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Kinetic theory based numerical scheme such as direct simulation Monte Carlo (DSMC) and 
information preservation (IP) schemes properly solve micro-nano flow problems in 
transition and free molecular regimes. However, the high computational cost of these 
methods encourages the researchers toward extending the applicability of the continuum-
based equations beyond the slip flow regime. In addition to correct velocity profile, the 
continuum-based equations should predict accurate mass flow rate magnitude. The second-
order velocity slip models derived from the kinetic theory provide accurate velocity profiles 
up to Kn=0.5; however, they yield erroneous mass flow rate magnitudes because the basic 
Navier-Stokes equations are invalid for transition regime calculation. To remedy this 
shortcoming, the rarefaction effects must be considered on dynamic viscosity, i.e., µ=µ(Kn), 
in order to achieve correct mass flow rate magnitude despite using the kinetic-based slip 
model. Using shear stress distribution of IP simulations, we develop an analytical formula 
for dynamic viscosity for the early transition regime and use it to modify the continuum-
based equations to improve more accurate mass flowrate magnitudes. Before using the IP 
results, we compare the accuracy of IP solution with the standard DSMC, the linearized 
Boltzmann and the continuum-based analytical solutions. Using the viscosity coefficient 
obtained from IP, the analytical expression for the mass flow rate is derived. We show that it 
provide accurate solutions for mass flow rate for the region of 0.1<Kn<0.5. 

I. Introduction 
he micro/nano geometries in MEMS-NEMS may work in a variety of flow regimes such as continuum, slip, 
and transition ones. The main characteristic to determine gas rarefaction is the Knudsen number; which is 

defined as the ratio of the mean free path of fluid to a characteristic dimension of the flow conduit (Kn=λ/H). For the 
flows with small Knudsen numbers, i.e., Kn<0.01, a continuum assumption is justifiable. In such flows, the analysis 
can be fulfilled via solving the Navier-Stokes (NS) equations. For flows with Knudsen numbers between 0.01 and 
0.1, the non-equilibrium effects dominate in the flow near the wall surfaces, which can properly be described by 
applying new boundary conditions such as the velocity slip and temperature jump conditions to solve the NS 
equations. For flow with a Knudsen number greater than 0.1, high order kinetic effects become important and 
continuum-based analysis becomes less accurate. For Kn>10, the flow is in free molecular regime and 
intermolecular collisions are insignificant compared with the collisions between the gas molecules and their 
conducting walls [1,2]. For a typical flow in micro/nano geometries, Knudsen number varies due to pressure-
temperature changes; therefore, mixed flow regimes such as slip-transition is usually observed. Basic Navier-Stokes 
equations with modification on their wall boundary conditions can be used to solve the flow field in slip flow 
regime. Alternatively, the molecular-based approaches such as direct simulation Monte Carlo (DSMC) [3] or 
information preservation (IP) method [4] are usually applied to solve rarefied flow field as Knudsen number exceeds 
beyond the slip flow condition. But the high computational costs of molecular-based approaches promote great 
interest in extending the range of continuum-based equations application beyond the slip flow regime.  
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To extend the applicability of the NS equations, different second-order slip velocity boundary conditions have been 
suggested. They accurately predict either the velocity profile or the mass flow rate. A comprehensive review of slip 
boundary conditions can be found in Ref. [5]. One of the most accurate second-order slip Boundary conditions is the 
one which is derived from the kinetic theory. It is suggested as [5] 
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This slip boundary condition gives accurate wall slip value up to Kn<0.5; however, it is not accurate at all in 
predicting the mass flow rate. Alternatively, the second-order slip velocity profile given by Aubert and Colin [6] 
only yields accurate mass flow rate prediction within the early transition regime. It is given by 
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Beskok and Karniadakis developed a unified velocity model for the entire Kn regime [7] as follows 
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where b is an arbitrary constant determined from the DSMC simulation, i.e., b= -1. Contrary to Eq. (2), this model 
only predicts a good shape of the velocity profile and is erroneous for mass flowrate prediction. In fact, the kinetic 
effects manifesting near the walls create a non-equilibrium region, named Knudsen layer, which extends up to a few 
(1~2) mean free paths away from the wall [8]. This region is characterized by departures from linearity of the stress-
strain relationship and cannot be captured by the Stokes assumption. Any assumed slip velocity profile matches the 
real velocity profile either at the wall (i.e., slip velocity, inside the Knudsen layer) or at the centerline (maximum 
velocity, outside the Knudsen layer). As will be shown in the next section, the slip boundary conditions given by Eq. 
(1) is accurate inside the Kn layer and predicts a correct slip value in the Knudsen layer and this has been considered 
in its derivation [5]. Meanwhile, it underpredicts the maximum velocity in the main flow. This is due to different 
characteristics of the inner (Kn layer) and outer (main flow) layers, and the fact that no single velocity profile can 
provide exact solution in both layers. Additionally, the failure of NS equations in transition regime makes it difficult 
to suggest a single formula capable of predicting both the velocity profile shape and the mass flow rate accurately. 
To remedy this problem, Karniadakis et al. [5] suggested that the viscosity coefficient must be modified in order to 
account the rarefaction effects. In fact, the NS equations are derived via the Stokes assumption, hence, they are 
invalid in predicting flow in the transition regime. Instead of modifying stress-strain relationships by considering 
additional terms, which results in more complicated equations, there is a simple idea to modify the dynamic 
viscosity as a function of Knudsen and use this modified value to calculate shear stress from the Stokes relation. To 
do so, it is crucial to find correct variation of the dynamic viscosity with Knudsen. Based on the simple analytical 
relations for dynamic viscosity at the two limits of flow regimes (continuum and free molecular), Karniadakis et al. 
[5] assumed a hybrid formula for viscosity, which is given by 
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where α is a parameter, which should be adjusted properly based on the DSMC data in order to correctly predict the 
mass flow rate. In order to correctly predict the mass flow rate, the simple form of Eq. (4) is required to be 
complicated with variation of α, e.g. an inverse tangent function [5]. Alternatively, an averaged value for α can be 
suggested.  
In the current study, we suggest an empirical relation for viscosity coefficient in early transition regime 
(0.1<Kn<0.5) based on our IP simulation. We normalize shear stress value obtained from IP solution with velocity 
gradient so that the variation of viscosity coefficient with Knudsen can be captured. The calculated viscosity 
coefficient is combined with the second-order kinetic slip velocity boundary conditions (Eq. (1)) to either derive 
analytical expression for mass flow rate or increase the range of applicability of an already-developed NS solver for 
the transition regime. The developed analytical expressions and the modified NS solver are extensively validated 
against available analytical and experimental data. We also investigate the range of validity of the developed 
expressions. Some key points should be addressed about the contribution of the current work. First, although the 
pervious study of Karniadakis et al. [5] derives an expression for the viscosity coefficient for the entire transition 
regime, it has a limitation with respect to α, which its exact value is unknown. Therefore, their suggested formula, 
I.e., Eq. (4) cannot be easily extended to arbitrary flow regimes without a priority information about α. Second, the 
developed viscosity model has a comprehensive form that follows correct physical behavior of the flow field. 
Although it is obtained from the IP numerical simulations, it is close to experimentally-confirmed viscosity model 
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derived from the Colin relation, see Ref. [6]. Additionally, combining it with the second-order kinetic boundary 
conditions, which is quite accurate in predicting the slip velocity in the transition regime, it provides exact prediction 
for the mass flowrate. Third, previous study [5] used the DSMC mass flow rate to extract an analytical relation for 
the viscosity. Therefore, their procedure needs tremendous independent numerical efforts in addition to the fact that 
the DSMC data are quite noisy. In this study, we use IP shear stress to formulate the variation of viscosity 
coefficient with the Knudsen number. This in turn reduces the computational costs and derive a more general 
expression for the mass flow rate.  
Based on this, we suggest an analytical solution for the mass flow rate inside channels. It is accurate in the early 
transition regime. We restrict ourselves to 0.1<Kn<0.5, where the slip velocity boundary conditions (based on the 
kinetic theory) are valid for this range and no alternative formula can be found to be accurate for this region.  
 

II. The Viscosity Model 
A. The DSMC-IP Method 

It is widely accepted that the DSMC method is one of the most accurate methods to model rarefied gas flows 
numerically. In fact, DSMC simulates particle behavior in a consistent manner as described by the Boltzmann 
equation. The Boltzmann equation is the general governing equation for dilute gas. Consequently, the results of 
DSMC provide accurate solutions to the Boltzmann equation as long as the numerical approximations such as cell 
size, time step, inlet/outlet boundary conditions, and the inter-molecular and molecular-wall collision models are 
realistic. Although DSMC is a successful approach for simulating subsonic microflows [9-11], the statistical 
inherent scattering in DSMC prevents its efficient application to microflow at very low speeds. To remedy this 
shortcoming, Fan and Shen [4] developed the information preservation scheme. They used the DSMC molecular 
velocities as well as the preserved information velocities to record the collection of enormous number of molecules, 
which a simulated DSMC particle can represent. The preserved macroscopic information is solved in a similar 
manner to that for the microscopic information in the DSMC method and is then modified to include the pressure 
force, which is the main driving force for low speed flows. In fact, the IP scheme directly implements the pressure 
gradients in the preserved velocity field while the conventional DSMC just implements the pressure at the 
inlet/outlet boundaries, which really need longer time to affect the entire flow field. Consequently, the IP scheme 
greatly reduces the computational time compared with the standard DSMC simulators [12-13]. Sun and Boyd [14] 
further extended the IP method to simulate general subsonic microflows. They presented proper models for 
temperature field and modified molecular collision model. More details on the IP method can be found in Refs. [14-
16].  
 
B. Mass Flow Rate Validation for IP 
Before applying our IP code for viscosity calculation, we need validating it with the IP simulation of Shen [15]. 
Figure 1 shows the variation of normalized mass flowrate ))2/2/(( * hRTmm mρ&& = , where ρm is the average of the 
inlet-outlet densities, with inlet Knudsen number for 
the current IP and that of Shen’s IP and the DSMC 
simulations. The pressure ratio is PR=1.428 and 
working flow is nitrogen. Good agreement is observed. 
Since the IP prediction of mass flow rate agrees well 
with that of DSMC, we can rely on our IP solution as a 
reliable Boltzmann equation solver. It is necessary to 
remind that the collision model of IP is a crucial 
parameter, which remarkably affects the shear stress 
calculation. The preliminary IP collision model [12-
13], which assumes the preserved information of 
particles is the same after collision, is not a precise 
predictor for the viscosity and thermal conductivity. 
Sun and Boyd [14] suggested a phenomenological 
model for the distribution of the information after 
collision using the collision deflection angle and the 
experimental data. In the next sections, we use both 
collision models, i.e., collision model 1 and collision 
model 2 and implement the effects of collision model 
on the velocity profile prediction.    
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Figure 1. Mass flow rate variation with inlet Knudsen 
number, comparison between current IP simulation 
and results reported by Shen [15].  
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C. Shear Stress  
We apply our scheme to calculate the dynamic viscosity variation with Knudsen number. The shear stress obtained 
from IP is used to obtain µ (Kn) as follows 
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where IPw,τ  is the IP shear stress calculated according to Eq. (5b), Ns is the total number of molecules striking the 
wall element during ts, A is the area of the wall element, the subscript t denotes the tangential velocity component, n 
is the normal direction and the superscripts in and re denote the values before and after the wall element is hitted. 
For small Knudsen number flows, the linear dependence of stress-strain is kept; however, higher-order terms show 
up in the shear stress formula as Knudsen increases. We have    
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where superscripts NS, B, and AB stands for Navier-Stokes, Burnett and augmented Burnett equations, respectively. 
We therefore approximate Eq. (6) to obtain an effective viscosity coefficient for Navier-Stokes equations: 
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The value of )(B
wτ  is negligible for low Mach number isothermal flows in long channels [5]. Holding other stress 

terms in Eq. (6) (such as )( AB
wτ ) is not useful for our current purpose in that the resulting viscosity coefficient must 

be applied to correct the mass flowrate of augmented Burnett equations not the NS equations. The validity of this 
approximation decreases for higher Knudsen number flows. In fact, the computed viscosity coefficient from Eq. (7) 
transforms the IP shear stress to the NS equations and permits these equations to be extended beyond the limit of 
slip flow regime while correctly predict the mass flowrate.   
Figure 2 shows the variation of dynamic viscosity, which is normalized with the unmodified value at Kn 0→ , with 
Knudsen number in mid-transition regime and obtained from Eq. (7). The IP shear stress computed for a nitrogen 
flow in a channel with an aspect ratio (L/H) of 20 and a pressure ratio of 2. The full momentum accommodation is 
considered for the walls as σ =1. Different independent runs were performed while the inlet Knudsen was increased 
to collect the required data. Figure 2 shows that dynamic viscosity rapidly falls in the early transition regime. It 
should be noted that the validity of Eq. (7) for higher Kn 
values is completely suspicious because the Knudsen 
layer (higher-order terms) grow and consequently a linear 
approximation turns to be invalid. Therefore, there is 
some error for viscosity as Knudsen approaches unity. In 
the current study, we concentrate on the limit of 
0.1<Kn<0.5, where the slip prediction by Eq. (1) is 
accurate and there is little error in using Eq. (7).  
Using Eq. (1) for the velocity slip, we do not include 
viscosity modification in the y direction, as suggested by 
Lockerby et al. [8]. They combined the viscosity 
coefficient with the wall-damping functions so that the 
nonlinear variation of the stress-strain in the Knudsen 
layer is correctly simulated. This strategy is usually 
employed with the slip velocity boundary conditions such 
as the first-order relations (which are inherently incorrect 
in slip prediction at higher Knudsen regimes) to correctly 
predict the velocity profile inside and outside the Knudsen 
layer. Since the concept of Knudsen layer is considered in 
the derivation of slip equation, see Eq. (1), this relation 
accurately predicts the slip value and the maximum 
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Figure 2. Variation of viscosity coefficient with Kn in 
mid-transition regime from IP solution.  
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velocity for a suitable range of Knudsen numbers. In other words, the slip boundary condition given by Eq. (1) is not 
a fictitious macro slip boundary condition, see Ref. [8], which over-predicts the slip value to capture the maximum 
velocity value correctly. As we show in the next sections, suggesting viscosity as a function of Kn(x) is a suitable 
approach to predict the mass flow rate accurately while the original boundary condition, Eq. (1), predicts the slip and 
maximum velocities correctly. It should be reminded that a large scatter in DSMC data for the shear stress prevents 
its efficient application to viscosity calculation. 
    
D. Viscosity Prediction via Experimental and IP Data  
Analytical kinetic theories show that the viscosity coefficient becomes a function of Knudsen in transition regime. 
Kardianakis et al. [5] assumed a simple formula for the viscosity variation, see Eq. (4), and adjusted it via including 
a free parameter, which is determined using DSMC. This parameter is modified in such a way that the DSMC and 
NS mass flow rates match properly. Here, we suggest a more comprehensive approach to obtain an analytical 
formula for the viscosity coefficient. The first approach is to correlate the correct slip boundary condition formula 
with a correct mass flow rate relation as is described below. 
Using the second-order slip boundary condition given by Eq. (1), the velocity profile of the flow field can be 
obtained from 
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For a general velocity slip boundary condition on the wall, the mass flow rate is obtained from   
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where density is substituted from the equation of state, )/(RTp=ρ , and Φ is a general relation obtained from the 
slip condition. Assuming an isothermal flow and considering that the pressure varies only in the axial direction, the 
only term remaining inside the integral is Φ. Integration along the axial direction would eventually yield the total 
mass flow rate as follows 
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We consider the viscosity coefficient as a function of Knudsen number, µ=µ(Kn) and holds it inside the integral. 
Knudsen number is related to pressure via pxknpKn oo )(= , where the subscript o stands as the outlet. As stated in 
the last section, the second-order velocity profile given by Eq. (2), is named Colin model. It predicts an accurate 
mass flow rate. The mass flow rate corresponding to Eq. (2) is derived from  
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whereΠ stands for the pressure ratio ( outin pp / ). If we substitute Eq. (11) in the left hand side of Eq. (10) and keep 
the viscosity as a function of Knudsen, we obtain 
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Integration Eq. (12), we can obtain an expression for the viscosity coefficient as follows 

2

2

5.136
2

66
2))((

KnKn

KnKnKn
Colin

o ++
−

−+
−=

σ
σ

σ
σ

µ
µ  (13) 

As will be shown in the next section, this relation is accurate for the range Kn<0.3 in that the analytical expression 
of Colin agrees well with the experimental data until this point, see Fig. 6. Equation (13) suggests that the viscosity 
varies as the second-order fractional function of Knudsen number. Having this in mind, we similarly correlate the IP 
viscosity, predicted and shown in Fig. 2, for a range of 0.1<Kn<0.5. The suitable expression is suggested as  
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Figure 3 shows the dynamic viscosity as a function of 
Knudsen from IP correlation (Eq. (14) is named our IP-
model), analytical expressions obtained from the Colin 
model (Eq. (13)), and the Beskok model (Eq. (4)) with 
constant and variable parameter α. It should be noted 
that a value of α =2.2 is suggested for the nitrogen 
flow having a pressure ratio of 2.2, and Kno=0.2 [5]. 
Using this value for lower Kn regimes would result in 
errors. Therefore, as will be shown in section 3-2, we 
equate the mass flow rate from IP-model with the 
Beskok formula to obtain exact values for parameter α. 
The line over variable α refers to such condition. Some 
key conclusions can be reached respecting Fig. 3. First, 
the analytical expression obtained from the Colin 
model matches with the IP-model as long as Knudsen 
is smaller than 0.3. As noted earlier, this is the range of 
validity of Colin model as well. Second, the Beskok 
model with a constant α coincides with the IP and 
Colin models close to Kn~0.2, the point where α=2.2 is 
reported. While we use variable α parameter, close 
agreement is observed for the region where Kn<0.25. 
Although IP-model is derived from the numerical simulation with specific conditions, i.e., a full momentum 
accommodation factor and Knout=0.2, we will show in the next sections that it does not restrict to these conditions 
and performs well over a wide range of accommodation coefficients and outlet Knudsen numbers.  
Besides these conclusions, we remind that the viscosity coefficient by itself does not determine the mass flow rate 
but its combination with the slip boundary condition (this combination is called slip coefficient) determines the mass 
flow rate. For example, combining the Beskok viscosity formula with his unified velocity model (Eq.(3)) accurately 
predicts the mass flow rate for Kn>0.25. However, as was already mentioned, the kinetic-based second-order slip 
boundary condition is accurate for Kn<0.5 because the concept of Knudsen layer is respected in its derivation. This 
is while Eq. (3) depends on the arbitrary parameters obtained from the DSMC solution. Therefore, it can be accepted 
that the viscosity equations derived for this boundary condition are closer to actual physics of rarefied flows. This 
claim is supported with in accordance to the Colin model, which is in agreement with experimental data. Due to the 
importance of velocity profile, we will compare the velocity profiles from different slip conditions and then compare 
the mass flow rates derived from mixed velocity/viscosity models.   
 
E. The Velocity Profiles  
Figure 4 provides a comparison between different velocity profiles from the current DSMC-IP solution (with two 
collision models), Ohwada et al. linearized Boltzmann (LB) solution [17], Beskok analytical solution (Eq. (3)), and 
the developed numerical NS solver using the second-order kinetic slip velocity model (Eq. (1)) for different 
Knudsen numbers. The developed solver uses a finite-volume-based finite-element method [18-19]. More details on 
numerical scheme can be found in the cited references and not presented here because it is out of the main concern 
of this paper. The developed solver has extensively been validated with DSMC, Lattice Boltzmann solution and 
different experimental data and analytical solutions for micro/nano flows and heat transfer applications [20-24]. The 
velocity solutions obtained from this solver is the same as the analytical expression for the slip velocity given by Eq. 
(1). This figure gives valuable information about the accuracy of different numerical-analytical schemes. Following 
the discussion given in Sec. 2.A, the DSMC solution is considered as the closest solution to the Boltzmann equation. 
Therefore, we compare other solutions against that of DSMC. For the simulated cases, Ohwada Lattice Boltzmann 
solution greatly underpredicts the slip velocity comparing with the DSMC solution; however, it cprecisely follows 
the velocity profile curvature. The second-order kinetic model (Eq. (1)) is accurate for both the slip and maximum 
but it degrades as the Knudsen increases first for the maximum velocity, see Fig. (4c), and then for all the domain, 
see Fig. (4d), it is not shown for Kn=1.13. This is reasonable because this model is derived based on a maximum 
thickness of one mean free path for Knudsen layer, which is valid for a small Kn with a maximum of about Kn~0.5. 
The key point concluded from Fig. 4 is the slight inaccuracy of the IP solution for both the slip (overprediction) and 
maximum velocity (underprediction) for a flow with a Kn number less than 0.667. The last simulation with IP 
confirmed the fact that the IP velocity prediction is not coincident with that of DSMC [12]. Both IP collision 
schemes show this discrepancy while the second collision model performs slightly better. Meanwhile, as noted in 
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Figure 3. Variation of viscosity coefficient with Kn
from different methods, 0.1<Kn<0.5.  
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Sec. 2.B., IP predicts the mass flow rate closer to DSMC, which means that the errors in minimum/maximum points 
in velocity profile relatively compensate each other. As Knudsen increases, the Beskok analytical model (Eq. (3)) 
overpredicts the slip velocity (Fig. (4c)); however, it correctly predicts the maximum velocity. Our simulations show 
that the combination of our viscosity model (Eq. (14)) with the second-order kinetic model accurately predicts the 
mass flow rate for the mid-range transition regime (0.1<Kn<0.5) for different accommodation coefficients and the 
outlet Knudsen numbers as compared with the experimental data [25]. Since the second-order kinetic model is 
accurate within this Knudsen range, our viscosity model is physically accurate. This means that the IP errors in the 
velocity profiles do not reflect back in the viscosity coefficient calculation because IP provides correct mass flow 
rate magnitude.                                       
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Figure 4: Comparison of velocity profile from different molecular and continuum based models at different 
Knudsen numbers. 
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Table 1: Coefficients for the normalized volumetric flow rate, Eq. (15). 

 Model C1 C2 0/)( µµ kn  

1 First order (Maxwell) 
σ
σ−2

 0 1 

2 Second order Kinetic  
(Beskok) σ

σ−2
 -

σ
σ−2

 
Knα+1

1
 

3 Second order (Colin) 
σ
σ−2

 27/12 1 

4 Hadjiconstantinou 
(Modified Cercignani model) 1.11 0.62 1 

 
III. Mass Flow Rate Prediction 

A. Analytical expression derivation  
Obtaining the analytical expressions for the viscosity coefficient, i.e., Eqs. (13)-(14), we combine them with the 
velocity slip suggested in Eq. (1) to analytically calculate the mass flowrate. The normalized volumetric flowrate 
can be defines as 
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where the subscript c means the continuum regime and C1 and C2 are coefficients appearing behind Kn and Kn2 
terms in the velocity slip models. Table 1 gives values of C1, C2 and )(knµ  for some important slip models that we 
compare their accuracy with the current model. Using the second-order kinetic slip velocity and IP-based viscosity 
models, Eq. (15) can be rewritten as 
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Multiplying it by density, assuming σ =1, and integrating along the axial direction, we can obtain an analytical 
expression for the normalized mass flow rate, i.e., slip coefficient, S, as follows 
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where Π  is the pressure ratio. Note that the coefficients of Knudsen in the IP viscosity model reappear in the slip 
coefficient. For the general second-order boundary condition, the slip coefficient is given by 
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 Although Eq. (18) seems quite simple, it is derived from a velocity profile which is either correct for mass flow rate 
or the velocity profile prediction. It includes no viscosity correction. Collecting the both aspects together, it results 
in a comprehensive formula such as Eq. (17). Similarly, Karniadakis et al. [5] derived a relation for slip coefficient 
based on their unified velocity profile (Eq. (3)) and their empirical relation for viscosity coefficient (Eq. (4)), which 
yields         
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where outin ppp −=∆ . As noted earlier, it is difficult to obtain variation of α  for different Kn conditions. 
Therefore, an averaged value is suggested in Eq. (19). They reported a value of α =2.2 for the nitrogen flow with 
Kno=0.2 and L/h=20. The main advantages of Eq. (17) over the Karniadakis et al. model is the fact that it does not 
depend on any arbitrary constant. Despite this fact, it suitably matches the experimental data for the entire range of 
Kn, which was derived previously.      
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B. Comparison of Different Slip Models 
Developing analytical expressions for the volumetric 
and mass flow rates, we investigate the accuracy of new 
viscosity formula (the IP-model) against the analytical, 
numerical and experimental data. Figure 5 shows the 
volumetric flowrate obtained from different analytical 
expressions including the first-order slip boundary 
condition, the second-order slip boundary condition 
(the kinetic, Colin, and Hadjiconstantinou formula, see 
Table 1), the Beskok model, the current IP-model, and 
the numerical results from our NS solver using Eq. (14) 
to predict the dynamic viscosity. The kinetic-based 
second-order performs as the worst model. It is 
expected because it was derived only to predict a 
correct slip velocity. In fact, all models, which ignore 
the variation of viscosity coefficient with rarefaction 
yield poor prediction of mass flow rate. Meanwhile, the 
current IP-based model performs quite well. As will be 
shown later, the second-order model of Colin is 
accurate up to Kn<0.3. The results of our model agree 
with it up to this point and then approach to the results 
of Beskok formula. The Beskok formula performs far from the IP model for Kn<0.2 due to using an incorrect value 
for α . A constant value of 2.2 is used; however, this parameter changes abruptly for Kn<0.2. Interestingly, all the 
correct models have different curvatures, which are due to employing various slip-viscosity combinations. The 
numerical solution of the NS equations impose the current viscosity model and it shows good agreement with our 
IP-model. 
Next we compare the derived mass flow rate values from different models. Figure 6 shows the variations of inverse 
slip coefficient (S-1 from Eqs. (17)-(19) with the constants taken from Table 1) with outlet Knudsen with a fixed 
pressure ratio PR=2. In addition to the preceding models, we also present the performance of Beskok slip model 
combined with the IP viscosity coefficient. Similar to Fig. 5, it is observed that the IP-model performs the closest 
one to the Colin data for Kn<0.3. After that, it approaches the Beskok model. The Beskok solution with a constant 
α  overestimates the slip for K<0.3. Combination of the current IP model with the Beskok velocity slip provides a 
closer agreement with the Colin model; however, it does not match it exactly. In order to compare our results with 
the experimental data, the slip variation for PR=1.8 and 93.0=σ  was studied in this research and compared with 
the reliable experimental data of Colin [25]. According to Fig. 6b, the IP-model greatly follows the experimental 
data whereas the Colin formula departs from it as soon as Kn exceeds 0.3. The Beskok model does not match the 
experimental data at all for any Kn value. This may refer to the constant b used in Eq. (3), which was suggested as 
b=-1 for a full accommodation, or constant α  [5]. This figure also shows low sensitivity of the IP viscosity 
coefficient to the accommodation coefficient. As was mentioned earlier, the IP simulations are performed for full 
momentum accommodation and currently applied for lower accommodation value. Figure 6c compares the slip 
coefficient variation with the average Knudsen ( 2/)( outinm KnKnKn += ) from IP-model, Colin formula, Maurer et 
al. [26] experimental data, and their empirical formula given by 

2
21 1261 mm KnAKnAS ++=  (20) 

For Nitrogen, A1=1.3 and A2=0.26. As is observed, the current model also agrees well with the experimental data of 
Maurer et al. [26] in the proposed range. We can conclude that the correct mass flow rate prediction of our IP and 
the suitable accuracy of the second-order kinetic boundary conditions can be considered as two important keys to 
achieve the current outcomes.  
At this stage, we would like to find the correct variation of parameter α  with Knudsen. Comparing the slip 
coefficients from our IP model with the Beskok formula performed on the test case shown in Fig. 6a, the variation of 
α  can be calculated, see Fig. 7. As is observed, α  starts from a value of 1.2, reaches to a peak around 2.35 at 
Kn=0.35, and then starts decreasing. For the range of our study, the average value is calculated to be 07.2=α , 
which is very close to the one reported in Ref. [5]. The behavior of Beskok viscosity model, while using a variable 
α  was shown in Fig. 3. Using a variable α , the viscosity given by Eq. (4) shows a curvature similar to one by the 
IP-based viscosity; however, it is well-over it. The over-estimation of the viscosity is compensated with a higher 
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Figure 5. Variation of volumetric flow rate with
Knudsen number, comparisons of different analytical
models and numerical NS solvers.  
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value for the slip velocity predicted by the Beskok 
unified velocity formula, Eq. (3).  

 
IV. Conclusion 

To extend the basic NS equations beyond the slip flow 
regime calculation, we derived and validated an 
analytical expression for the variation of viscosity 
coefficient with Knudsen number using IP method. 
There are the second-order slip boundary conditions 
such as the kinetic-theory-based and the Beskok 
models, which accurately predict the velocity profile 
inside and outside of the Knudsen layer in high 
Knudsen number flows. To achieve correct mass flow 
rate in transition regime, it requires that the basic NS 
equations are modified to include the rarefaction effects 
properly. We modified the dynamic viscosity in a 
manner to let the NS equations capture the correct 
variation of the mass flow rate. In fact, the new 
viscosity model was obtained from the shear stress 
distribution provided by the IP simulations. Assuming a 
linear relation between the shear stress and the velocity 
gradient and limited accuracy of the kinetic-based slip 
model (up to Kn<0.5) did not permit us to extend the 
developed viscosity model to higher Knudsen values. 
Based on the new viscosity model, we developed 
analytical expressions for the mass flow rate. For the 
derivation range, 0.1<Kn<0.5, the current IP-based 
model accurately predicted the mass flow rate. 
Comparing with previous models such as the Beskok 
model, a key advantage of the current model is that it 
does not depend on any unknown parameter, which can 
make the problem so complex.  
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Figure 6: Variation of inverse slip coefficient with the 
outlet Knudsen, comparison of different analytical 
models at two pressure ratios, experimental data [25, 
26] are included.
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Figure 7: Parameter α  (Eq. (4)) vs. Knudsen.  
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