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ABSTRACT

Progressive Type-II hybrid censoring is a mixture of progressive Type-II and hybrid
censoring schemes. In this paper, we discuss the statistical inference on Weibull
parameters when the observed data are progressively Type-II hybrid censored. We
derive the maximum likelihood estimators (MLEs) and the approximate maximum
likelihood estimators (AMLEs) of the Weibull parameters. We then use the asymptotic
distributions of the maximum likelihood estimators to construct approximate con-
fidence intervals. Bayes estimates and the corresponding highest posterior density
credible intervals of the unknown parameters are obtained under suitable priors on the
unknown parameters and also by using the Gibbs sampling procedure. Monte Carlo
simulations are then performed for comparing the confidence intervals based on all
those different methods. Finally, one data set is analyzed for illustrative purposes.
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1. Introduction

Censoring occurs commonly in reliability and survival analysis. The most common censoring schemes are Type-I
censoring, where the life-testing experiment stops at a predetermined time T; and Type-II censoring, where the life-testing
experiment stops when predetermined number (r) are observed to have failed. The mixture of Type-I and Type-II censoring
schemes is known as the hybrid censoring scheme which was first introduced by Epstein (1954). But recently it becomes
quite popular in the reliability and life-testing experiments. See for example the work of Chen and Bhattacharya (1988),
Childs et al. (2003), Draper and Guttman (1987), Fairbanks et al. (1982), Gupta and Kundu (2006) and Jeong et al. (1996).

One of the drawbacks of the traditional Type-I, Type-II or hybrid censoring schemes is that they do not have the
flexibility of allowing removal of units at points other than the terminal points of the experiment. One censoring scheme
known as Type-II progressive censoring scheme, which has this advantage can be described as follows: consider n units in
a study and suppose m < n is fixed before the experiment. At the time of the first failure, R; units are randomly removed.
Similarly, at the time of the second failure, R, units from the remaining n—2—R;, units are randomly removed. The test
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continues until the m-th failure at which time all the remaining R, = n—m—R;—R,— - -- —R,_1 units are removed. The R;’s
are fixed prior to the study. For more details the readers may refer to the Balakrishnan and Aggarwala (2000) and
Balakrishnan (2007).

The drawback of the Type-II progressive censoring, similar to the conventional Type-II censoring (time censoring), is
that it can take a lot of time to get to the m-th failure time. Recently, Kundu and Joarder (2006) proposed a censoring
scheme called Type-II progressively hybrid censoring scheme which is a mixture of Type-II progressive and hybrid
censoring schemes. It can be described as follows. Consider n identical items which put on a test. Each unit in a randomly
selected sample is subjected under identical environmental conditions. The lifetimes of the sample units are independent
and identically distributed (i.i.d) random variables. The integer m < n and Ry, ...,R,, satisfying Ry + - - - +Rp +m = n are fixed
at the beginning of the experiment. The time point T is also fixed before hand. At the time of first failure, Yy.;;:n, Ry of the
remaining units are randomly removed. Similarly at the time of the second failure, Y5.;,.n, Ro of the remaining units are
removed and so on. If the m-th failure, Y,..n., occurs before the time point T, the experiment stops at the time point Yy,.im:n.
On the other hand if the m-th failure does not occur before time point T and only J failure occur before the time point T,
where (0 <J <m), then at the time point T all the remaining R; units are removed and the experiment terminates at the
time point T. Note that Rf =n—(Ry—--- —R))—J.

We denote these two cases as Case I and Case II, respectively, and call these censoring scheme as the progressively
Type-II hybrid censoring schemes. Therefore, in the presence of progressively Type-II hybrid censoring schemes, we have
one of the following types of observations;

Case I': Ximans - - Xmemn}  if Xopmen < T,

Case Il : {X1.mam, - . - vxj:m:n} if X]:m:n <T <X]+1:m:n~

In spite of the applicability of the hybrid censoring scheme, it is somewhat surprising to observe that limited attention
has been paid in analyzing hybrid censored lifetime data when the lifetimes are not exponential. The main concern is the
analysis becomes too difficult and may not be tractable. Weibull distribution is one of the most common distributions
which is used to analyze several lifetime data. The density function of the Weibull distribution can take different shapes
and also its hazard function can be increasing, decreasing and constant depending on the shape parameter. Because of the
shape parameter, it has lots of flexibility compared to exponential distribution. Kundu (2007) presented the statistical
inference on Weibull parameters when the data are hybrid censored, while Balakrishnan and Kateri (2008) discussed the
existence and uniqueness of the maximum likelihood estimators of the Weibull parameters based on different forms of
censored data.

In this article we consider the Type-II progressively hybrid censored lifetime data, when the lifetime follows two
parameter Weibull distribution. First we provide the maximum likelihood estimators of the unknown parameters. It is
observed that the maximum likelihood estimators do not have explicit forms. They can be obtained by solving a non-linear
equation. We also suggest approximate maximum likelihood estimators, which have explicit expressions. Because the
exact distributions of the MLE are not easy derived, we propose to use the asymptotic distributions of the MLE to construct
the approximate confidence intervals.

We also consider the Bayes estimates under the assumptions of independent gamma priors on the scale and shape
parameters. Based on these priors, the Bayes estimates cannot be obtained explicitly, so we use the Gibbs sampling
procedure to compute the Bayes estimates and also to compute the highest posterior density (HPD) credible intervals. We
compare the performances of the different methods by Monte Carlo simulations. One data set is analyzed for illustrative
purposes.

The rest of the paper as follows. In Section 2, we describe the model and the available data. The maximum likelihood
estimator (MLE) and approximate maximum likelihood estimator (AMLE) are presented in Sections 3 and 4, respectively.
Bayesian inferences are provided in Section 5. Simulation results and data analysis are provided in Section 6. One data set
is analyzed and the results are presented in Section 7. Finally we conclude the paper on Section 8.

2. Model description
Suppose the lifetime random variable Y has a Weibull distribution with shape and scale parameters as o and 4,
respectively, and with probability density function (pdf) as
;o) =aly* e, y>0, >0, 1>0. t))

If the random variable Y has its pdf as in (1), then X =InY has the extreme value distribution with pdf
S o) = %e“‘“’/"-E‘*”“”'“. —00 <X <00, 2)

where u=—Ini/o and ¢ =1/a are the location and shape parameters, respectively.

The densities in (1) and (2) are equivalent models in the sense that procedures developed under one model can be
easily used for the other model. Although, they are equivalent models, sometimes it is easier to work with the extreme
value model in (2) than the Weibull model in (1), since the two parameters appear as location and scale parameters.
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In fact, it is due to this the approximate maximum likelihood estimators can be obtained quite easily for model (2) than for
model (1). When ¢ =0 and ¢ =1, the model in (2) becomes the standard extreme value distribution with pdf:

f(z,0,1)=¢"%, —oo<z<o0. 3)

3. Maximum likelihood estimators

In this section, we provide the MLEs of the unknown parameters o and /4 in (1). Based on the observed data, the
likelihood function for Case I is given by

m R m o
L(@t,7) = CEA™ [ [ Qi) e Lo 1Ym0, )

i=1

while for Case II, it is

/ SV p—_—
L) = CoAY ] Wima)* e 2ot YT if > 0,

i=1

Lo,y =Ce T if J=0. 5)

The correspond log-likelihood functions are obtained from (4) and (5) as
m m
I(t, 2) = logL(x, 4) = const. +mIno+mIni+@—1) > INVimn—2 > Yinn(1+R) (6)
i=1 i=1
and
J J
I(o1,A) = logL(et, /) = const. +JInoc+JInA+ (oc—1) Z INYimn—A~ Z Vimn(1+R)—AT*R;, (7
i=1 i=1

respectively. Taking derivatives with respect to o« and A in (6) and equating them to zero, we obtain the likelihood
equations as

o m &
=7~ 2 YVima(1+R) =0, ®)
i i=1
o m T & 5
2= o T 2 Wima—4 >+ ROV alnYimn =0. )
i=1 i=1

From (8), we obtain
m

J 1) P L E— (10)
S0 1 Vimn(14R)
Upon using (10) in (9), it becomes
m m R m
E + Z ln}’i:m:n*)v((x) 2(1 +Ri)y%m;nln}’i:m:n =0. (11)
i=1 i=1
Note that (11) can be written in the form
o = h(a), 12)
where
h() m (13)

- j"(OC) Zlm: 1(1 +Ri)y?;(m;nlnyi:m:n_ Z,m: 1 lnyi:m:n .

From (12), we propose a simple iterative scheme to solve for «. It has been proposed in the literature by Kundu (2007),
Banerjee and Kundu (2008) and Pareek et al. (2009). Start with an initial guess of «, say «@, then obtain a = h(x©®) and
proceed in this way iteratively to obtain o™*+1 = h(a™). Stop the iterative procedure, when |0+ —a| < ¢, some pre-
assigned tolerance limit.

In case of (7), the likelihood equation can be expressed as

J
Z{: 1 Yimn(1+R)+ TRy

(o) =
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and o = h(x), where

J
A0) 3] A+ R)YE I imen + AR TANT = S _ | IV

A simple iterative procedure to the one described above can be used to solve for « in this case as well. Note that when /=0,
the maximum likelihood estimator for 4 is zero and for o do not exist. Since the MLEs do not exist in explicit forms, we
suggest the following approximate MLEs which have explicit expressions. This method proposed by Balakrishnan and
Varadan (1991) (see also, Balakrishnan et al., 2003, 2004; Banerjee and Kundu, 2008) to develop AMLEs.

h(o) =

4. Approximate maximum likelihood estimators

We use the following notation; X;.,., = Iny;.,., and S =InT. Then, the likelihood function of the observed data x;..,., for
Case 1 is given by

1\™ o _ .
L(u,0) = Const. <g) ,11 &Zimn) G Zimn))®, (14)

while for Case I, it is given by

L) = Const.§ ) 1T &)1 ~Glzimn)(1-GVYR;, 15)

i=1

where g(x) =e*¢, GX) =e~%, Zimn = Kimn—MW)/0, V=(S—w)/o, u=—(1/w)lnl, ¢ =1/0. In the case of (14), ignoring the
constant, we have the log-likelihood as

I(u,0) =logL(1,0) = —mIno+ » _ Ing(Zimn)+ Y RIN(1—-G(Zimn)). (16)

i=1 i=1

Taking now derivatives with respect to u and g, we get the likelihood equations as

8 Zim: n) 8(Zimn)
—=— R, =cimnl 17
Z g(zl m: n) Z ' 1_G(Zi:m:n) ( )
al m 1 g/(zi-mﬂ) & g(zi-mﬂ) Zi:mn
A m_ I, 8mn)  N~p 8imn) Zimn _ o 18
oo o Gi: 1 wmn &(Zim:n) Z] ' I_G(Zi:m:n) o (18)

Egs. (17) and (18) can be written equivalently as

&' (Zim: n) 8(Zi-mn) _
Z 1 8(Zimn) Z RigZ G(Zimn) =0. (19)
< &' Zimn) 8Zimn)
_m_izzl lmng(z””")_'_z l'mnl G(ernn) =0 (20)

Clearly, (19) and (20) do not have explicit solutions. So, we expand the functions g'(Zi.m:n)/€(Zimn) and &(Zim:n)/ G Zim:n) N
Taylor series around the point y;, where
=G '(p) =In(=In(1-qy), 21

and p;=1- ql_l—]'[j_m in1 %, also o=(+ > mj+1 R)/(A+j+ ZI”:,,,_]H R;) for j=1,...m, see Balakrishnan and
Aggarwala (2000).
We may then consider the following approximations:

g/(zi:m:n) ~n._ R

Ty~ i PiZemn (22)
g(zi:m:n)

220 2 1—04+ BiZimens 23
G(Zlmn) 1 :Bl rm:n ( )

where, for i=1,...,m,

o; = 1+Ing[1-In(~Ing))], (24

Bi =Ingq;. (25)
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Upon using the approximations in (25) and (26) into (19) and (20), we obtain the approximate likelihood equations as

m m
=Y @—BiZimn)+ Y Ri(1—=0i+ BiZimn) =0, (26)
i=1 i=1
m m
—m— Z(Oci_ﬂizi:m:n)zi:m:n + Z Zi:m:nRi(l —0 +ﬁizi:m:n) =0. (27)

i=1 i=1

From (29), we obtain the AMLE of u as

[, =A—Bi6y, 28)
where
Zm: 1 Xi:rn:nﬂi(l +Rl)
A== , 29
St Bi(1+Ry) @9
i1 %i— i g Ri(l—o)
B = . 30
! i1 Bi(1+Ry) GO
From (30), we obtain the approximate likelihood equation for ¢ as
G’O’Z—‘,-D]O'—EIIO, (31)
where

C[ = m+B,2 |:Z ﬂ,(l +Ri)

i=1

—B} (i g1 +Ri)> =m,

i=1

m m m
D= i(Ximn—AD— D RiXimn—AD— > Rioti(A—Ximn),

i=1 i=1 i=1

m m
E= BRiimn—AD*+ Y BiXimn—A1)* > 0.

i=1 i=1

Therefore, we obtain the AMLE of ¢ from (34) as

—D1+ A\ /DI2 +4mE,

01= 2m

’

which is the only positive root.
Similarly, for Case II, expanding g(V)/(1—G(V)) around the point u;., we obtain

gv)
1-G(V)

= l—OCd* +,Bd*V.

Here, o4- = 1+1Inq4.(1-In(—Ingy.)), B4 = —Ingg- and py. = In(—Ingy.). Following the same procedure as above, we obtain the
AMLE of u as

fy=An—Byéy,

where
A {: 1 xi:m:nﬁi(l +Rj)+SR]*ﬂd*
=
Rifa + S Bi(1+Ry)
B Z:J‘:l oi— Z{:] Ri(]_ai)_R]*(]—fli)
= )

RiBa.+ Yo _ 1 Bi(1+R)
Moreover, 6 can be obtained as

—Dj+ A/ D,zl +4]E”

2] :

J J
Ei==> BiXimn—An’+ Y BiRiXimn—An)* +R} B4 (S—An)* > 0,

i=1 i=1



E. Bayat Mokhtari et al. / Journal of Statistical Planning and Inference 141 (2011) 2824-2838 2829

i=1 i=1 i=1

J J J
Di=">" tiXimn—Auby <Rjﬁd* +) pa +Ri)> =) XimnRi(1— )= SR} (1—0tg.).

5. Bayes estimates and credible intervals

In this section, we describe the Bayes estimates of the unknown parameters as well as the corresponding highest
posterior density (HPD) credible intervals when the shape parameter is unknown. For computing the Bayes estimates,
we have assumed squared error loss functions, but any other loss function (SEL) can be easily incorporated. This method
has also been used by Kundu (2007, 2008) and Banerjee and Kundu (2008).

5.1. Prior and posterior distributions

In this subsection, we need to assume some prior distributions for the unknown parameters. Following the approach of
Berger and Sun (1993), we assume that 4 has a gamma prior, Gamma(a,b), with a > 0, and b > 0, while we do not assume
any specific form for the prior of o, say m,(). We only assume that 7, () has the support on (0, + o), and is independent of
the prior of 4. Using then the joint prior distribution of « and 4, we obtain the joint density of the data, o and 4 for the two
cases as follows.

Case I:
L(o, A data) oc o™ 2™+ 9 iy (1) lm_[ yg;n}ne-ﬂz,”: 1 Vima(1+R)+1 (32)
i=1
Case II:
L(ot, 2, datayoc of 7+ 1ty (00) f[ YL e A3 Vi1 + RO+ TR, (33)

i=1
Based on L(a,4,data), the joint posterior density function of o and 4, given the data, is given by

L(data|o, ) x 1y(Ala,b) x ma(cx)

L(a,Aldata) = ——= . 34
(A = oo Garalon, 2) x ma(Alab) x (@) do 34
Therefore, if g(«,2) is any function of « and 4, its Bayes estimate under the squared error loss function is given by
. \ 0% [5° g(o, AL(data,x,X) doe d
£0.2) = By @) = © o B AUdata 2 7) 35)

157 Jo° Lidata,o,2) doc d2

Since, it is not possible to compute (34) and therefore (35) analytically even when 7, (o) is known explicitly, we adopt
two different procedures to approximate (35): (a) Lindley’s approximation and (b) Gibbs sampling procedure.

Although we can compute the approximate Bayes estimates of « and A using Lindley’s approximation, it is not possible
to compute the credible interval from here. Therefore, we propose the following Markov Chain Monte Carlo (MCMC)
method to draw samples from the posterior density function and then to compute the Bayes estimates and HPD credible
intervals.

5.2. Gibbs sampling

We use the Gibbs sampling procedure to generate a sample from the posterior density function L(x,A|data) and then to
compute the Bayes estimates and HPD credible intervals.

We assume that the prior 7;(4|a,b) is Gamma(a,b) and the prior 7,() is log-concave, and that they are independent.
We then have the following results.

Theorem 1. The conditional density of 2, given « and the data, is Gamma (a+m, > i, y%, .(1+R)+Db) for Case I, and is
Gamma (a+], Z{: 1Yima(1+R)+T*Ry +b) for Case II.

Proof. It follows readily from the joint density function. O
Theorem 2. The conditional density of «, given data, is log-concave.

Proof. The proof is presented in Appendix. O

Using the idea of Geman and Geman (1984) and Theorems 1 and 2, it is possible to generate (x,4) from the posterior
density function and in turn obtain the Bayes estimates and credible intervals. We use the following algorithm for this
purpose.
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Algorithm.
Step 1: Generate o; from the log-concave density L(-|data), as given in (36) and (37) depending on the case, by using the
method proposed by Devroye (1984).
Step 2: Generate A; from 7m;(-|ot7,data) as given in Theorem 1.
Step 3: Repeat Steps 1 and 2, M times, and obtain ¢«; and 4; for i=1,...,M.
Step 4: The Bayes estimates of o and /4 with respect to the squared error loss function are then

. - 1Y
X Bayes = E(quata) = M Z Ok
k=1

density.default(x = valpha)

Density

\ 1 T T T T
-15 -1.0 -05 00 05 10

N=10000 Bandwidth =0.01617

Fig. 1. Comparison of the distribution of &/« when =1 and 2 for T=1 in MLE.

density.default(x = valpha)

60

50

40

30

Density

20

10 H

0_

T \ \ T T \
0.00 0.05 0.10 0.15 0.20 025
N =10000 Bandwidth = 0.0009475

Fig. 2. Comparison of the distribution of &/« when ¢ =1 and 2 for T=1 in AMLE.
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and

e

<=
M=

ijayes = E(Mdata) =

==
Il

1

Step 5: The posterior variances of 1 and « are
N 1M . 5
V(odata) = Mk;{ock—E(oqdata)}

and

M
V(A|data) = 13—/1 > ti—E(i\datayy?.

k=1

Table 1
Bias of the AMLEs for progressively Type-II hybrid censored samples when the sample sizes are n=30, 50, 100.

n m Schemes T=0.5 T=1 T=2
(Ry,...,Rm) o 2 o A o 2
30 5 0,0,0,0,25 0.62 0.25 0.6 0.26 0.64 0.25
5 25,0,0,0,0 —-0.03 -0.21 -0.31 -0.29 -0.11 -0.34
5 0,25,0,0,0 —0.04 -0.23 -0.28 —0.61 -0.32 —0.54
50 10 0,0,0,...,0,40 0.23 0.26 0.22 0.27 0.23 0.27
10 40,0,0,0,...,0 -0.07 -0.23 -0.11 -0.73 -0.31 -0.35
10 0,40,0,...0,0,0 -0.1 -0.25 -0.27 —0.61 -0.39 —0.54
100 10 0,0,0,...,0,90 0.23 0.25 0.23 0.23 0.23 0.25
10 90,0,0,...,0,0 —-0.07 -0.24 -0.21 -0.6 -0.49 -0.23
10 0,90,0,0,...,0,0 —-0.07 -0.25 -0.23 —0.60 -0.35 -0.74
20 0,0,0, ...,0,0,0,80 0.1 0.22 0.1 0.23 0.1 0.23
20 80,0,0,0,...,0,0,0 -0.1 -0.25 -0.23 —0.61 —0.002 -0.16
20 0,80,0,0,...,0,0 -0.1 -0.26 -0.25 —0.60 -0.21 -0.38
50 0,0,0,...,0,0,0,50 0.21 0.55 0.036 0.05 0.036 0.045
50 50,0,0,0, ...,0,0,0 -0.2 -0.31 0.59 -0.78 0.72 -0.19
50 0,50,0,0,...,0,0 -0.23 -0.75 0.47 -0.75 0.55 -0.14
Table 2

MSEs of the AMLEs for progressively Type-II hybrid censored samples when the sample sizes are n=30, 50, 100.

n m Schemes T=0.5 T=1 T=2
(R1,....Rm) o A o A o A
30 5 0,0,0,0,25 1.62 0.52 1.5 0.55 1.73 0.53
5 25,0,0,0,0 0.17 0.1 0.15 0.53 0.11 0.31
5 0,25,0,0,0 0.14 0.1 0.12 0.38 0.17 0.51
50 10 0,0,0, ...,0,40 0.27 0.45 0.22 0.44 0.25 0.44
10 40,0,0,0,...,0 0.1 0.09 0.06 0.57 0.31 0.32
10 0,40,0,...0,0,0 0.07 0.09 0.1 037 03 0.48
100 10 0,0,0,...,0,90 0.26 0.5 0.27 0.49 0.26 0.51
10 90,0,0,...,0,0 0.07 0.08 0.07 0.36 0.38 0.84
10 0,90,0,0, ...,0,0 0.04 0.07 0.07 0.37 0.14 0.56
20 0,0,0,...,0,0,0,80 0.07 0.31 0.08 0.32 0.08 0.32
20 80,0,0,0, ...,0,0,0 0.07 0.08 0.08 0.37 0.23 0.6
20 0,80,0,0, ...,0,0 0.05 0.08 0.08 0.36 0.30 0.58
50 0,0,0, ...,0,0,0,50 0.08 0.36 0.02 0.04 0.02 0.03
50 50,0,0,0, ...,0,0,0 0.09 0.1 0.48 0.71 0.61 0.06

50 0,50,0,0,...,0,0 0.08 0.11 0.31 0.64 0.36 0.05
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Step 6: Order oy, ...,0n and Aq,...,Ay as oy < --- <oy and Aq), ..., 4w to compute the credible intervals of o and /.
Then, the 100(1-2)% credible intervals for « and . become

(Smpy %ma—py)
and
(Ampy Ama—py)-

Based on the generated M, « and / values and using the method proposed by Chen and Shao (1999), the approximate
HPD credible intervals of o and A can then be constructed.

6. Simulations and data analysis
6.1. Simulations

In this section, we perform some simulations to evaluate the performance of all the methods we used earlier for
different sample sizes, different sampling schemes, different parameter values, in terms of their bias and mean squared

Table 3
Bias of the MLEs for progressively Type-II hybrid censored samples when the sample sizes are n=30, 50, 100.

n m Schemes T=0.5 T=1 T=2
(R1,....Rm) o 2 o 2 o A
30 5 0,0,0,0,25 0.62 0.25 0.62 0.27 0.63 -0.26
5 25,0,0,0,0 -0.31 —-0.78 4.46 -0.52 3.42 -0.82
5 0,25,0,0,0 -0.15 —0.48 -0.29 -0.7 -0.57 -0.82
50 10 0,0,0,...,0,40 0.24 0.28 0.23 0.27 0.23 0.28
10 40,0,0,0,...,0 -0.48 -0.9 0.74 -0.73 0.22 -0.77
10 0,40,0,...0,0,0 -04 -0.81 —-0.51 —0.88 0.39 —0.85
100 10 0,0,0,...,0,90 0.24 0.26 0.23 0.26 0.24 0.25
10 90,0,0,...,0,0 0.001 -0.8 —0.14 -0.9 -0.97 —0.94
10 0,90,0,0,...,0,0 -0.21 -0.73 -03 -0.85 -0.41 -0.91
20 0,0,0,...,0,0,0,80 0.1 0.23 0.1 0.22 0.1 0.23
20 80,0,0,0,...,0,0,0 —0.58 —0.95 —0.64 —0.96 0.24 —0.84
20 0,80,0,0,...,0,0 —0.53 —-0.92 —0.60 —-0.94 0.14 -0.83
50 0,0,0,...,0,0,0,50 0.02 0.03 0.037 0.04 0.036 0.05
50 50,0,0,0, ...,0,0,0 —0.68 —-0.86 0.88 —0.69 1.05 —0.67
50 0,50,0,0,...,0,0 —0.65 —0.96 0.26 -0.7 0.74 —0.61
Table 4
MSEs of the MLEs for progressively Type-II hybrid censored samples when the sample sizes are n=30, 50, 100.
n m Schemes T=0.5 T=1 T=2
(Ry,...,Rm) o A o A o A
30 5 0,0,0,0,25 1.61 0.53 1.66 0.55 1.63 0.55
5 25,0,0,0,0 0.19 0.62 0.26 0.29 1.28 0.72
5 0,25,0,0,0 0.12 0.3 0.14 0.49 1.04 0.67
50 10 0,0,0,...,0,40 0.28 0.45 0.27 0.45 0.26 0.44
10 40,0,0,0,...,0 0.26 0.82 0.72 0.54 0.20 0.61
10 0,40,0,...0,0,0 0.19 0.67 0.28 0.77 1.18 0.74
100 10 0,0,0,...,0,90 0.27 0.51 0.27 0.52 0.27 0.50
10 90,0,0,...,0,0 0.07 0.64 0.06 0.81 1.5 0.88
10 0,90,0,0,...,0,0 0.16 0.57 0.17 0.88 0.30 0.70
20 0,0,0, ...,0,0,0,80 0.08 0.31 0.08 0.31 0.08 0.32
20 80,0,0,0,...,0,0,0 0.35 0.92 0.42 0.94 0.2 0.70
20 0,80,0,0,...,0,0 0.29 0.84 0.37 0.88 0.22 0.70
50 0,0,0,...,0,0,0,50 0.02 0.05 0.02 0.03 0.02 0.04
50 50,0,0,0, ...,0,0,0 0.48 0.76 1.06 0.50 1.17 0.45
50 0,50,0,0,...,0,0 0.43 0.92 0.21 0.51 0.61 0.38
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error (MSE). We also compare the average width of the asymptotic confidence intervals and credible intervals and their
coverage percentages.

All the programs are written in R. Since A is a scale parameter, we have taken in all cases A=1 without loss of
generality. For simulation purposes, we present the results when T is of the form T'/%. The reason to choose T in that form
is the following; if & represents the MLE or AMLE of «, then by simulation we show that the distribution of &/« becomes
independent of o in that case for /=1 (Figs. 1 and 2). For that purpose we report the result only for o =1 without loss of
generality. But these results can be used for any other « also.

We have used three different sampling schemes, as follows:

Scheme 1: Ry = --- =R,,_; =0 and R,,=n-m,;
Scheme 2: Ry=n-mand R, = --- =R =0;
Scheme 3: Ry=0, Ry=n—-mand R3 = --- =R,;,; =0.

We have also used different n, m and T. In each case, we compute the MLEs, AMLEs and the Bayes estimates of the unknown
parameters. For computing the Bayes estimators, we assumed that « and A have Gamma (a,b) and Gamma (y,0) priors,
respectively. Moreover, we used the non-informative priors for both « and /, by considering a =b =7 = § = 0. For comparison

Table 5
Bias of the Bayes estimators for progressively Type-II hybrid censored samples when the sample sizes are n=30, 50, 100.

n m Schemes T=0.5 T=1 T=2
(Ry,...,Rm) o 2 o 2 o A
30 5 0,0,0,0,25 0.48 1.83 0.49 1.81 0.49 1.60
5 25,0,0,0,0 0.15 0.93 -0.04 —-0.03 —0.05 -0.54
5 0,25,0,0,0 0.13 -0.42 -0.59 —0.68 -0.16 -0.76
50 10 0,0,0,...,0,40 0.36 1.01 0.32 0.80 0.32 0.73
10 40,0,0,0,...,0 —-0.03 -0.14 -0.13 -0.53 0.13 -0.78
10 0,40,0,...0,0,0 -0.10 -0.75 -0.21 -0.85 -0.13 —-0.81
100 10 0,0,0, ...,0,90 0.32 1.30 0.36 1.41 0.37 1.50
10 90,0,0,...,0,0 —0.11 -0.25 -0.18 —0.56 —0.24 -0.73
10 0,90,0,0,...,0,0 -0.16 —-0.80 -0.26 -0.87 -0.29 -0.91
20 0,0,0, ...,0,0,0,80 0.27 0.56 0.23 0.51 0.24 0.49
20 80,0,0,0,...,0,0,0 -0.14 —-0.60 -0.19 -0.77 0.34 -0.84
20 0,80,0,0,...,0,0 -0.23 -0.89 -0.31 -0.99 -0.31 -0.92
50 0,0,0, ...,0,0,0,50 0.15 0.12 0.14 0.11 0.17 0.12
50 50,0,0,0, ...,0,0,0 -0.16 -0.83 0.66 -0.71 0.68 -0.57
50 0,50,0,0,...,0,0 -0.28 -0.95 0.40 -0.72 0.63 -0.56
Table 6

MSEs of the Bayes estimators for progressively Type-II hybrid censored samples when the sample sizes are n=30, 50, 100.

n m Schemes T=0.5 T=1 T=2
(R1,....Rm) o 2 o 2 o A
30 5 0,0,0,0,25 0.34 0.79 0.34 0.59 033 0.36
5 25,0,0,0,0 0.11 0.93 0.03 0.007 0.05 0.33
5 0,25,0,0,0 0.12 0.19 0.04 0.47 0.05 0.59
50 10 0,0,0, ...,0,40 0.20 1.97 0.18 1.81 0.19 1.33
10 40,0,0,0,...,0 0.04 0.03 0.03 0.03 0.11 0.61
10 0,40,0,...0,0,0 0.05 0.57 0.05 0.73 0.06 0.66
100 10 0,0,0,...,0,90 0.21 4.03 0.21 4.56 0.21 6.40
10 90,0,0,...,0,0 0.03 0.06 0.04 0.32 0.06 0.54
10 0,90,0,0,...,0,0 0.04 0.64 0.07 0.76 0.09 0.83
20 0,0,0,...,0,0,0,80 0.13 0.72 0.10 0.65 0.11 0.7
20 80,0,0,0, ...,0,0,0 0.04 0.36 0.04 0.59 0.24 0.72
20 0,80,0,0,...,0,0 0.06 0.79 0.10 0.86 0.10 0.86
50 0,0,0, ...,0,0,0,50 0.04 0.06 0.04 0.06 0.55 0.04
50 50,0,0,0,...,0,0,0 0.04 0.69 0.47 0.51 047 0.33

50 0,50,0,0,...,0,0 0.08 0.90 0.23 0.53 0.40 0.32
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purposes, we have considered informative priors also. For example we have tried: a=b =y = ¢ = 0.0001. The Bayes estimators
were computed under the squared error loss function. It is observed that if we have proper priors information then the Bayesian
inferences are not significantly different than corresponding inferences obtained using non-proper priors.

For comparison purpose, we replicated the process 10,000 times and report the Bias, MSEs, the average confidence/
credible width and coverage percentage for (D > 1).

The average bias of the MLEs, AMLEs and Bayes estimators and the corresponding MSEs are reported in Tables 1-8.
The average confidence/credible width and the corresponding coverage percentages are reported in Tables 9-12.

From Tables 1-8, we observed that the (&,1) based on the AMLE give smaller biases and MSEs compare to those based
on the MLE and Bayesian methods.

In studying the effect of different censoring schemes, we observed that the bias in Scheme 3 is smaller than other two
schemes and it is larger in Scheme 1 than Schemes 2 and 3.

When comparing in terms of interval estimation, Bayesian credible interval provides a good balance between the
coverage probabilities as well as average credible widths. Therefore, in general we would recommend to use the Bayesian
credible interval with non-informative prior if no prior information about the parameters is available. It is observed that if
we have proper prior information then the Bayesian inference has a clear advantage over the classical inference in case of
interval estimation.

If one wants to guarantee the coverage probability is above the nominal level and the width of the credible interval is
not the major concern, then AMLEs confidence interval is proposed in most cases.

Table 7
Bias of the Bayes estimators under proper priors for progressively Type-II hybrid censored samples when the sample sizes are n=30, 50, 100.

n m Schemes T=0.5 T=1 T=2
(R1,....Rm) o 2 o A o 2
30 5 0,0,0,0,25 0.052 2.23 0.44 1.33 0.42 1.41
5 25,0,0,0,0 0.08 0.84 —-0.05 —0.02 -0.01 —-0.57
5 0,25,0,0,0 0.12 —0.04 -0.59 —0.68 -0.16 —-0.78
50 10 0,0,0,...,0,40 0.38 1.14 0.30 0.86 0.31 0.50
10 40,0,0,0,...,0 0.00002 -0.12 -0.13 —-0.53 0.144 —0.80
10 0,40,0,...0,0,0 —-0.30 -0.76 —-0.24 -0.85 -0.10 —0.80
100 10 0,0,0,...,0,90 0.31 1.16 0.37 1.35 0.36 1.36
10 90,0,0,...,0,0 -0.11 -0.25 -0.19 —0.56 -0.24 -0.73
10 0,90,0,0,...,0,0 -0.17 -0.80 -0.26 —-0.87 -0.29 -0.91
20 0,0,0,...,0,0,0,80 0.28 0.61 0.28 0.66 0.21 0.39
20 80,0,0,0,...,0,0,0 -0.13 —-0.60 -0.19 —-0.76 0.32 —0.86
20 0,80,0,0,...,0,0 —-0.22 -0.89 —-0.32 —0.99 —-0.30 —-0.94
50 0,0,0,...,0,0,0,50 0.14 0.15 0.13 0.04 0.18 0.11
50 50,0,0,0,...,0,0,0 -0.15 -0.83 0.69 -0.69 0.70 —-0.58
50 0,50,0,0,...,0,0 —0.28 —0.94 0.46 -0.71 0.64 —-0.57
Table 8

MSEs of the Bayes estimators under proper priors for progressively Type-II hybrid censored samples when the sample sizes are n=30, 50, 100.

n m Schemes T=0.5 T=1 T=2
(Ry,...,Rm) o ) o A o 2
30 5 0,0,0,0,25 035 1.34 0.30 0.19 0.28 0.45
5 25,0,0,0,0 0.07 0.74 0.03 0.005 0.04 0.35
5 0,25,0,0,0 0.09 0.21 0.04 0.47 0.05 0.61
50 10 0,0,0, ...,0,40 0.18 2.60 0.17 1.10 0.18 0.05
10 40,0,0,0,...,0 0.04 0.02 0.03 0.28 0.12 0.64
10 0,40,0,...0,0,0 0.05 0.58 0.06 0.73 0.07 0.63
100 10 0,0,0,...,0,90 0.18 241 0.22 3.33 0.21 4.30
10 90,0,0,...,0,0 0.04 0.06 0.05 0.31 0.06 0.54
10 0,90,0,0,...,0,0 0.04 0.64 0.06 0.76 0.09 0.83
20 0,0,0,...,0,0,0,80 0.12 0.80 0.12 0.99 0.09 0.51
20 80,0,0,0, ...,0,0,0 0.04 0.36 0.04 0.59 0.22 0.74
20 0,80,0,0,...,0,0 0.05 0.79 0.10 0.86 0.01 0.86
50 0,0,0, ...,0,0,0,50 0.04 0.07 0.04 0.03 0.55 0.04
50 50,0,0,0, ...,0,0,0 0.04 0.69 0.49 0.49 047 0.35

50 0,50,0,0,...,0,0 0.08 0.90 0.27 0.51 0.40 0.33
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Average confidence width (ACW) and the (coverage percentage (CP)) of AMLEs estimators for progressively Type-II hybrid censored samples when the
sample sizes are n=30, 50, 100.

n m Schemes T=0.5 T=1 T=2
(R1,...,Rm) ACWao, ACWA(CPa,CPA) ACWa, ACWA(CPu,CP2) ACWo, ACW/(CPo,CPA)
30 5 0,0,0,0,25 3.19, 2.49(0.85,0.87) 3.18, 2.51(0.85,0.86) 3.26, 2.48(0.84,0.86)
5 25,0,0,0,0 6.72, 5.45(1.00,1.00) 2.5, 2.23(1.00,1.00) 2.67, 1.82(0.99,0.63)
5 0,25,0,0,0 3.57, 2.86(0.99,1.00) 2.67, 1.43(0.99,1.00) 2.27, 1.41(0.99,0.69)
50 10 0,0,0, ...,0,0,40 1.63, 1.69(0.90,0.77) 1.61, 1.68(0.91,0.77) 1.62, 1.68(0.91,0.77)
10 40,0,0,0,...,0,0 6.41, 5.29(1.00,1.00) 2.89, 0.97(1.00,0.66) 1.53, 1.35(0.75,0.67)
10 0,40,0,...0,0,0 3.40, 2.79(1.00,1.00) 2.71, 1.46(1.00,0.99) 1.55, 1.03(0.68,0.54)
100 10 0,0,0,0,...,0,90 1.63, 1.65(.90,0.69) 1.63, 1.63(0.90,0.69) 1.63, 1.65(0.90,0.68)
10 90,0,0,...,0,0,0 6.45, 5.27(1.00,1.00) 2.46, 2.72(1.0,1.00) 1.64, 1.93(0.61,0.40)
10 0,90,0,0,...,0,0 3.46, 2.8(1.00,1.00) 2.81, 1.46(1.00,1.00) 2.39, 0.94(0.97,0.45)
20 0,0,0,...,0,0,0,80 0.99, 1.10(0.93,0.72) 1.00, 1.11(0.93,0.71) 0.99, 1.11(0.93,0.71)
20 80,0,0,0,...,0,0,0 6.28, 5.19(1.0,1.00) 1.32, 1.45(1.0,1.00) 1.83, 1.25(0.85,0.54)
20 0,80,0,0,...,0,0,0 3.35, 2.76(1.00,1.00) 2.78, 1.46(1.00,0.99) 1.57, 0.95(0.67,0.48)
50 0,0,0, ...,0,0,0,50 0.77, 0.87(0.80,0.10) 0.58, 0.59(0.95,0.90) 0.58, 0.58(0.95,0.90)
50 50,0,0,0, ...,0,0,0 5.49, 4.78(0.99,1.00) 1.89, 0.49(0.64,0.32) 1.14, 0.53(0.14,0.68)
50 0,50,0,0,...,0,0,0 2.84, 2.51(1.00,1.00) 1.77, 0.747(0.76,0.50) 1.03, 0.56(0.23,0.82)
Table 10

Average confidence width (ACW) and the (coverage percentage (CP)) of MLEs estimators for progressively Type-II hybrid censored samples when the
sample sizes are n=30, 50, 100.

n m schemes T=0.5 T=1 T=2
(Ry,..., Rin) ACWo, ACWA(CPa,CPA) ACWo, ACWA(CPo,CP2) ACWo,, ACWA(CPx,CP2)
30 5 0,0,0,0,25 3.23, 2.5(0.85,0.87) 3.23, 2.53(0.85,0.87) 3.23,2.51(0.85,0.86)
5 25,0,0,0,0 4.75, 1.47(0.99,1.00) 3.74, 1.76(0.99,1.00) 2.35, 0.43(0.59,0.23)
5 0,25,0,0,0 3.16, 1.91(0.99,0.92) 2.63, 1.12(0.99,0.70) 2.56, 0.64(0.81,0.13)
50 10 0,0,0, ...,0,40 1.64, 1.69(0.90,0.77) 1.63, 1.68(0.90,0.77) 1.63, 1.69(0.90,0.77)
10 40,0,0,0,...,0,0 3.61, 0.63(0.99,0.004) 6.04, 0.87(1.00,0.27) 3.11, 0.47(0.99,0.011)
10 0,40,0,...0,0,0 2.22, 0.68(0.99,0.03) 1.80, 0.45(0.99,0.001) 3.23, 0.34(0.79,0.02)
100 10 0,0,0,0, ...,0,90 1.64, 1.66(0.90,0.68) 1.63, 1.66(0.90,0.68) 1.63, 1.65(0.90,0.69)
10 90,0,0,...,0,0,0 6.93, 1.37(1.00,0.97) 5.94, 0.67(1.00,0.00) 1.55, 0.38(0.22,0.00)
10 0,90,0,0,...,0,0 2.94, 0.98(0.99,0.40) 2.61, 0.53(0.99,0.00) 2.31, 0.338(0.96,0.00)
20 0,0,0,...,0,0,0,80 1.004, 1.11(0.93,0.71) 0.99, 1.11(0.93,0.71) 1.003, 1.11(0.92,0.71)
20 80,0,0,0,...,0,0,0 2.89, 0.28(0.99,0.00) 2.47, 0.20(0.99,0.00) 2.16, 0.26(0.92,0.00)
20 0,80,0,0,...,0,0,0 1.74, 0.29(0.99,0.00) 1.46, 0.21(0.97,0.00) 2.07, 0.26(0.99,0.00)
50 0,0,0,...,0,0,0,50 0.65, 0.65(0.96,0.87) 0.58, 0.58(0.95,0.90) 0.58, 0.58(0.95,0.90)
50 50,0,0,0, ...,0,0,0 2.14, 0.31(0.98,0.01) 2.17, 0.33(0.38,0.05) 1.38, 0.21(0.002,0.002)
50 0,50,0,0,...,0,0,0 1.28, 0.16(0.88,0.00) 1.45, 0.32(0.82,0.002) 1.15, 0.25(0.04,0.00)

Based on our final results, totally, all three methods are almost at the same level. In some cases AMLE is proposed as in
some other cases MLE or Bayesian methods are proposed.

Now we explain how we can use the results for any other « values also. For example when o = 2, then for n=30, m=5,
T=0.5 and the Scheme is R; (Tables 3 and 4), the bias of the MLEs for o will be 2 x 0.62 and the MSEs will be 4 x 1.61, the
average confidence width will be 2 x 3.23 and the coverage percentage will be 0.85.

6.2. Data analysis

For illustrative purposes, we present here a data analysis using the proposed methods. The following data set (Linhart
and Zucchini, 1986, p. 69) are failure times of the air conditioning system of an airplane. This data set was analyzed by
Gupta and Kundu (2001). One question arises whether the data fit Weibull distribution or not. To check for goodness of fit
we provide PP plot in Fig. 3. Also we compute the Anderson-Darling statistic, it is 0.552 and the associated p value is 0.159.
Since the p value is quite high, we cannot reject the null hypothesis that the data are coming from the Weibull distribution.

We created an artificial data by progressive Type-II hybrid censoring.

The ordered data are as follows: 1, 3, 5,7, 11, 11, 11, 12, 14, 14, 14, 16, 16, 20, 21, 23, 42, 47, 52, 62, 71, 71, 87, 95, 90,
120, 120, 225, 246, 261.



2836

Table 11

E. Bayat Mokhtari et al. / Journal of Statistical Planning and Inference 141 (2011) 2824-2838

Average confidence width (ACW) and the (coverage percentage (CP)) of the Bayes estimators for progressively Type-II hybrid censored samples when the
sample sizes are n=30, 50, 100.

n m Schemes T=0.5 T=1 T=2
(R1,...,Rm) ACWo, ACWA(CPa,CPA) ACW(x), ACWA(CPx,CPA) ACWo, ACW/A(CPa,CPA)
30 5 0,0,0,0,25 2.89, 1.70(1.00,0.99) 2.86, 1.52(1.00,.97) 0.49, 1.60(0.33,0.90)
5 25,0,0,0,0 1.93, 8.38(1.00,0.99) 1.39, 1.22(1.00,1.00) 1.28, 0.43(1.00,0.21)
5 0,25,0,0,0 1.68, 2.65(0.99,0.96) 1.08, 0.34(1.00,0.00) 0.88, 0.11(0.91,0.00)
50 10 0,0,0, ...,0,40 2.18, 1.77(0.99,0.98) 2.04, 3.41(1.00,0.98) 2.08, 2.04(1.00,0.98)
10 40,0,0,0,...,0 1.42, 2.21(0.99,1.00) 1.16, 0.52(1.00,0.00) 1.67, 0.20(0.99,0.00)
10 0,40,0,...0,0,0 1.09, 0.52(0.97,0.07) 0.83, 0.10(0.92,0.00) 0.90, 0.08(0.94,0.00)
100 10 0,0,0,..., 0,90 2.12, 1.57(0.99,0.95) 2.19, 2.63(0.98,0.97) 2.22, 1.90(1.00,0.98)
10 90,0,0,...,0,0 1.17, 1.78(0.97,1.00) 0.99, 0.53(0.97,0.00) 0.83, 0.26(0.96,0.00)
10 0,90,0,0,...,0,0 0.91, 0.43(0.95,0.01) 0.68, 0.11(0.82,0.00) 0.60, 0.04(0.78,0.00)
20 0,0,0,...,0,0,0,80 1.76, 1.42(0.99,1.00) 0.23, 0.51(0.10,0.65) 1.68, 2.27(0.99,0.98)
20 80,0,0,0, ...,0,0,0 1.14, 0.78(1.00,0.37) 0.99, 0.24(0.97,0.00) 2.26, 0.17(0.99,0.00)
20 0,80,0,0,...,0,0 0.79, 0.15(0.98,0.00) 0.57, 0.04(0.67,0.32) 0.57, 0.04(0.67,0.00)
50 0,0,0, ...,0,0,0,50 1.32, 0.37(1.00,0.99) 1.27, 0.88(1.00,0.98) 1.37, 0.95(1.00,0.95)
50 50,0,0,0, ...,0,0,0 1.11, 0.28(0.98,0.01) 3.47, 0.07(1.00,0.00) 3.48, 0.47(1.00,0.00)
50 0,50,0,0,...,0,0 0.71, 0.04(0.9,0.00) 2.29, 0,06(0.99,0.81) 3.14, 0.44(1.00,0.00)
Table 12

Average confidence width (ACW) and the (coverage percentage (CP)) of the Bayes estimators under proper priors for progressively Type-II hybrid
censored samples when the sample sizes are n=30, 50, 100.

n m Schemes T=0.5 T=1 T=2
(Ry,....Rm) ACWor, ACWA(CPe,CPA) ACW(er), ACW/(CPot,CP) ACWo, ACW/(CPo,,CPJ)
30 5 0,0,0,0.25 2.90, 2.06(1.00,0.99) 2.61, 0.35(1.00,0.00) 0.38, 1.08(0.33,0.83)
5 25,0,0,0,0 1.76, 7.67(1.00,0.96) 1.26, 1.21(0.99,1.00) 1.32, 0.40(1.00,0.21)
5 0,25,0,0,0 1.65, 2.38(1.00,0.94) 1.07, 0.333(0.98,0.00) 0.88, 0.11(0.95,0.00)
50 10 0,0,0,...,0,40 2.19, 1.53(0.99,0.99) 1.94, 3.97(0.99,0.96) 2.03, 1.48(1.00,0.98)
10 40,0,0,0,...,0 1.55, 2.53(1.00,1.00) 1.17, 0.52(1.00,0.00) 1.73, 0.20(1.00,0.00)
10 0,40,0,...0,0,0 1.05, 0.47(0.93,0.07) 0.75, 0.10(0.91,0.00) 0.90, 0.08(0.89,0.00)
100 10 0,0,0,...,0,90 2.05, 1.38(1.00,0.95) 2.19, 2.23(0.98,0.97) 2.17, 1.32(0.98,0.97)
10 90,0,0, ...,0,0 1.18, 1.83(0.99,1.00) 0.96, 0.53(0.97,0.00) 0.84, 0.26(0.97,0.00)
10 0,90,0,0,...,0,0 0.87, 0.41(0.94,0.03) 0.71, 0.12(0.87,0.00) 0.58, 0.04(0.82,0.00)
20 0,0,0,...,0,0,0,80 1.77, 1.75(1.00,0.99) 1.67, 1.94(0.99,0.99) 1.60, 1.81(1.00,0.98)
20 80,0,0,0,...,0,0,0 1.18, 0.79(1.00,0.35) 0.99, 0.24(0.97,0.00) 2.25, 0.15(0.98,0.00)
20 0,80,0,0, ...,0,0 0.80, 0.15(0.97,0.00) 0.56, 0.04(0.60,0.00) 1.20, 0.10(0.90,0.00)
50 0,0,0,...,0,0,0,50 1.29, 1.37(1.00,0.99) 1.25, 0.86(1.00,0.94) 1.38, 0.95(1.00,0.94)
50 50,0,0,0,...,0,0,0 1.12, 0.28(1.00,0.00) 3.51, 0.07(1.00,0.00) 3.41, 0.46(1.00,0.00)
50 0,50,0,0, ...,0,0 0.71, 0.04(0.82,0.00) 2.42, 0.06(0.99,0.00) 3.14, 0.44(1.00,0.00)
Example 1. In this case we have n = 30 and we took m = 10, T = 80, Ry =R, = --- =Rg = 2,R9 = 8. Thus, the progressive

Type-II hybrid censored sample is 1, 3, 5, 7, 11, 12, 16, 20, 23, 71. From the above sample, corresponding to Case I,
we obtain the MLEs, AMLEs and Bayes estimates of « and A as (0.711,0.029), (0.712,0.031), (0.829,0.039), respectively.
The average confidence widths of « and / based on the MLEs are (0.938,0.489). Similarly, using the AMLEs, we have
(0.940,0.490). Also we compute the average credible length of « and A and they are (0.720,0.113).

Example 2. Now consider m = 10 and T = 19 and R/’s to be the same as before. In this case, the progressively Type-II
hybrid censored sample obtained 1, 3, 5, 7, 11, 12, 16. It is observed that the data correspond to Case Il and D=J=7. Based
on the sample, we obtain the MLEs, AMLEs and Bayes estimates of « and 4 as (0.968,0.017), (1.112,0.027) and (0.63,0.048),
respectively. The average confidence lengths of o and A based on the MLEs are (1.569,0.798). Similarly, based on AMLEs
they are (1.80,0.044) and the average credible lengths of o and A are (1.490,0.189).

7. Conclusions

In this paper, we have discussed the classical and Bayesian inferential procedures for the progressively Type-II hybrid
censored data from the Weibull distribution. It is shown that the maximum likelihood estimator of the shape parameter
can be obtained by using an iterative procedure. The proposed approximate maximum likelihood estimators of the shape



E. Bayat Mokhtari et al. / Journal of Statistical Planning and Inference 141 (2011) 2824-2838 2837

Weibull - 95% CI

Shape 0.8536

Scale 5461
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Fig. 3. PP plot for goodness of fit.

and scale parameters can be obtained in explicit forms. Bayes estimates of the unknown parameters can be obtained using
Gibbs sampling methods. A comparison is made through MSEs, bias, average confidence/credible widths and the
corresponding coverage percentages.
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Appendix

To prove Theorem 2, we need the following lemma.
Lemma 1. For x; >0 and b > 0, define g(o) = >_i_ ; x* +b. Then, (6% /60?)Ing() > O (see, Kundu, 2007).

Proof of Theorem 2. We consider here only Case I, and Case II follows exactly in the same manner. The conditional
density of « given the data is

amnz (OC) H:n: 1 yla;lln (36)
o 1 Vi (1+R)+D)T

Therefore, ignoring the additive constant, the log-likelihood function of the posterior density function of « can be written
as

L(o|data) oc

m m
InL(x|data) = In7ty (o) +mlno 4 (oc—1) Z Iny;.m.n—(a+m)ln <Z Yima(l +Ri)+b> .

i=1 i=1
Hence, by using Lemma 1 and the assumption on 7,(2), it easily follows that L(c|data) is log-concave.
We just provide the posterior density function of o for Case II. Note that, for J > 0,

AT [T Vil

L(o|data) oc J “ R
(Z,’ =1 yi;m;n(l +Ri)+TaR]* +b)
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