasse, it is convenient
to return to the three requirements stated in the work of Boruvka and
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Neumann (BN). The requirement that the independent variables in the
fundamental equation have to be scalar quantities is of no particular

concern and in any case rather obvious, since the internal energy on the
left-hand side of the various formulations of the fundamental equation
is a scalar. The requirement of differential invariance might be argued
to be nothing more than a matter of mathematical convenience. How-

ever, the necessity for the independent paramefers to be extensive is a
fundamental thermodynamic issue. We would like to point to the book
of Callen [13], who writes in the preface to his second edition that his
book is now “...the thermodynamic reference most frequently cited in
physics research literature, and... the postulational formulation which
it introduced is now widely accepted” [13]. Callen’s Postulate 2, which
represents part of the second law of thermodynamics reads: “There
exists a function (called the entropy S) of the extensive parameters of
any composite system, defined for all equilibrium states and having the
following property: The values assumed by the extensive parameters ...
are those that maximize the entropy ...”. Clearly, in the fundamental
equation, the independent variables involved must be extensive.

Thermodynamically, the requirement of extensivity makes good sense:
the partial derivatives of U with respect to the independent variables,
e.g. dU/dS, which represents the temperature, must be intensive. Since
U is extensive, this is possible only if S and all the other variables are
also extensive.

The necessity of extensivity of thermodynamic variables is also
supported by the variational analysis. For an interface, whether it is
homogeneous or not, the total internal energy U of the interface is an
integral of the internal energy density u over the area (c.f. Eq. (20)). A
variation in the total internal energy can be written as

5U=5|udA=[5udA + | udda) (23)

When dealing with the density form of the internal energy u, the
question of the extensivity of independent variables does not occur since
all the parameters under consideration are in intensive form. The
standard variation of the internal energy density is written as

Blt = T6S + Mlﬁnl + 016 J + C28K (24)

which can be obtained from all the different generalized theories [2,4,7—
10,12) except that of Kondo’s [11]. Clearly, the difference in the definitions
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of J and K in the different approaches is of no consequence for the
present mathematical argument. Note that, e.g., in the framework of
Kralchevsky’s theory, the Gaussian curvature variation 6K in Eq. [24]
only has to be replaced by 0K, (cf. Eq. (12)). Therefore, for the purpose

of the present mathematical argument, we can treat Eq. (24) as a
commonly accepted, standard variation of the internal energy density.
To evaluate the right-hand side of Eq. (23), the Euler form of the internal
energy density may be used in addition to Eq. (24); hence the variation

of the total internal energy oU becomes
SU = | [T8(sdA) + 1,8(n,dA) + ¥8(dA) + C,8(TdA) + C,8(KdA) (25)

In the case of a homogeneous dividing surface, Eq. (25) integrates into
SU =TO(sA) + 1;0(n;A) + YA + C13(JA) + Co0(KA) (26)

Upon using the transformation equations between the extensive
variables and their densities, Eq. (19), the Boruvka and Neumann
fundamental equation, Eq. (17), is recovered. In the above variational
analysis, Egs. (23-26), the only knowledge used is the calculus of
variations. Therefore, by considering both pure mathematical and ther-
modynamic [13] requirements, we can conclude that the choice of
extensive variables (7 and %) is a necessity in formulating the funda-
mental equation.

While the above mathematical requirements are clearly violated in
the majority of approaches discussed here, they are by no means
unknown in the field. An example of proper handling of the distinction
between extensive and intensive properties is the work of Helfrich
[6,20,21] in the treatment of the effects of curvature on the shape of
closed membranes.

Returning to the above generalized theories, it is apparent that all
three criteria of thermodynamics and mathematics in setting-up the
fundamental equations are only satisfied by the approach of Boruvka
and Neumann. Buff et al. [7-9] mixed intensive and extensive thermo-
dynamic parameters in their fundamental equation, Eq. (6). Murphy
[2], who recognized the need for differential invariance, also mixed
intensive curvature terms with extensive parameters such as the sur-
face area and the surface entropy, Eq. (9). Kralchevsky (10], in his
fundamental equation, Eq. (12), has both intensive (/, K;) and extensive
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{surface area and surface entropy) parameters. Moreover, the difference
between the two principal curvatures used by Kralchevsky [10] is not a
scalar differential invariant [15].

Seemingly, Kralchevsky’s fundamental equation has the merit of

being identical with that of Gibbs [1], Eq. (3). However, it has been
argued elsewhere [14] that it is likely that Gibbs was aware of the
shortcomings of Egs. (1) and (3), although they served his purposes well.
He was quick to suggest possible generalization of his theory, e.g. in the

case of line tension; 1n the much more central question ot the curvatures,
he remained totally silent.

In Kondo’s generalization, the formal derivative expresses a change
in the value of the surface tension ydue to a shift of the dividing surface,
and it is not to be confused with a change accompanying an increase in
the radius of the physical interface [22]. It can be seen from Eq. [14] that
the differential form of Kondo’s fundamental equation is not a standard
formulation [13,14]. The formal derivative, which is the coefficient of
the ‘A da’ term in Eq. (14), is not the partial derivative of the internal
energy U with respect to the radius of the curvature, and cannot arise
from a proper formulation of the fundamental equation. It may be
concluded that the formulation of Kondo’s fundamental equation vio-
lates the standard requirements of derivative definitions of thermody-
namics.

In contrast, it can be seen that the Boruvka and Neumann funda-
mental equation, Eqgs. (16-18), not only retains both curvature terms
(in Buff’s theory only one curvature term is retained) but also eliminates
the problem with mixing intensive and extensive thermodynamic pa-
rameters in the fundamental equation. The total mean and Gaussian
curvatures 7and Kare extensive variables. The two curvature potentials
were defined as the partial derivatives of the internal energy with
respect to the two corresponding total curvatures [12]. Moreover, the
surface geometric parameters Jand Kare the first and the second scalar
invariants of the surface dyadic [15,23].

IV. The scope of non-thermodynamic continuum approaches
to capillarity

The correctness of the generalized Laplace equation depends on the
correctness of its fundamental equation. While the Boruvka and Neu-
mann (BN) fundamental equation satisfies all thermodynamic and
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geometric requirements, it is still a postulate and as such remains in
need of verification and interpretation. Also, the retaining of the second
curvature term (the Gaussian curvature term) needs to be justified, i.e.
the term which was left out in Buff’s analysis.

Major credit in this area 1s due to Butl, who not only pioneered the
idea of a generalized thermodynamic theory of capillarity, but also
developed strategy and methodology for independent testing of the
thermodynamic results. Specifically, he developed [7] a hydrostatic

approach to capillarity based on the analysis of the intertacial stress
tensor field. Through the integration of the excess hydrostatic equation
across the interface, he recovered his generalized Laplace equation, Eq.
(7), by relating the thermodynamic parameters to the interfacial stress
field. However, Buff carried over, from his thermodynamic theory, the
use of the intensive parameters as the variables in his hydrostatic
derivation. Equations (6) and (7) are believed to lack thermodynamic
rigour, and hence the expressions for the thermodynamic parameters in
terms of the stress field of the interfacial zone are not proper. Neverthe-
less, he presented a useful approach to confirm the thermodynamic
theory.

Boruvka et al. [24] also developed a hydrostatic approach to capillar-
ity using tools developed by Buff [7]. However, in contrast to Buff [7]
whose hydrostatic approach is to confirm the Laplace equation of his
thermodynamic theory, Boruvka et al. [24] developed the hydrostatic
approach to verify and confirm the postulated BN fundamental equa-
tion. The hydrostatic approach of Boruvka et al. provided a complete
verification and confirmation of the BN thermodynamic theory. How-
ever, rather complicated differential geometry was involved [24] which
made the paper somewhat difficult to read.

In view of the importance of the question and the inconsistencies and
discrepancies between the various existing versions of generalized
Laplace equations as shown above, we propose to reconsider here the
hydrostatic approach. With a reasonably simple tensor analysis, the
present paper re-examines the derivation of the BN fundamental equa-
tion by using a more transparent hydrostatic approach than that of
Boruvka et al. [24]. The physical meaning of the curvature terms will
also be explored.

The hydrostatic equation (sometimes called equilibrium equation
[25]) can be written as

V.o=pVo (27)
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where ¢ and p are the stress tensor and density, respectively, and
external body forces are represented by the potential ¢. Integration of
the excess hydrostatic equation across the interface leads to the me-
chanical equilibrium condition, i.e., the Laplace equation [7]. An alter-

native formulation of the conditions for equilibrium of a system is the
principle of virtual work which will appear later in this paper, cf. Egs.
(38-43). The analysis of the virtual work of the interfacial system will
provide the proper form of the free energy and hence of the fundamental

equation. Thus, the connection between the hydrostatic approach and
thermodynamic fundamental equation can be attained by considering
virtual work [24]. For this reason the present hydrostatic approach is
again based on the virtual work principle rather than the hydrostatic
equation.

V. Stress tensor field in a capillary system

Consider a two phase capillary system with a plane-parallel inter-
facial zone. Inside each bulk phase, away from the influence of the
interface, the stress tensor becomes isotropic, i.e.

c=-PI (28)

where P is the pressure and I is the three-dimensional unit tensor.

Within the interfacial zone, a special treatment must be considered.
Buff [7] introduced the following parametrization of the position vector
R, in the space occupied by the interface

R=Ru,v,\) = r(u,v) + An(u,v) (29)

where r is the position vector of a selected dividing surface, n is the unit
normal to the surface and A is the distance from the dividing surface.
This representation of the interfacial zone is shown in Fig. 1 where u—v
is a curved surface representing the dividing surface.

From the figure we have

r, xr
n=—"—" (30)
r” X rUl

where r, and r, are the unit vectors on the interface at the point under
consideration.



M. Pasandideh-Fard et al. / Adv. Colloid Interface Sci. 63 (1996) 151-178 163

dividing
surface ="

(u-v)

.. interfacial
zone

Fig. 1. Buff’s representation of the interface.

By definition, the surfaces, R (A = constant), represent a one parame-
ter family of parallel surfaces with the dividing surface at A = 0 (Fig. 2).

Within the interfacial zone, all physical properties like density p and
stress tensor ¢ vary quickly but smoothly along the direction A which is
normal to the dividing surface. The variation of density within the
interface is shown schematically in Fig. 3 [26].

Because of the rapid variation of density in the direction A, the
isotropy of the stress tensor in the interfacial zone is destroyed. Using
the parametrization of R(u,v,A), Buff [27] assumed that within the
transitional zone, the stress ellipsoid is axi-symmetric along the normal
to the dividing surface passing through the point under consideration.
For the case of a spherical interface (i.e. u—v surface in Fig. 1 is part of
a sphere), he offered the following relation for the stress tensor

G = Op(A) (1,

u

+r,r,) +opA) nn (31)

where r,r,, r,r, and nn represent the unit line tensors in the «, v and A
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interfacial
zone

Fig. 2. ‘A = constant’ surfaces within the interfacial zone.

directions, respectively, at the point under consideration. In this equa-
tion (r,r, + r,r,) may be replaced by I, the unit surface tensor (I, = I -
nn), so that Eq. (31) is replaced by [7]

6 =op(A) Iy + oplA) nn (32)

where o represents the two identical isotropic, tangential stress com-
ponents and oy represents the normal stress component* of the inter-
face which is equal to the negative pressure at the point under consid-
eration. In the interior of each bulk phase the tangential stress
component o reduces to —P; therefore in the bulk phases Eq. (32)
reduces to Eq. (28).

* It should be mentioned that o7 and oy are normal (i.e. not shear) stresses but since they are in
the directions parallel and normal to the interface at the point under consideration, respectively,
oy is called tangential stress component and oy normal stress component.
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) P

P2

Py

- A

-«—.-—. interfacial zone

._L___\______

Fig. 3. A schematic of the variation of density within the interface.

As observed from Eq. (32), o and oy for the spherical interface are
only functions of A, the direction normal to the dividing surface. In the
cases with non-uniform curvatures, i.e. nonspherical interfaces, Eq. (32)
is expected to be a good approximation (to the first order) of the actual
form of the interfacial stress tensor. The implicit assumption invoked
via this construction is that the constant density surfaces (Fig. 2) within
the interface are taken as parallel and that the stress is transversely
isotropic. In other words, it is assumed that the fluid is isotropic and
homogenous in every parallel surface within the interfacial region
regardless of whether or not non-uniform curvatures exist.

According to the above development of the stress tensor repre-
sentation for a capillary system, the variation of the tangential and
normal stress components against the direction normal to the dividing
surface may be drawn schematically as shown in Fig. 4 [26]. It should
be noted that the variation of o4(A) is quantitatively studied in the
microscopic approach to capillarity [28].
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Fig. 4. A schematic of the variation of the stress tensor components across the interface.

VL. Interfacial excess properties

The interfacial zone may be considered (to the first order approxima-
tion), as done by Gibbs [1], as a mathematical (two-dimensional) bound-
ary between two bulk phases which extend uniformly right up to the
mathematical dividing surface. From the Gibbsian viewpoint, the divid-
ing surface or surface of discontinuity is a mathematically constructed
surface of only two dimensions which is sensibly placed within the thin
interfacial zone to separate the bulk regions that make contact when
forming the interface.

As a result of this model, when a dividing surface is placed within the
interface in a hydrostatic system and the actual bulk phases are ap-
proximated by the extrapolated bulk phases right up to the dividing
surface, the interfacial excesses of physical properties have to be as-
signed to the dividing surface. Otherwise, the system totals of physical
properties would not be preserved. This is the main idea of the dividing
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surface concept. The simplest way of assigning the interfacial excess
properties to the dividing surface is by making use of the parallel
surfaces (Fig. 2).

Extrapolated and excess quantities with respect to the surface are

defined in terms of both the position of the dividing surface and the
orientation of the surface. The excess quantities of the surface like p‘),
u®@, s etc. are assigned to a particular point on the surface and
obtained by integration through the interfacial zone.

It the dividing surtace 1s put at A = 0 and extrapolated bulk properties
are denoted by subscript e, then the interfacial excess density pg can be
written as

PE=P —Pe (33)
Similarly for the excess stress tensor

where o, is the stress tensor of the bulk phase; therefore using Eq. (28)
we have

op=0+P,1 (35)
so that
Org=0r+P,, Ong =On+ P, (36)

Now using Eq. (32) we have
op = org(h) Iy + oyg(d) nn (37)

It should be mentioned that the extrapolated quantities, denoted by
subscript e, for the two regions of A < 0 and A > 0 are different on the
two sides and, therefore, the excess quantities for the two regions will
also be different. The tangential component of the excess stress tensor
in the interfacial zone is shown schematically in Fig. 4 [26].
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VII. Virtual work in a hydrostatic system

The equation of hydrostatics, Eq. (27), is a necessary condition for the
equilibrium of a static fluid body. An alternative formulation of the
conditions for equilibrium of a system is the principle of virtual work
(sometimes called the principle of virtual displacements). The method

ot virtual work may be used instead of writing the equilibrium equations
to solve for unknown reactions or to determine the equilibrium configu-
ration of the system [29]. By applying this method for a static fluid body,
Eq. (27) is replaced by another necessary condition as follows

W=0 (38)

That is, the total virtual work in a static fluid body is zero at equilibrium.
Notice that in a hydrostatic analysis, thermal and chemical equilibria
are tacitly assumed; therefore the principle of virtual work, Eq. (38), is
equivalent to the minimum principle of the free energy (grand canonical
potential).
The appropriate expression for 6W is

OW = dW, + dW, + 6W, (39)

where 8W;, W, and 8W, are the virtual work done by the internal forces
(stress tensor o), the external body forces (-p V¢) and the external
surface forces, respectively. If the virtual work expression is set up
correctly, the hydrostatic equation should follow from Eq. (38).

Since the main purpose of this paper is to confirm the proper form of
the fundamental equation for an interface we are concerned only with
the virtual work arising from the internal forces. The appropriate
expression for 6W; is

sw,=—[]| oVsRaV (40)
W

where V OR is the virtual strain tensor (3R is the virtual displacement
vector) and the sign “’is the double dot product. For a two phase capillary
system, the usual treatment is applied (as explained before): the Gibbs’
dividing surface is placed within the interface, the bulk properties are
extrapolated right up to the dividing surface, and the interfacial excess
quantities are introduced. Substituting for ¢ from Eq. (35), the virtual
work of the internal forces, Eq. (40), separates into two parts as follows
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where 8W;, and W, are the virtual work in the extrapolated bulk

e L
phases and the interfacial excess part of 3W;, respectively, and we have

sw,=[]] P, I:voRaV (42)
W
sW=-|][ oy veRAV (43)
W
Note that
I:V8R=(V3R),; =V - 3R i=1,2,3 (44)

and from the variation of volume integrals we have
d3dV =(V . 0R)dV (45)

Therefore combining Eqs. (42), (44) and (45), the virtual work in the
extrapolated bulk phases may be expressed as

sw, =[] N P, 8dV (46)

OW g, the interfacial excess part of 6W,, will be evaluated in the next
section.

VIII. Hydrostatic properties of a dividing surface

Having defined the excess quantities of an interface in a capillary
system, we are able to assign the interfacial excess properties to a
selected dividing surface. This can be accomplished in a simple way by
making use of the parallel surfaces (Fig. 2) and integrating the excess
quantities through the interfacial region. For example, the mass of the
dividing surface may be written as

ME:J.”M pedV 47)

Therefore, as observed, a volume element of the interfacial region, dV,
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. interfacial zone

~
~

~

dividing surface

o)

Fig. 5. One side of a volume element of the interfacial zone.

has to be evaluated first, in order to perform the integration across the
interface. Consider one side of a volume element of the interfacial region
as shown in Fig. 5. The area of the indicated side of the element may be
approximated by the shaded rectangular region shown in the figure; this
area is given by BC d\. Now, from the triangle OBC:

BC=—du-=

— OB ri+A
du =
OA 1

A
1+—]du
ry

— (48)
S~ BC=1+c¢A) du
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where c¢; is one of the principal curvatures of the dividing surface (¢, =
1/r,). Similarly for the other side of the volume element we have

CD=(1 +coh) du (49)

By combining Eqgs. (48) and (49) the area element of a parallel surface
with a distance A from the dividing surface (Fig. 5) may be written as

dA,=BC CD

=1 +c¢qM) (1 +ch) du dv

(50)
= {1 -+ (Cl + C2))h + C1027\42} dA
=(1+JA+K\%)dA

where J, K and dA are the mean curvature, the Gaussian curvature and
an element of the area of the dividing surface (at A = 0), respectively.

Finally, for the volume element of the interfacial region (Fig. 5) we
have

dV =dA.dh = (1 +Jh+ KA?) dA dA (51)

Having determined dV, we can substitute Eq. (51) into Eq. (47) to obtain
the total interfacial excess mass as follows

My =[] ppd+ I+ K2 drdA (52)
Thus the interfacial excess mass density (per unit area) is given by

oA = [ p(1 + Jh + KA2) dA (53)
and the mass of the dividing surface may also be written as

Mp=M®={] o®da (54)
A)

It is clear that, in general, we have
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J = J(u,v), K = K(u,U), PE = pE(u;U,;\')
(565)
copW = p D)

It should be mentioned that the integration limits on XA in the above
equations are implied by the vanishing of pr and that all centres of the
dividing surface are assumed to fall outside these limits.

Other properties of the dividing surface such as the excess internal

energy u¥, and the excess entropy s can be evaluated similarly as
p(A). The virtual work of the excess internal forces, Wz, is the most
important attribute of the dividing surface to be obtained. Substituting
Egs. (37) and (51) into Eq. (43) leads to

sWip=— | [ [ o I, + oy nnl : V 5 RdA, dA (56)

An evaluation for 6R with respect to the dividing surface may be
obtained by taking the variation of Eq. (29), which leads to

SR = dr+ Adn + ndr (57)

On the other hand, by considering the parallel surface with a distance
A from the dividing surface (Figs. 1 and 5) we may write the following

SR =38R, + oR, (58)

where 0R, and OR,, are projections of R on and normal to the parallel
surface, respectively. Comparing Eqgs. (567) and (568) we have

R, = or+ Adn (59)

3R, = nd\ (60)
In a manner similar to Eq. (44) it can be shown that

I,: VoR = (V3R); =V, - 3R, Jj=12 (61)
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where V, and V; are the surface- and the line-differential operators,
respectively (similar to space gradient V). Substituting Eqgs. (61) and
(62) into Eq. (56) we get

SWig=—[]] oV, 8R)dA,dh~ ||| onp(V, - R, dA dA, (63)

Now, similar to Eq. (45) from the variation of surface and line integrals

w,
ha
I

SdA, = (V,  5R,) dA, (64)
Sdh=(V, R dh (65)

and using an approximation that the ‘A= constant’ surfaces spanning
the interface (Fig. 2) remain parallel to the dividing surface and the
distance between them does not change, we may write

OA=0 — 8drA=0 (66)

This approximation is in line with the assumptions already made. Thus,
substituting Egs. (64—-66) into Eq. (63) we obtain the following

Wi = | [ opg 8dA, dn 67)

From Eq.[50] by applying Eq.[66] it can be shown that

S dA, = 8[(1 +Jh + KA?) dA]
(68)
=8 dA + L 8(JdA) + 12 §(KdA)

When introducing 7 and % the total mean and Gaussian curvatures,
respectively, with the following definitions

g=[] Jda, x=[] Kda
A A)

(69)
s di=JdA, dX=KdA
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and substituting Eq. (68) into Eq. (67) results in

SWp=—[ [ [opddayar—[][omrddndi-[[|omredn dn

(70)
Using the following definition
to=| M oppdh; k=012 (71)

we obtain the final expression for the virtual work of the internal forces
in a dividing surface

SWp = SWA) = —” (Xo OdA +x1 0d I+ x5 6dK) (72)
A)

Notice that in the procedure which resulted in Eq. (72) no restriction
was made on where the dividing surface should be put inside the
interfacial region; therefore this surface can be positioned arbitrarily.
IX. Comparison with the generalized thermodynamic theory

From the generalized thermodynamic theory of capillarity [12] via
the free energy formalizations [30], it has been shown that the virtual

work of internal forces in a dividing surface is expected to be

swiv =— [ | (y8dA + C; 8dy+C, 3d%) (73)
A)

where v is the surface tension and C; and C, are the first and second
bending moments, respectively. Equation (73) is matched term by term
to Eq. (72) together with Eq. (71) by setting:

Y:X():JGTE dA (74)
Cr=x1=] hoppdh (75)

Cy =% =] A2 oppdi (76)
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These equations show that the thermodynamic quantities, y, C; and
C, correspond to the first three moments of the tangential excess stress
component Oy, about the dividing surface at A = 0. Recalling the case
of a distributed loading on a beam from solid mechanics, we may infer

from the above equations that the surface tension y represents the total
force per unit length acting along the interface and the two bending
moments C; and C, indicate how this force, which results from the
tangential excess stress tensor, is distributed across the interface. The

close correspondence between Eqs. (72) and (73) indicates that the
hydrostatic approach to capillarity is equivalent to the mechanical part
of the generalized thermodynamic theory and thus proves the correct-
ness of the generalized fundamental equation for surfaces. This con-
firms that A, 4, and X do indeed constitute the proper set of extensive
geometric properties one must consider when generalizing the classical
theory of capillarity.

Barring mathematical errors in the BN derivation of the generalized
Laplace equation, Eq. (22), this generalized equilibrium condition must
be considered as the correct one. In view of the complexities of the
original BN derivation, we shall present two more elementary deriva-
tions of Eq. (22), one hydrostatic and one thermodynamic, in the sub-
sequent paper.

X. Conclusions

A hydrostatic approach for a two phase capillary system with a single
interface has been presented with a straightforward tensor analysis.

By applying the concept of virtual work in a capillary system and
comparing the results of the treatment with the generalized thermody-
namic theory, agreement between the hydrostatic and thermodynamic
approaches was reached which led to an appropriate verification of the
surface tension y, and two bending moments C; and C,. The agreement
between the two approaches indicates that the form of the fundamental
equation for surfaces [12] with the extensive geometric curvatures given
by the total mean curvature 7, and the total Gaussian curvature %] is
the proper expression required to generalize the theory of capillarity.

The hydrostatic expressions for the two bending moments provide a
justification and a physical interpretation of these previously postulated
parameters.
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Appendix. The dependence of interfacial tension on the
position of the dividing surface

The final point regarding our hydrostatic approach is about the

position of the dividing surface. If the location of this surface in the
interfacial zone is changed then, from Eq. (74), y will change also, i.e. y
depends on the position of the dividing surface. To show this clearly,
consider Fig. 6 [26].

If the dividing surface is positioned at A = 0, then vy is equal to the
shaded area in the figure. Now, if the dividing surface is put at A =,
then the area of ‘abcda’ will be added to the shaded area, i.e. y; > v, but
if it is put at A = A,, then the area of ‘cdefc’ will be subtracted from the
shaded area so that y, < y. Thus, changing the dividing surface from A =
A, to . = A, will decrease the surface tension by the area ‘abfea’, i.e.

Y1 — Yo = the area of ‘abfea’ = AP - Ah

Y
>

- PZ

Fig. 6. A schematic of the variation of oy across the interface indicating the location of
the dividing surface.



