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ABSTRACT 
The main goal of the current study is to extend the range of 
application of the Navier Stokes equations beyond the slip-flow 
regime by using information preservation (IP) method. In 
addition to a correct velocity profile, the continuum-based 
equations should predict accurate mass flow rate and axial 
pressure distribution. The second-order slip velocity model 
based on the kinetic theory provides accurate velocity profiles 
while it gives erroneous mass flow rate. In this study, we use 
shear stress distribution obtained from an extended IP code to 
develop analytical formula for dynamic viscosity in the mid-
transition regime and use it to modify Navier Stokes equations. 
Using the new viscosity coefficient, analytical expression is 
derived for mass flow rate in the range of 0.1<Kn<0.5. 
Comparing with experimental data and analytical solutions, the 
new model accurately predicts mass flowrate for a much wider 
range of Knudsen number.  Meanwhile, we observe that axial 
pressure distribution is of the highest sensitivity to the viscosity 
coefficient and unpredicted by new model at high Knudsen 
numbers. 
 
KEY WORDS: IP method, transition regime, mass flow rate 
scaling, Navier Stokes equations, shear stress.  

 
1. VISCOSITY MODEL AND VALIDATION 

One of the most accurate second order slip boundary 
conditions is the one derived from kinetic theory [1], given by  
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This slip boundary condition gives accurate wall slip value 
up to Kn<0.5 but is very poor in predicting mass flow rate, 
since N-S equations becomes invalid as Kn increases. To 
remedy this problem, the rarefaction effects must be considered 
on dynamic viscosity. Here, we apply IP scheme to calculate 
dynamic viscosity variation with Knudsen number. IP Shear 
stress is used to obtain viscosity coefficient as follows 
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where IPw,τ  is the IP shear stress. For small Knudsen flow, the 
linear dependence of stress-strain is held but as Knudsen 
increases; higher order terms show up in shear stress formula:    
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Superscripts NS, B, and AB stands for Navier-Stokes, Burnett 
and augmented Burnett equations; respectively. We 
approximate Eq. (3) to obtain an effective viscosity coefficient 
for Navier-Stokes equations: 
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The value of )(B
wτ  is negligible for low Mach number, 

isothermal flows in long channels [1]. Holding other terms such 
as )( AB

wτ  in Eq. (4) is not useful for our current purpose in that 
the resulting viscosity coefficient will be suitable for 
augmented Burnett equations not N-S equations. The validity of 
this approximation decreases as Kn increases. In fact, the 
computed viscosity coefficient from Eq. (4) transforms the IP 
shear stress to N-S equations and permits these equations to be 
extended beyond the limit of slip flow regime. 

We obtain the IP viscosity predictions for the range of 
0.1<Kn<0.5 as follows 
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Figure 1 compares the above model with different 
analytical models reported in literature. Colin [2] model is 
accurate up to kn<0.3 and the current formula closely follows it 
for this region. 
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Figure 1. Variation of viscosity coefficient with Kn from     

different methods, 0.1<Kn<0.5. 
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Figure 2. Comparison of velocity profiles from different 
molecular and continuum based models at different Knudsen 

numbers. 
 

To further evaluate the accuracy of our IP solution, a 
comparison is made between different velocity profiles 
obtained from current DSMC and IP solution (with two 

collision models, see Ref. [3]), Ohwada et al. linearized 
Boltzmann (LB), Beskok analytical model [1], and developed 
numerical Navier-Stokes solver using second order kinetic slip 
velocity model (Eq. 1) for different Knudsen numbers. The 
developed N-S solver uses a finite-volume-based-finite-element 
method. It has extensively been validated with DSMC, Lattice 
Boltzmann solution and different experimental data and 
analytical solutions for micro-nano flows and heat transfer [4-
5]. DSMC solution is considered as the closest solution to 
Boltzmann equation. For the simulated cases, LB solution 
under-predicts slip velocity comparing with DSMC solution but 
it carefully follows velocity profile curvature. Second order 
kinetic model (Eq. 1) is accurate for slip but it degrades as Kn 
increase. It is expected because this model is derived based on a 
maximum thickness of one mean free path for Knudsen layer, 
which is valid for small Kn. As Knudsen increases, Beskok 
analytical model over-predicts slip velocity (Fig. 4-c) but it 
correctly predicts maximum velocity. Our simulations show 
that combination of our viscosity model with second order 
kinetic model accurately predicts mass flow rate for mid-range 
transition regime (0.1<Kn<0.5) for different pressure ratios, 
accommodation coefficients and outlet Knudsen numbers as 
compared with experimental data. Since second order kinetic 
model (Eq. 1) is accurate within this Knudsen range, our 
viscosity model is physically accurate.  

 
2. ANALYTICAL DEVELOPMENT FOR MASS FLOW 
RATE  
We combine IP analytical expressions for viscosity coefficient 
(Eq. 5) with suggested velocity slip (Eq. 1) to analytically 
calculate mass flowrate. The resulting expression obtained for 
normalized mass flow rate, i.e., slip coefficient, S, is: 
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where Π  is the pressure ratio. Note that coefficients of 
Knudsen in IP viscosity model reappear in the slip coefficient. 
For a general second order boundary condition, slip coefficient 
is given by: 

)(ln
1

12
1

121 2

2

21 Π
−Π

+
+Π

+= oo Kn
C

Kn
CS  (7) 

where C1 and C2 are constants. Although Eq. (7) seems quite 
simple, it is derived from a velocity profile which is either 
correct for mass flow rate or velocity shape prediction. It 
includes no viscosity correction. 
 
2.1 VALIDATION 
 Having developed analytical expressions for mass flow rate, 
we investigate the accuracy of current viscosity formula. In 
order to compare our results with experimental data, slip 
variation for condition of Π =1.8 is studied, where 
experimental data of Colin are available [2]. Other solutions 
from different analytical expressions; i.e., Maxwell first order 
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slip B.C., second order slip B.C.s (kinetic theory, Colin and 
Hadjiconstantinou formula), and Beskok model, are also 
included for comparison. According to Fig. 3-a, IP-model 
excellently follows experimental measurement while Colin 
formula departs from it as soon as Kn increases above 0.3. This 
figure also shows low sensitivity of IP viscosity coefficient to 
accommodation coefficient. As mentioned earlier, IP 
simulations are performed for full momentum accommodation. 
Figure 3-b compares slip coefficient variation with average 
Knudsen from IP-model, Colin formula, Maurer et al. [6] 
experimental data and their empirical formula. As observed, the 
current model also agrees with experimental data of Maurer et 
al.. We can conclude that correct mass flowrate prediction of IP 
and suitable accuracy of second order kinetic B.C are the key 
aspects resulting in an accurate slip formula which predicts 
flowrate perfectly within the 0.1<Kn<0.5 region. 
 

Knout

1/
(S

lip
C

oe
ffi

ci
en

t)

0.1 0.2 0.3 0.4 0.5

0.2

0.3

0.4

0.5

0.6

0.7

First Order
Second Order (Kinetic theory)
Beskok
Hadjiconstantinou
Current Analytical (IP-Based)
Second Order (Colin)
Experiment (Colin)

α=2.2

 
a) Π =1.8, σ =0.93 

Knavg

Sl
ip

Co
ef

fic
ie

nt

0.1 0.2 0.3 0.4

2

3

4

5 Colin et al. (Analytical, Second Order)
Maurer et al. (Curve fit)
Current Analytical (IP-Based)
Maurer et al. (Experiments)

 
b) Π =2  

Figure 3. Variation of slip coefficient with Knudsen, 
comparison of different analytical models at two pressure 

ratios, experimental data [2, 6] are included. 
 
 

2.2 EFFECT OF PRESSURE RATIO 
Analytical expressions derived for mass flow rate depends on 
both Knudsen and pressure ratio. Figure 4 shows the variation 
of slip coefficient with pressure ratio for simulation with 
Kno=0.47. Experimental data are taken from Ref. [2] and 
suitably normalized. IP-model agrees well with experimental 
data and Beskok model. It is a key point about the current 
analytical expression which was originally derived for a 
constant pressure ratio of 2. It is seen that it is extended to other 
pressure ratios without loosing accuracy.  
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Figure 4. Comparison of different analytical models for slip 
coefficient variation with pressure ratio, Kno=0.47, 

experimental data from [2]. 
 
3. AXIAL PRESSURE DISTRIBUTION  
Another important property that must be carefully studied is the 
axial pressure distribution. The axial pressure distribution can 
be found by equating the conservation of the mass flow rate 
through the channel. Figure 5-a shows deviation of axial 
pressure from the linear incompressible distribution for 
different analytical models and numerical schemes. The 
maximum deviation at the mid-channel is around 0.03, as 
concluded from DSMC-IP solutions (DSMC solution shows 
similar trend with IP but exhibits relatively large scatter). It is 
observed that second order kinetic model (used either 
analytically or in our N-S solver) fully over-predicts pressure 
deviations while using current IP viscosity model (either in 
analytical form or in numerical solver), Colin formula, Beskok 
second order (using 6=α , see Ref. [1]) results in accurate 
solutions compared with current DSMC/IP solutions and 
DSMC/IP solutions of Shen [7]. According to Fig. 5, it is 
concluded that incorrect dynamic viscosity not only deteriorates 
mass flow rate calculations, but also makes pressure 
distribution erroneous as well, i.e., second order kinetic 
solution without viscosity modification.  
    Finally, Fig. 5-b shows deviation of the centerline pressure 
for a relatively higher Knudsen of 0.388. The numerical 
DSMC-IP simulation is done for pressure ratio of 2. Analytical 
IP-Based solution falls below real pressure deviations even 
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tough it correctly predicts mass flow rate for Kn<0.5 flows. In 
fact, mass flowrate depend on pressure ratio, i.e., Eq. 6, and not 
on local variations of pressure. Correct mass flowrate is 
obtained as a combination of velocity slip and suggested 
viscosity coefficient. As 1-D N-S equation suggests, pressure 
gradient depends on the longitudinal variation of shear stress: 
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b) Kno=0.388 

Figure 5. Deviation of centerline pressure from linear 
distribution, comparison of current IP solution with DSMC and 

IP solution of Shen [7] and different analytical solutions.  
 

The shear variation in normal direction is not considered in our 
derivation. As soon as the thickness of Knudsen layer increases, 
the error due to this approximation increases and therefore, 
pressure gradient is calculated incorrectly. Additionally, this 
figure shows that Colin formula is fully erroneous in pressure 
estimation for higher Knudsen regimes in that it gives a wavy 
pattern. This confirms that obtaining correct mass flowrate via 
viscosity correction does not guaranty correct pressure gradient. 

For this case, current model needs a pressure ratio of 2.4 to 
match correct variation. The deviation between current IP and 
DSMC is also attributed to the limitations in phenomenological 
collision model of Sun and Boyd [3], i.e., model 2, which is 
applied here. As a conclusion, we note that correct pressure 
calculation needs considering accurate variation of shear stress.   

 
4.   CONCLUSION 

In order to extend the basic N-S equations beyond slip flow 
regime, the current study develops and validates an analytical 
expression for the variation of viscosity coefficient with 
Knudsen number using the results of IP simulation. There are 
second order accurate slip boundary conditions such as kinetic-
theory based and Beskok models which accurately predict 
velocity profile inside and outside of the Knudsen layer for 
high Knudsen flows. To achieve correct mass flow rate in 
addition, it required that N-S equations consider rarefaction 
effects. Using IP shear stress, we modified dynamic viscosity 
so that N-S equations capture correct variation of flowrate. 
Based on the new viscosity model, we developed analytical 
expressions for mass flow rate and axial pressure. For the 
derivation range, 0.1<Kn<0.5, the current IP-based model 
accurately predicts mass flowrate while compared with 
experimental data. Although correct mass flowrate is predicted 
at higher Knudsen flows, axial pressure remains under-
predicted by the current model in that local variations of shear 
stress are not included in the derivation. Assuming linear 
relation between shear stress and velocity gradient and limited 
accuracy of kinetic-based slip model up to Kn<0.5 prevents 
extending the developed viscosity model to higher Knudsen 
values. Finding alternative approaches to extend the current 
model to higher Knudsens is the topic of our ongoing research. 
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