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a b s t r a c t

Progressive Type-II hybrid censoring is a mixture of progressive Type-II and hybrid

censoring schemes. In this paper, we discuss the statistical inference on Weibull

parameters when the observed data are progressively Type-II hybrid censored. We

derive the maximum likelihood estimators (MLEs) and the approximate maximum

likelihood estimators (AMLEs) of the Weibull parameters. We then use the asymptotic

distributions of the maximum likelihood estimators to construct approximate con-

fidence intervals. Bayes estimates and the corresponding highest posterior density

credible intervals of the unknown parameters are obtained under suitable priors on the

unknown parameters and also by using the Gibbs sampling procedure. Monte Carlo

simulations are then performed for comparing the confidence intervals based on all

those different methods. Finally, one data set is analyzed for illustrative purposes.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Censoring occurs commonly in reliability and survival analysis. The most common censoring schemes are Type-I
censoring, where the life-testing experiment stops at a predetermined time T; and Type-II censoring, where the life-testing
experiment stops when predetermined number (r) are observed to have failed. The mixture of Type-I and Type-II censoring
schemes is known as the hybrid censoring scheme which was first introduced by Epstein (1954). But recently it becomes
quite popular in the reliability and life-testing experiments. See for example the work of Chen and Bhattacharya (1988),
Childs et al. (2003), Draper and Guttman (1987), Fairbanks et al. (1982), Gupta and Kundu (2006) and Jeong et al. (1996).

One of the drawbacks of the traditional Type-I, Type-II or hybrid censoring schemes is that they do not have the
flexibility of allowing removal of units at points other than the terminal points of the experiment. One censoring scheme
known as Type-II progressive censoring scheme, which has this advantage can be described as follows: consider n units in
a study and suppose mon is fixed before the experiment. At the time of the first failure, R1 units are randomly removed.
Similarly, at the time of the second failure, R2 units from the remaining n�2�R1, units are randomly removed. The test
ll rights reserved.
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continues until the m-th failure at which time all the remaining Rm ¼ n�m�R1�R2� � � � �Rm�1 units are removed. The Ri’s
are fixed prior to the study. For more details the readers may refer to the Balakrishnan and Aggarwala (2000) and
Balakrishnan (2007).

The drawback of the Type-II progressive censoring, similar to the conventional Type-II censoring (time censoring), is
that it can take a lot of time to get to the m-th failure time. Recently, Kundu and Joarder (2006) proposed a censoring
scheme called Type-II progressively hybrid censoring scheme which is a mixture of Type-II progressive and hybrid
censoring schemes. It can be described as follows. Consider n identical items which put on a test. Each unit in a randomly
selected sample is subjected under identical environmental conditions. The lifetimes of the sample units are independent
and identically distributed (i.i.d) random variables. The integer mon and R1,y,Rm satisfying R1þ � � � þRmþm¼ n are fixed
at the beginning of the experiment. The time point T is also fixed before hand. At the time of first failure, Y1:m:n, R1 of the
remaining units are randomly removed. Similarly at the time of the second failure, Y2:m:n, R2 of the remaining units are
removed and so on. If the m-th failure, Ym:m:n occurs before the time point T, the experiment stops at the time point Ym:m:n.
On the other hand if the m-th failure does not occur before time point T and only J failure occur before the time point T,
where ð0r JomÞ, then at the time point T all the remaining R*

J units are removed and the experiment terminates at the
time point T. Note that R�J ¼ n�ðR1� � � ��RJÞ�J.

We denote these two cases as Case I and Case II, respectively, and call these censoring scheme as the progressively
Type-II hybrid censoring schemes. Therefore, in the presence of progressively Type-II hybrid censoring schemes, we have
one of the following types of observations;

Case I : fX1:m:n, . . . ,Xm:m:ng if Xm:m:noT ,

Case II : fX1:m:n, . . . ,XJ:m:ng if XJ:m:noToXJþ1:m:n:

In spite of the applicability of the hybrid censoring scheme, it is somewhat surprising to observe that limited attention
has been paid in analyzing hybrid censored lifetime data when the lifetimes are not exponential. The main concern is the
analysis becomes too difficult and may not be tractable. Weibull distribution is one of the most common distributions
which is used to analyze several lifetime data. The density function of the Weibull distribution can take different shapes
and also its hazard function can be increasing, decreasing and constant depending on the shape parameter. Because of the
shape parameter, it has lots of flexibility compared to exponential distribution. Kundu (2007) presented the statistical
inference on Weibull parameters when the data are hybrid censored, while Balakrishnan and Kateri (2008) discussed the
existence and uniqueness of the maximum likelihood estimators of the Weibull parameters based on different forms of
censored data.

In this article we consider the Type-II progressively hybrid censored lifetime data, when the lifetime follows two
parameter Weibull distribution. First we provide the maximum likelihood estimators of the unknown parameters. It is
observed that the maximum likelihood estimators do not have explicit forms. They can be obtained by solving a non-linear
equation. We also suggest approximate maximum likelihood estimators, which have explicit expressions. Because the
exact distributions of the MLE are not easy derived, we propose to use the asymptotic distributions of the MLE to construct
the approximate confidence intervals.

We also consider the Bayes estimates under the assumptions of independent gamma priors on the scale and shape
parameters. Based on these priors, the Bayes estimates cannot be obtained explicitly, so we use the Gibbs sampling
procedure to compute the Bayes estimates and also to compute the highest posterior density (HPD) credible intervals. We
compare the performances of the different methods by Monte Carlo simulations. One data set is analyzed for illustrative
purposes.

The rest of the paper as follows. In Section 2, we describe the model and the available data. The maximum likelihood
estimator (MLE) and approximate maximum likelihood estimator (AMLE) are presented in Sections 3 and 4, respectively.
Bayesian inferences are provided in Section 5. Simulation results and data analysis are provided in Section 6. One data set
is analyzed and the results are presented in Section 7. Finally we conclude the paper on Section 8.

2. Model description

Suppose the lifetime random variable Y has a Weibull distribution with shape and scale parameters as a and l,
respectively, and with probability density function (pdf) as

fY ðy;a,lÞ ¼ alya�1e�lya , y40, a40, l40: ð1Þ

If the random variable Y has its pdf as in (1), then X ¼ lnY has the extreme value distribution with pdf

fXðx;m,sÞ ¼ 1

s eðx�mÞ=s�eðx�mÞ=s , �1oxo1, ð2Þ

where m¼�lnl=s and s¼ 1=a are the location and shape parameters, respectively.
The densities in (1) and (2) are equivalent models in the sense that procedures developed under one model can be

easily used for the other model. Although, they are equivalent models, sometimes it is easier to work with the extreme
value model in (2) than the Weibull model in (1), since the two parameters appear as location and scale parameters.
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In fact, it is due to this the approximate maximum likelihood estimators can be obtained quite easily for model (2) than for
model (1). When m¼ 0 and s¼ 1, the model in (2) becomes the standard extreme value distribution with pdf:

fZðz,0,1Þ ¼ ez�ez

, �1ozo1: ð3Þ

3. Maximum likelihood estimators

In this section, we provide the MLEs of the unknown parameters a and l in (1). Based on the observed data, the
likelihood function for Case I is given by

Lða,lÞ ¼ CðalÞm
Ym
i ¼ 1

ðyi:m:nÞ
a�1e�l

Pm

i ¼ 1
ya

i:m:n
ð1þRiÞ, ð4Þ

while for Case II, it is

Lða,lÞ ¼ CðalÞJ
YJ

i ¼ 1

ðyi:m:nÞ
a�1e�l

PJ

i ¼ 1
ya

i:m:n
ð1þRiÞ�lTaR�

J if J40,

Lða,lÞ ¼ Ce�lTan if J¼ 0: ð5Þ

The correspond log-likelihood functions are obtained from (4) and (5) as

lða,lÞ ¼ logLða,lÞ ¼ const:þmlnaþmlnlþða�1Þ
Xm

i ¼ 1

lnyi:m:n�l
Xm

i ¼ 1

yai:m:nð1þRiÞ ð6Þ

and

lða,lÞ ¼ logLða,lÞ ¼ const:þ Jlnaþ Jlnlþða�1Þ
XJ

i ¼ 1

lnyi:m:n�l
XJ

i ¼ 1

yai:m:nð1þRiÞ�lTaR�J , ð7Þ

respectively. Taking derivatives with respect to a and l in (6) and equating them to zero, we obtain the likelihood
equations as

@l

@l
¼

m

l
�
Xm
i ¼ 1

yai:m:nð1þRiÞ ¼ 0, ð8Þ

@l

@a
¼

m

a
þ
Xm
i ¼ 1

lnyi:m:n�l
Xm
i ¼ 1

ð1þRiÞy
a
i:m:nlnyi:m:n ¼ 0: ð9Þ

From (8), we obtain

l̂ðaÞ ¼ mPm
i ¼ 1 yai:m:nð1þRiÞ

: ð10Þ

Upon using (10) in (9), it becomes

m

a þ
Xm
i ¼ 1

lnyi:m:n�l̂ðaÞ
Xm

i ¼ 1

ð1þRiÞy
a
i:m:nlnyi:m:n ¼ 0: ð11Þ

Note that (11) can be written in the form

a¼ hðaÞ, ð12Þ

where

hðaÞ ¼ m

l̂ðaÞ
Pm

i ¼ 1ð1þRiÞy
a
i:m:nlnyi:m:n�

Pm
i ¼ 1 lnyi:m:n

: ð13Þ

From (12), we propose a simple iterative scheme to solve for a. It has been proposed in the literature by Kundu (2007),
Banerjee and Kundu (2008) and Pareek et al. (2009). Start with an initial guess of a, say að0Þ, then obtain að1Þ ¼ hðað0ÞÞ and
proceed in this way iteratively to obtain aðnþ1Þ ¼ hðaðnÞÞ. Stop the iterative procedure, when jaðnþ1Þ�aðnÞjoE, some pre-
assigned tolerance limit.

In case of (7), the likelihood equation can be expressed as

l̂ðaÞ ¼ JPJ
i ¼ 1 yai:m:nð1þRiÞþTaR�J
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and a¼ hðaÞ, where

hðaÞ ¼ J

l̂ðaÞ
PJ

i ¼ 1ð1þRiÞy
a
i:m:nlnyi:m:nþ l̂ðaÞR�J TalnT�

PJ
i ¼ 1 lnyi:m:n

:

A simple iterative procedure to the one described above can be used to solve for a in this case as well. Note that when J¼0,
the maximum likelihood estimator for l is zero and for a do not exist. Since the MLEs do not exist in explicit forms, we
suggest the following approximate MLEs which have explicit expressions. This method proposed by Balakrishnan and
Varadan (1991) (see also, Balakrishnan et al., 2003, 2004; Banerjee and Kundu, 2008) to develop AMLEs.

4. Approximate maximum likelihood estimators

We use the following notation; xi:m:n ¼ lnyi:m:n and S¼ lnT . Then, the likelihood function of the observed data xi:m:n for
Case I is given by

Lðm,sÞ ¼ Const:
1

s

� �m Ym
i ¼ 1

gðzi:m:nÞðGðzi:m:nÞÞ
Ri , ð14Þ

while for Case II, it is given by

Lðm,sÞ ¼ Const:
1

s

� �J YJ

i ¼ 1

gðzi:m:nÞð1�Gðzi:m:nÞÞ
Ri ð1�GðVÞÞR�J , ð15Þ

where gðxÞ ¼ ex�ex
, GðxÞ ¼ e�ex

, zi:m:n ¼ ðxi:m:n�mÞ=s, V ¼ ðS�mÞ=s, m¼�ð1=aÞlnl, s¼ 1=a. In the case of (14), ignoring the
constant, we have the log-likelihood as

lðm,sÞ ¼ logLðm,sÞ ¼�mlnsþ
Xm

i ¼ 1

lngðzi:m:nÞþ
Xm

i ¼ 1

Rilnð1�Gðzi:m:nÞÞ: ð16Þ

Taking now derivatives with respect to m and s, we get the likelihood equations as

@l

@m ¼�
1

s
Xm
i ¼ 1

g0ðzi:m:nÞ

gðzi:m:nÞ
þ

1

s
Xm
i ¼ 1

Ri
gðzi:m:nÞ

1�Gðzi:m:nÞ
¼ 0, ð17Þ

@l

@s
¼�

m

s
�

1

s
Xm
i ¼ 1

zi:m:n
g0ðzi:m:nÞ

gðzi:m:nÞ
þ
Xm

i ¼ 1

Ri
gðzi:m:nÞ

1�Gðzi:m:nÞ

zi:m:n

s
¼ 0: ð18Þ

Eqs. (17) and (18) can be written equivalently as

�
Xm
i ¼ 1

g0ðzi:m:nÞ

gðzi:m:nÞ
þ
Xm

i ¼ 1

Ri
gðzi:m:nÞ

1�Gðzi:m:nÞ
¼ 0, ð19Þ

�m�
Xm

i ¼ 1

zi:m:n
g0ðzi:m:nÞ

gðzi:m:nÞ
þ
Xm

i ¼ 1

Rizi:m:n
gðzi:m:nÞ

i�Gðzi:m:nÞ
¼ 0: ð20Þ

Clearly, (19) and (20) do not have explicit solutions. So, we expand the functions g0ðzi:m:nÞ=gðzi:m:nÞ and gðzi:m:nÞ=Gðzi:m:nÞ in
Taylor series around the point mi, where

mi ¼ G�1ðpiÞ ¼ lnð�lnð1�qiÞÞ, ð21Þ

and pi ¼ 1�qi ¼ 1�
Qm

j ¼ m�iþ1 aj, also aj ¼ ðjþ
Pm

i ¼ m�jþ1 RiÞ=ð1þ jþ
Pm

i ¼ m�jþ1 RiÞ for j¼1,ym, see Balakrishnan and
Aggarwala (2000).

We may then consider the following approximations:

g0ðzi:m:nÞ

gðzi:m:nÞ
� ai�bizi:m:n, ð22Þ

gðzi:m:nÞ

Gðzi:m:nÞ
� 1�aiþbizi:m:n, ð23Þ

where, for i¼1,y,m,

ai ¼ 1þ lnqi½1�lnð�lnqiÞ�, ð24Þ

bi ¼ lnqi: ð25Þ
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Upon using the approximations in (25) and (26) into (19) and (20), we obtain the approximate likelihood equations as

�
Xm

i ¼ 1

ðai�bizi:m:nÞþ
Xm
i ¼ 1

Rið1�aiþbizi:m:nÞ ¼ 0, ð26Þ

�m�
Xm

i ¼ 1

ðai�bizi:m:nÞzi:m:nþ
Xm

i ¼ 1

zi:m:nRið1�aiþbizi:m:nÞ ¼ 0: ð27Þ

From (29), we obtain the AMLE of m as

m̂I ¼ AI�BIŝI , ð28Þ

where

AI ¼

Pm
i ¼ 1 xi:m:nbið1þRiÞPm

i ¼ 1 bið1þRiÞ
, ð29Þ

BI ¼

Pm
i ¼ 1 ai�

Pm
i ¼ 1 Rið1�aiÞPm

i ¼ 1 bið1þRiÞ
: ð30Þ

From (30), we obtain the approximate likelihood equation for s as

GIs2þDIs�EI ¼ 0, ð31Þ

where

CI ¼mþB2
I

Xm
i ¼ 1

bið1þRiÞ

" #
�B2

I

Xm

i ¼ 1

bið1þRiÞ

 !
¼m,

DI ¼
Xm

i ¼ 1

aiðxi:m:n�AIÞ�
Xm

i ¼ 1

Riðxi:m:n�AIÞ�
Xm
i ¼ 1

RiaiðAI�xi:m:nÞ,

EI ¼
Xm

i ¼ 1

biRiðxi:m:n�AIÞ
2
þ
Xm

i ¼ 1

biðxi:m:n�AIÞ
240:

Therefore, we obtain the AMLE of s from (34) as

ŝI ¼
�DIþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

I þ4mEI

q
2m

,

which is the only positive root.
Similarly, for Case II, expanding gðVÞ=ð1�GðVÞÞ around the point md� , we obtain

gðVÞ

1�GðVÞ
¼ 1�ad� þbd�V :

Here, ad� ¼ 1þ lnqd� ð1�lnð�lnqd� ÞÞ, bd� ¼ �lnqd� and md� ¼ lnð�lnqd� Þ. Following the same procedure as above, we obtain the
AMLE of m as

m̂II ¼ AII�BIIŝII ,

where

AII ¼

PJ
i ¼ 1 xi:m:nbið1þRiÞþSR�J bd�

R�J bd� þ
PJ

i ¼ 1 bið1þRiÞ
,

BII ¼

PJ
i ¼ 1 ai�

PJ
i ¼ 1 Rið1�aiÞ�R�J ð1�aiÞ

R�J bd� þ
PJ

i ¼ 1 bið1þRiÞ
:

Moreover, ŝII can be obtained as

ŝII ¼
�DIIþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

IIþ4JEII

q
2J

,

where

EII ¼�
XJ

i ¼ 1

biðxi:m:n�AIIÞ
2
þ
XJ

i ¼ 1

biRiðxi:m:n�AIIÞ
2
þR�J bd� ðS�AIIÞ

240,
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DII ¼
XJ

i ¼ 1

aixi:m:n�AIIbII R�J bd� þ
XJ

i ¼ 1

bið1þRiÞ

 !
�
XJ

i ¼ 1

xi:m:nRið1�aiÞ�SR�J ð1�ad� Þ:

5. Bayes estimates and credible intervals

In this section, we describe the Bayes estimates of the unknown parameters as well as the corresponding highest
posterior density (HPD) credible intervals when the shape parameter is unknown. For computing the Bayes estimates,
we have assumed squared error loss functions, but any other loss function (SEL) can be easily incorporated. This method
has also been used by Kundu (2007, 2008) and Banerjee and Kundu (2008).

5.1. Prior and posterior distributions

In this subsection, we need to assume some prior distributions for the unknown parameters. Following the approach of
Berger and Sun (1993), we assume that l has a gamma prior, Gamma(a,b), with a40, and b40, while we do not assume
any specific form for the prior of a, say p2ðaÞ. We only assume that p2ðaÞ has the support on ð0,þ1Þ, and is independent of
the prior of l. Using then the joint prior distribution of a and l, we obtain the joint density of the data, a and l for the two
cases as follows.

Case I:

Lða,l,dataÞpamlmþa�1p2ðaÞ
Ym
i ¼ 1

ya�1
i:m:ne�l½

Pm

i ¼ 1
ya

i:m:n
ð1þRiÞþb�: ð32Þ

Case II:

Lða,l,dataÞpaJlJþa�1p2ðaÞ
YJ

i ¼ 1

ya�1
i:m:ne�l½

PJ

i ¼ 1
ya

i:m:n
ð1þRiÞþbþTaR�

J
�: ð33Þ

Based on Lða,l,dataÞ, the joint posterior density function of a and l, given the data, is given by

Lða,ljdataÞ ¼
Lðdataja,lÞ � p1ðlja,bÞ � p2ðaÞR1

0

R1
0 Lðdataja,lÞ � p1ðlja,bÞ � p2ðaÞ da dl

: ð34Þ

Therefore, if gða,lÞ is any function of a and l, its Bayes estimate under the squared error loss function is given by

ĝða,lÞ ¼ Ea,ljdataðgða,lÞÞ ¼
01
R1

0 gða,lÞLðdata,a,lÞ da dlR1
0

R1
0 Lðdata,a,lÞ da dl

: ð35Þ

Since, it is not possible to compute (34) and therefore (35) analytically even when p2ðaÞ is known explicitly, we adopt
two different procedures to approximate (35): (a) Lindley’s approximation and (b) Gibbs sampling procedure.

Although we can compute the approximate Bayes estimates of a and l using Lindley’s approximation, it is not possible
to compute the credible interval from here. Therefore, we propose the following Markov Chain Monte Carlo (MCMC)
method to draw samples from the posterior density function and then to compute the Bayes estimates and HPD credible
intervals.

5.2. Gibbs sampling

We use the Gibbs sampling procedure to generate a sample from the posterior density function Lða,ljdataÞ and then to
compute the Bayes estimates and HPD credible intervals.

We assume that the prior p1ðlja,bÞ is Gamma(a,b) and the prior p2ðaÞ is log-concave, and that they are independent.
We then have the following results.

Theorem 1. The conditional density of l, given a and the data, is Gamma ðaþm,
Pm

i ¼ 1 yai:m:nð1þRiÞþbÞ for Case I, and is

Gamma ðaþ J,
PJ

i ¼ 1 yai:m:nð1þRiÞþTaR�J þbÞ for Case II.

Proof. It follows readily from the joint density function. &

Theorem 2. The conditional density of a, given data, is log-concave.

Proof. The proof is presented in Appendix. &

Using the idea of Geman and Geman (1984) and Theorems 1 and 2, it is possible to generate ða,lÞ from the posterior
density function and in turn obtain the Bayes estimates and credible intervals. We use the following algorithm for this
purpose.
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Algorithm.
Step 1: Generate a1 from the log-concave density Lð�jdataÞ, as given in (36) and (37) depending on the case, by using the
method proposed by Devroye (1984).

Step 2: Generate l1 from p1ð�ja1,dataÞ as given in Theorem 1.

Step 3: Repeat Steps 1 and 2, M times, and obtain ai and li for i¼1,y,M.

Step 4: The Bayes estimates of a and l with respect to the squared error loss function are then

âBayes ¼ ÊðajdataÞ ¼
1

M

XM
k ¼ 1

ak
Fig. 1. Comparison of the distribution of â=a when a¼ 1 and 2 for T¼1 in MLE.

Fig. 2. Comparison of the distribution of â=a when a¼ 1 and 2 for T¼1 in AMLE.
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and

l̂Bayes ¼ ÊðljdataÞ ¼
1

M

XM
k ¼ 1

lk:

Step 5: The posterior variances of l and a are

V̂ ðajdataÞ ¼
1

M

XM
k ¼ 1

fak�ÊðajdataÞg2

and

V̂ ðljdataÞ ¼
1

M

XM
k ¼ 1

flk�ÊðljdataÞg2:
Table 1
Bias of the AMLEs for progressively Type-II hybrid censored samples when the sample sizes are n¼30, 50, 100.

n m Schemes T¼0.5 T¼1 T¼2

(R1,y,Rm) a l a l a l

30 5 0,0,0,0,25 0.62 0.25 0.6 0.26 0.64 0.25

5 25,0,0,0,0 �0.03 �0.21 �0.31 �0.29 �0.11 �0.34

5 0,25,0,0,0 �0.04 �0.23 �0.28 �0.61 �0.32 �0.54

50 10 0,0,0, . . . ,0,40 0.23 0.26 0.22 0.27 0.23 0.27

10 40,0,0,0, . . . ,0 �0.07 �0.23 �0.11 �0.73 �0.31 �0.35

10 0,40,0, . . .0,0,0 �0.1 �0.25 �0.27 �0.61 �0.39 �0.54

100 10 0,0,0, . . . ,0,90 0.23 0.25 0.23 0.23 0.23 0.25

10 90,0,0, . . . ,0,0 �0.07 �0.24 �0.21 �0.6 �0.49 �0.23

10 0,90,0,0, . . . ,0,0 �0.07 �0.25 �0.23 �0.60 �0.35 �0.74

20 0,0,0, . . . ,0,0,0,80 0.1 0.22 0.1 0.23 0.1 0.23

20 80,0,0,0, . . . ,0,0,0 �0.1 �0.25 �0.23 �0.61 �0.002 �0.16

20 0,80,0,0, . . . ,0,0 �0.1 �0.26 �0.25 �0.60 �0.21 �0.38

50 0,0,0, . . . ,0,0,0,50 0.21 0.55 0.036 0.05 0.036 0.045

50 50,0,0,0, . . . ,0,0,0 �0.2 �0.31 0.59 �0.78 0.72 �0.19

50 0,50,0,0, . . . ,0,0 �0.23 �0.75 0.47 �0.75 0.55 �0.14

Table 2
MSEs of the AMLEs for progressively Type-II hybrid censored samples when the sample sizes are n¼30, 50, 100.

n m Schemes T¼0.5 T¼1 T¼2

(R1,y,Rm) a l a l a l

30 5 0,0,0,0,25 1.62 0.52 1.5 0.55 1.73 0.53

5 25,0,0,0,0 0.17 0.1 0.15 0.53 0.11 0.31

5 0,25,0,0,0 0.14 0.1 0.12 0.38 0.17 0.51

50 10 0,0,0, . . . ,0,40 0.27 0.45 0.22 0.44 0.25 0.44

10 40,0,0,0, . . . ,0 0.1 0.09 0.06 0.57 0.31 0.32

10 0,40,0, . . .0,0,0 0.07 0.09 0.1 0.37 0.3 0.48

100 10 0,0,0, . . . ,0,90 0.26 0.5 0.27 0.49 0.26 0.51

10 90,0,0, . . . ,0,0 0.07 0.08 0.07 0.36 0.38 0.84

10 0,90,0,0, . . . ,0,0 0.04 0.07 0.07 0.37 0.14 0.56

20 0,0,0, . . . ,0,0,0,80 0.07 0.31 0.08 0.32 0.08 0.32

20 80,0,0,0, . . . ,0,0,0 0.07 0.08 0.08 0.37 0.23 0.6

20 0,80,0,0, . . . ,0,0 0.05 0.08 0.08 0.36 0.30 0.58

50 0,0,0, . . . ,0,0,0,50 0.08 0.36 0.02 0.04 0.02 0.03

50 50,0,0,0, . . . ,0,0,0 0.09 0.1 0.48 0.71 0.61 0.06

50 0,50,0,0, . . . ,0,0 0.08 0.11 0.31 0.64 0.36 0.05
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Step 6: Order a1, . . . ,aM and l1, . . . ,lM as að1Þo � � �oaðMÞ and lð1Þ, . . . ,lðMÞ to compute the credible intervals of a and l.

Then, the 100ð1�2bÞ% credible intervals for a and l become

ðaðMbÞ,aðMð1�bÞÞÞ

and

ðlðMbÞ,lðMð1�bÞÞÞ:

Based on the generated M, a and l values and using the method proposed by Chen and Shao (1999), the approximate
HPD credible intervals of a and l can then be constructed.

6. Simulations and data analysis

6.1. Simulations

In this section, we perform some simulations to evaluate the performance of all the methods we used earlier for
different sample sizes, different sampling schemes, different parameter values, in terms of their bias and mean squared
Table 3
Bias of the MLEs for progressively Type-II hybrid censored samples when the sample sizes are n¼30, 50, 100.

n m Schemes T¼0.5 T¼1 T¼2

(R1,y,Rm) a l a l a l

30 5 0,0,0,0,25 0.62 0.25 0.62 0.27 0.63 �0.26

5 25,0,0,0,0 �0.31 �0.78 4.46 �0.52 3.42 �0.82

5 0,25,0,0,0 �0.15 �0.48 �0.29 �0.7 �0.57 �0.82

50 10 0,0,0, . . . ,0,40 0.24 0.28 0.23 0.27 0.23 0.28

10 40,0,0,0, . . . ,0 �0.48 �0.9 0.74 �0.73 0.22 �0.77

10 0,40,0, . . . 0,0,0 �0.4 �0.81 �0.51 �0.88 0.39 �0.85

100 10 0,0,0, . . . ,0,90 0.24 0.26 0.23 0.26 0.24 0.25

10 90,0,0, . . . ,0,0 0.001 �0.8 �0.14 �0.9 �0.97 �0.94

10 0,90,0,0, . . . ,0,0 �0.21 �0.73 �0.3 �0.85 �0.41 �0.91

20 0,0,0, . . . ,0,0,0,80 0.1 0.23 0.1 0.22 0.1 0.23

20 80,0,0,0, . . . ,0,0,0 �0.58 �0.95 �0.64 �0.96 0.24 �0.84

20 0,80,0,0, . . . ,0,0 �0.53 �0.92 �0.60 �0.94 0.14 �0.83

50 0,0,0, . . . ,0,0,0,50 0.02 0.03 0.037 0.04 0.036 0.05

50 50,0,0,0, . . . ,0,0,0 �0.68 �0.86 0.88 �0.69 1.05 �0.67

50 0,50,0,0, . . . ,0,0 �0.65 �0.96 0.26 �0.7 0.74 �0.61

Table 4
MSEs of the MLEs for progressively Type-II hybrid censored samples when the sample sizes are n¼30, 50, 100.

n m Schemes T¼0.5 T¼1 T¼2

(R1,y,Rm) a l a l a l

30 5 0,0,0,0,25 1.61 0.53 1.66 0.55 1.63 0.55

5 25,0,0,0,0 0.19 0.62 0.26 0.29 1.28 0.72

5 0,25,0,0,0 0.12 0.3 0.14 0.49 1.04 0.67

50 10 0,0,0, . . . ,0,40 0.28 0.45 0.27 0.45 0.26 0.44

10 40,0,0,0, . . . ,0 0.26 0.82 0.72 0.54 0.20 0.61

10 0,40,0, . . . 0,0,0 0.19 0.67 0.28 0.77 1.18 0.74

100 10 0,0,0, . . . ,0,90 0.27 0.51 0.27 0.52 0.27 0.50

10 90,0,0, . . . ,0,0 0.07 0.64 0.06 0.81 1.5 0.88

10 0,90,0,0, . . . ,0,0 0.16 0.57 0.17 0.88 0.30 0.70

20 0,0,0, . . . ,0,0,0,80 0.08 0.31 0.08 0.31 0.08 0.32

20 80,0,0,0, . . . ,0,0,0 0.35 0.92 0.42 0.94 0.2 0.70

20 0,80,0,0, . . . ,0,0 0.29 0.84 0.37 0.88 0.22 0.70

50 0,0,0, . . . ,0,0,0,50 0.02 0.05 0.02 0.03 0.02 0.04

50 50,0,0,0, . . . ,0,0,0 0.48 0.76 1.06 0.50 1.17 0.45

50 0,50,0,0, . . . ,0,0 0.43 0.92 0.21 0.51 0.61 0.38
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error (MSE). We also compare the average width of the asymptotic confidence intervals and credible intervals and their
coverage percentages.

All the programs are written in R. Since l is a scale parameter, we have taken in all cases l¼ 1 without loss of
generality. For simulation purposes, we present the results when T is of the form T1=a. The reason to choose T in that form
is the following; if â represents the MLE or AMLE of a, then by simulation we show that the distribution of â=a becomes
independent of a in that case for l¼ 1 (Figs. 1 and 2). For that purpose we report the result only for a¼ 1 without loss of
generality. But these results can be used for any other a also.

We have used three different sampling schemes, as follows:
Tab
Bia

n

3

5

1

Tab
MS

n

3

5

1

Scheme 1: R1 ¼ � � � ¼ Rm�1 ¼ 0 and Rm¼n-m;
Scheme 2: R1¼n�m and R2 ¼ � � � ¼ Rm ¼ 0;
Scheme 3: R1¼0, R2¼n�m and R3 ¼ � � � ¼ Rm ¼ 0.
We have also used different n, m and T. In each case, we compute the MLEs, AMLEs and the Bayes estimates of the unknown
parameters. For computing the Bayes estimators, we assumed that a and l have Gamma (a,b) and Gamma ðg,dÞ priors,
respectively. Moreover, we used the non-informative priors for both a and l, by considering a¼ b¼ g¼ d¼ 0. For comparison
le 5
s of the Bayes estimators for progressively Type-II hybrid censored samples when the sample sizes are n¼30, 50, 100.

m Schemes T¼0.5 T¼1 T¼2

(R1,y,Rm) a l a l a l

0 5 0,0,0,0,25 0.48 1.83 0.49 1.81 0.49 1.60

5 25,0,0,0,0 0.15 0.93 �0.04 �0.03 �0.05 �0.54

5 0,25,0,0,0 0.13 �0.42 �0.59 �0.68 �0.16 �0.76

0 10 0,0,0, . . . ,0,40 0.36 1.01 0.32 0.80 0.32 0.73

10 40,0,0,0, . . . ,0 �0.03 �0.14 �0.13 �0.53 0.13 �0.78

10 0,40,0, . . .0,0,0 �0.10 �0.75 �0.21 �0.85 �0.13 �0.81

00 10 0,0,0, . . . ,0,90 0.32 1.30 0.36 1.41 0.37 1.50

10 90,0,0, . . . ,0,0 �0.11 �0.25 �0.18 �0.56 �0.24 �0.73

10 0,90,0,0, . . . ,0,0 �0.16 �0.80 �0.26 �0.87 �0.29 �0.91

20 0,0,0, . . . ,0,0,0,80 0.27 0.56 0.23 0.51 0.24 0.49

20 80,0,0,0, . . . ,0,0,0 �0.14 �0.60 �0.19 �0.77 0.34 �0.84

20 0,80,0,0, . . . ,0,0 �0.23 �0.89 �0.31 �0.99 �0.31 �0.92

50 0,0,0, . . . ,0,0,0,50 0.15 0.12 0.14 0.11 0.17 0.12

50 50,0,0,0, . . . ,0,0,0 �0.16 �0.83 0.66 �0.71 0.68 �0.57

50 0,50,0,0, . . . ,0,0 �0.28 �0.95 0.40 �0.72 0.63 �0.56

le 6
Es of the Bayes estimators for progressively Type-II hybrid censored samples when the sample sizes are n¼30, 50, 100.

m Schemes T¼0.5 T¼1 T¼2

(R1,y,Rm) a l a l a l

0 5 0,0,0,0,25 0.34 0.79 0.34 0.59 0.33 0.36

5 25,0,0,0,0 0.11 0.93 0.03 0.007 0.05 0.33

5 0,25,0,0,0 0.12 0.19 0.04 0.47 0.05 0.59

0 10 0,0,0, . . . ,0,40 0.20 1.97 0.18 1.81 0.19 1.33

10 40,0,0,0, . . . ,0 0.04 0.03 0.03 0.03 0.11 0.61

10 0,40,0, . . . 0,0,0 0.05 0.57 0.05 0.73 0.06 0.66

00 10 0,0,0, . . . ,0,90 0.21 4.03 0.21 4.56 0.21 6.40

10 90,0,0, . . . ,0,0 0.03 0.06 0.04 0.32 0.06 0.54

10 0,90,0,0, . . . ,0,0 0.04 0.64 0.07 0.76 0.09 0.83

20 0,0,0, . . . ,0,0,0,80 0.13 0.72 0.10 0.65 0.11 0.7

20 80,0,0,0, . . . ,0,0,0 0.04 0.36 0.04 0.59 0.24 0.72

20 0,80,0,0, . . . ,0,0 0.06 0.79 0.10 0.86 0.10 0.86

50 0,0,0, . . . ,0,0,0,50 0.04 0.06 0.04 0.06 0.55 0.04

50 50,0,0,0, . . . ,0,0,0 0.04 0.69 0.47 0.51 0.47 0.33

50 0,50,0,0, . . . ,0,0 0.08 0.90 0.23 0.53 0.40 0.32



E. Bayat Mokhtari et al. / Journal of Statistical Planning and Inference 141 (2011) 2824–28382834
purposes, we have considered informative priors also. For example we have tried: a¼ b¼ g¼ d¼ 0:0001. The Bayes estimators
were computed under the squared error loss function. It is observed that if we have proper priors information then the Bayesian
inferences are not significantly different than corresponding inferences obtained using non-proper priors.

For comparison purpose, we replicated the process 10,000 times and report the Bias, MSEs, the average confidence/
credible width and coverage percentage for ðD41Þ.

The average bias of the MLEs, AMLEs and Bayes estimators and the corresponding MSEs are reported in Tables 1–8.
The average confidence/credible width and the corresponding coverage percentages are reported in Tables 9–12.

From Tables 1–8, we observed that the ðâ,l̂Þ based on the AMLE give smaller biases and MSEs compare to those based
on the MLE and Bayesian methods.

In studying the effect of different censoring schemes, we observed that the bias in Scheme 3 is smaller than other two
schemes and it is larger in Scheme 1 than Schemes 2 and 3.

When comparing in terms of interval estimation, Bayesian credible interval provides a good balance between the
coverage probabilities as well as average credible widths. Therefore, in general we would recommend to use the Bayesian
credible interval with non-informative prior if no prior information about the parameters is available. It is observed that if
we have proper prior information then the Bayesian inference has a clear advantage over the classical inference in case of
interval estimation.

If one wants to guarantee the coverage probability is above the nominal level and the width of the credible interval is
not the major concern, then AMLEs confidence interval is proposed in most cases.
Table 7
Bias of the Bayes estimators under proper priors for progressively Type-II hybrid censored samples when the sample sizes are n¼30, 50, 100.

n m Schemes T¼0.5 T¼1 T¼2

(R1,y,Rm) a l a l a l

30 5 0,0,0,0,25 0.052 2.23 0.44 1.33 0.42 1.41

5 25,0,0,0,0 0.08 0.84 �0.05 �0.02 �0.01 �0.57

5 0,25,0,0,0 0.12 �0.04 �0.59 �0.68 �0.16 �0.78

50 10 0,0,0, . . . ,0,40 0.38 1.14 0.30 0.86 0.31 0.50

10 40,0,0,0, . . . ,0 0.00002 �0.12 �0.13 �0.53 0.144 �0.80

10 0,40,0, . . .0,0,0 �0.30 �0.76 �0.24 �0.85 �0.10 �0.80

100 10 0,0,0, . . . ,0,90 0.31 1.16 0.37 1.35 0.36 1.36

10 90,0,0, . . . ,0,0 �0.11 �0.25 �0.19 �0.56 �0.24 �0.73

10 0,90,0,0, . . . ,0,0 �0.17 �0.80 �0.26 �0.87 �0.29 �0.91

20 0,0,0, . . . ,0,0,0,80 0.28 0.61 0.28 0.66 0.21 0.39

20 80,0,0,0, . . . ,0,0,0 �0.13 �0.60 �0.19 �0.76 0.32 �0.86

20 0,80,0,0, . . . ,0,0 �0.22 �0.89 �0.32 �0.99 �0.30 �0.94

50 0,0,0, . . . ,0,0,0,50 0.14 0.15 0.13 0.04 0.18 0.11

50 50,0,0,0, . . . ,0,0,0 �0.15 �0.83 0.69 �0.69 0.70 �0.58

50 0,50,0,0, . . . ,0,0 �0.28 �0.94 0.46 �0.71 0.64 �0.57

Table 8
MSEs of the Bayes estimators under proper priors for progressively Type-II hybrid censored samples when the sample sizes are n¼30, 50, 100.

n m Schemes T¼0.5 T¼1 T¼2

(R1,y,Rm) a l a l a l

30 5 0,0,0,0,25 0.35 1.34 0.30 0.19 0.28 0.45

5 25,0,0,0,0 0.07 0.74 0.03 0.005 0.04 0.35

5 0,25,0,0,0 0.09 0.21 0.04 0.47 0.05 0.61

50 10 0,0,0, . . . ,0,40 0.18 2.60 0.17 1.10 0.18 0.05

10 40,0,0,0, . . . ,0 0.04 0.02 0.03 0.28 0.12 0.64

10 0,40,0, . . .0,0,0 0.05 0.58 0.06 0.73 0.07 0.63

100 10 0,0,0, . . . ,0,90 0.18 2.41 0.22 3.33 0.21 4.30

10 90,0,0, . . . ,0,0 0.04 0.06 0.05 0.31 0.06 0.54

10 0,90,0,0, . . . ,0,0 0.04 0.64 0.06 0.76 0.09 0.83

20 0,0,0, . . . ,0,0,0,80 0.12 0.80 0.12 0.99 0.09 0.51

20 80,0,0,0, . . . ,0,0,0 0.04 0.36 0.04 0.59 0.22 0.74

20 0,80,0,0, . . . ,0,0 0.05 0.79 0.10 0.86 0.01 0.86

50 0,0,0, . . . ,0,0,0,50 0.04 0.07 0.04 0.03 0.55 0.04

50 50,0,0,0, . . . ,0,0,0 0.04 0.69 0.49 0.49 0.47 0.35

50 0,50,0,0, . . . ,0,0 0.08 0.90 0.27 0.51 0.40 0.33



Table 9
Average confidence width (ACW) and the (coverage percentage (CP)) of AMLEs estimators for progressively Type-II hybrid censored samples when the

sample sizes are n¼30, 50, 100.

n m Schemes T¼0.5 T¼1 T¼2

(R1,y,Rm) ACWa, ACWlðCPa,CPlÞ ACWa, ACWlðCPa,CPlÞ ACWa, ACWlðCPa,CPlÞ

30 5 0,0,0,0,25 3.19, 2.49(0.85,0.87) 3.18, 2.51(0.85,0.86) 3.26, 2.48(0.84,0.86)

5 25,0,0,0,0 6.72, 5.45(1.00,1.00) 2.5, 2.23(1.00,1.00) 2.67, 1.82(0.99,0.63)

5 0,25,0,0,0 3.57, 2.86(0.99,1.00) 2.67, 1.43(0.99,1.00) 2.27, 1.41(0.99,0.69)

50 10 0,0,0, . . . ,0,0,40 1.63, 1.69(0.90,0.77) 1.61, 1.68(0.91,0.77) 1.62, 1.68(0.91,0.77)

10 40,0,0,0, . . . ,0,0 6.41, 5.29(1.00,1.00) 2.89, 0.97(1.00,0.66) 1.53, 1.35(0.75,0.67)

10 0,40,0, . . .0,0,0 3.40, 2.79(1.00,1.00) 2.71, 1.46(1.00,0.99) 1.55, 1.03(0.68,0.54)

100 10 0,0,0,0, . . . ,0,90 1.63, 1.65(.90,0.69) 1.63, 1.63(0.90,0.69) 1.63, 1.65(0.90,0.68)

10 90,0,0, . . . ,0,0,0 6.45, 5.27(1.00,1.00) 2.46, 2.72(1.0,1.00) 1.64, 1.93(0.61,0.40)

10 0,90,0,0, . . . ,0,0 3.46, 2.8(1.00,1.00) 2.81, 1.46(1.00,1.00) 2.39, 0.94(0.97,0.45)

20 0,0,0, . . . ,0,0,0,80 0.99, 1.10(0.93,0.72) 1.00, 1.11(0.93,0.71) 0.99, 1.11(0.93,0.71)

20 80,0,0,0, . . . ,0,0,0 6.28, 5.19(1.0,1.00) 1.32, 1.45(1.0,1.00) 1.83, 1.25(0.85,0.54)

20 0,80,0,0, . . . ,0,0,0 3.35, 2.76(1.00,1.00) 2.78, 1.46(1.00,0.99) 1.57, 0.95(0.67,0.48)

50 0,0,0, . . . ,0,0,0,50 0.77, 0.87(0.80,0.10) 0.58, 0.59(0.95,0.90) 0.58, 0.58(0.95,0.90)

50 50,0,0,0, . . . ,0,0,0 5.49, 4.78(0.99,1.00) 1.89, 0.49(0.64,0.32) 1.14, 0.53(0.14,0.68)

50 0,50,0,0, . . . ,0,0,0 2.84, 2.51(1.00,1.00) 1.77, 0.747(0.76,0.50) 1.03, 0.56(0.23,0.82)

Table 10
Average confidence width (ACW) and the (coverage percentage (CP)) of MLEs estimators for progressively Type-II hybrid censored samples when the

sample sizes are n¼30, 50, 100.

n m schemes T¼0.5 T¼1 T¼2

(R1,y,Rm) ACWa, ACWlðCPa,CPlÞ ACWa, ACWlðCPa,CPlÞ ACWa, ACWlðCPa,CPlÞ

30 5 0,0,0,0,25 3.23, 2.5(0.85,0.87) 3.23, 2.53(0.85,0.87) 3.23, 2.51(0.85,0.86)

5 25,0,0,0,0 4.75, 1.47(0.99,1.00) 3.74, 1.76(0.99,1.00) 2.35, 0.43(0.59,0.23)

5 0,25,0,0,0 3.16, 1.91(0.99,0.92) 2.63, 1.12(0.99,0.70) 2.56, 0.64(0.81,0.13)

50 10 0,0,0, . . . ,0,40 1.64, 1.69(0.90,0.77) 1.63, 1.68(0.90,0.77) 1.63, 1.69(0.90,0.77)

10 40,0,0,0, . . . ,0,0 3.61, 0.63(0.99,0.004) 6.04, 0.87(1.00,0.27) 3.11, 0.47(0.99,0.011)

10 0,40,0, . . .0,0,0 2.22, 0.68(0.99,0.03) 1.80, 0.45(0.99,0.001) 3.23, 0.34(0.79,0.02)

100 10 0,0,0,0, . . . ,0,90 1.64, 1.66(0.90,0.68) 1.63, 1.66(0.90,0.68) 1.63, 1.65(0.90,0.69)

10 90,0,0, . . . ,0,0,0 6.93, 1.37(1.00,0.97) 5.94, 0.67(1.00,0.00) 1.55, 0.38(0.22,0.00)

10 0,90,0,0, . . . ,0,0 2.94, 0.98(0.99,0.40) 2.61, 0.53(0.99,0.00) 2.31, 0.338(0.96,0.00)

20 0,0,0, . . . ,0,0,0,80 1.004, 1.11(0.93,0.71) 0.99, 1.11(0.93,0.71) 1.003, 1.11(0.92,0.71)

20 80,0,0,0, . . . ,0,0,0 2.89, 0.28(0.99,0.00) 2.47, 0.20(0.99,0.00) 2.16, 0.26(0.92,0.00)

20 0,80,0,0, . . . ,0,0,0 1.74, 0.29(0.99,0.00) 1.46, 0.21(0.97,0.00) 2.07, 0.26(0.99,0.00)

50 0,0,0, . . . ,0,0,0,50 0.65, 0.65(0.96,0.87) 0.58, 0.58(0.95,0.90) 0.58, 0.58(0.95,0.90)

50 50,0,0,0, . . . ,0,0,0 2.14, 0.31(0.98,0.01) 2.17, 0.33(0.38,0.05) 1.38, 0.21(0.002,0.002)

50 0,50,0,0, . . . ,0,0,0 1.28, 0.16(0.88,0.00) 1.45, 0.32(0.82,0.002) 1.15, 0.25(0.04,0.00)
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Based on our final results, totally, all three methods are almost at the same level. In some cases AMLE is proposed as in
some other cases MLE or Bayesian methods are proposed.

Now we explain how we can use the results for any other a values also. For example when a¼ 2, then for n¼30, m¼5,
T¼0.5 and the Scheme is R1 (Tables 3 and 4), the bias of the MLEs for a will be 2� 0:62 and the MSEs will be 4� 1:61, the
average confidence width will be 2� 3:23 and the coverage percentage will be 0.85.
6.2. Data analysis

For illustrative purposes, we present here a data analysis using the proposed methods. The following data set (Linhart
and Zucchini, 1986, p. 69) are failure times of the air conditioning system of an airplane. This data set was analyzed by
Gupta and Kundu (2001). One question arises whether the data fit Weibull distribution or not. To check for goodness of fit
we provide PP plot in Fig. 3. Also we compute the Anderson–Darling statistic, it is 0.552 and the associated p value is 0.159.
Since the p value is quite high, we cannot reject the null hypothesis that the data are coming from the Weibull distribution.

We created an artificial data by progressive Type-II hybrid censoring.
The ordered data are as follows: 1, 3, 5, 7, 11, 11, 11, 12, 14, 14, 14, 16, 16, 20, 21, 23, 42, 47, 52, 62, 71, 71, 87, 95, 90,

120, 120, 225, 246, 261.



Table 11
Average confidence width (ACW) and the (coverage percentage (CP)) of the Bayes estimators for progressively Type-II hybrid censored samples when the

sample sizes are n¼30, 50, 100.

n m Schemes T¼0.5 T¼1 T¼2

(R1,y,Rm) ACWa, ACWlðCPa,CPlÞ ACWðaÞ, ACWlðCPa,CPlÞ ACWa, ACWlðCPa,CPlÞ

30 5 0,0,0,0,25 2.89, 1.70(1.00,0.99) 2.86, 1.52(1.00,.97) 0.49, 1.60(0.33,0.90)

5 25,0,0,0,0 1.93, 8.38(1.00,0.99) 1.39, 1.22(1.00,1.00) 1.28, 0.43(1.00,0.21)

5 0,25,0,0,0 1.68, 2.65(0.99,0.96) 1.08, 0.34(1.00,0.00) 0.88, 0.11(0.91,0.00)

50 10 0,0,0, . . . ,0,40 2.18, 1.77(0.99,0.98) 2.04, 3.41(1.00,0.98) 2.08, 2.04(1.00,0.98)

10 40,0,0,0, . . . ,0 1.42, 2.21(0.99,1.00) 1.16, 0.52(1.00,0.00) 1.67, 0.20(0.99,0.00)

10 0,40,0, . . .0,0,0 1.09, 0.52(0.97,0.07) 0.83, 0.10(0.92,0.00) 0.90, 0.08(0.94,0.00)

100 10 0,0,0, . . . ,0,90 2.12, 1.57(0.99,0.95) 2.19, 2.63(0.98,0.97) 2.22, 1.90(1.00,0.98)

10 90,0,0, . . . ,0,0 1.17, 1.78(0.97,1.00) 0.99, 0.53(0.97,0.00) 0.83, 0.26(0.96,0.00)

10 0,90,0,0, . . . ,0,0 0.91, 0.43(0.95,0.01) 0.68, 0.11(0.82,0.00) 0.60, 0.04(0.78,0.00)

20 0,0,0, . . . ,0,0,0,80 1.76, 1.42(0.99,1.00) 0.23, 0.51(0.10,0.65) 1.68, 2.27(0.99,0.98)

20 80,0,0,0, . . . ,0,0,0 1.14, 0.78(1.00,0.37) 0.99, 0.24(0.97,0.00) 2.26, 0.17(0.99,0.00)

20 0,80,0,0, . . . ,0,0 0.79, 0.15(0.98,0.00) 0.57, 0.04(0.67,0.32) 0.57, 0.04(0.67,0.00)

50 0,0,0, . . . ,0,0,0,50 1.32, 0.37(1.00,0.99) 1.27, 0.88(1.00,0.98) 1.37, 0.95(1.00,0.95)

50 50,0,0,0, . . . ,0,0,0 1.11, 0.28(0.98,0.01) 3.47, 0.07(1.00,0.00) 3.48, 0.47(1.00,0.00)

50 0,50,0,0, . . . ,0,0 0.71, 0.04(0.9,0.00) 2.29, 0,06(0.99,0.81) 3.14, 0.44(1.00,0.00)

Table 12
Average confidence width (ACW) and the (coverage percentage (CP)) of the Bayes estimators under proper priors for progressively Type-II hybrid

censored samples when the sample sizes are n¼30, 50, 100.

n m Schemes T¼0.5 T¼1 T¼2

(R1,y,Rm) ACWa, ACWlðCPa,CPlÞ ACWðaÞ, ACWlðCPa,CPlÞ ACWa, ACWlðCPa,CPlÞ

30 5 0,0,0,0,25 2.90, 2.06(1.00,0.99) 2.61, 0.35(1.00,0.00) 0.38, 1.08(0.33,0.83)

5 25,0,0,0,0 1.76, 7.67(1.00,0.96) 1.26, 1.21(0.99,1.00) 1.32, 0.40(1.00,0.21)

5 0,25,0,0,0 1.65, 2.38(1.00,0.94) 1.07, 0.333(0.98,0.00) 0.88, 0.11(0.95,0.00)

50 10 0,0,0, . . . ,0,40 2.19, 1.53(0.99,0.99) 1.94, 3.97(0.99,0.96) 2.03, 1.48(1.00,0.98)

10 40,0,0,0, . . . ,0 1.55, 2.53(1.00,1.00) 1.17, 0.52(1.00,0.00) 1.73, 0.20(1.00,0.00)

10 0,40,0, . . .0,0,0 1.05, 0.47(0.93,0.07) 0.75, 0.10(0.91,0.00) 0.90, 0.08(0.89,0.00)

100 10 0,0,0, . . . ,0,90 2.05, 1.38(1.00,0.95) 2.19, 2.23(0.98,0.97) 2.17, 1.32(0.98,0.97)

10 90,0,0, . . . ,0,0 1.18, 1.83(0.99,1.00) 0.96, 0.53(0.97,0.00) 0.84, 0.26(0.97,0.00)

10 0,90,0,0, . . . ,0,0 0.87, 0.41(0.94,0.03) 0.71, 0.12(0.87,0.00) 0.58, 0.04(0.82,0.00)

20 0,0,0, . . . ,0,0,0,80 1.77, 1.75(1.00,0.99) 1.67, 1.94(0.99,0.99) 1.60, 1.81(1.00,0.98)

20 80,0,0,0, . . . ,0,0,0 1.18, 0.79(1.00,0.35) 0.99, 0.24(0.97,0.00) 2.25, 0.15(0.98,0.00)

20 0,80,0,0, . . . ,0,0 0.80, 0.15(0.97,0.00) 0.56, 0.04(0.60,0.00) 1.20, 0.10(0.90,0.00)

50 0,0,0, . . . ,0,0,0,50 1.29, 1.37(1.00,0.99) 1.25, 0.86(1.00,0.94) 1.38, 0.95(1.00,0.94)

50 50,0,0,0, . . . ,0,0,0 1.12, 0.28(1.00,0.00) 3.51, 0.07(1.00,0.00) 3.41, 0.46(1.00,0.00)

50 0,50,0,0, . . . ,0,0 0.71, 0.04(0.82,0.00) 2.42, 0.06(0.99,0.00) 3.14, 0.44(1.00,0.00)
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Example 1. In this case we have n ¼ 30 and we took m ¼ 10, T ¼ 80, R1 ¼ R2 ¼ � � � ¼ R9 ¼ 2,R10 ¼ 8. Thus, the progressive
Type-II hybrid censored sample is 1, 3, 5, 7, 11, 12, 16, 20, 23, 71. From the above sample, corresponding to Case I,
we obtain the MLEs, AMLEs and Bayes estimates of a and l as (0.711,0.029), (0.712,0.031), (0.829,0.039), respectively.
The average confidence widths of a and l based on the MLEs are (0.938,0.489). Similarly, using the AMLEs, we have
(0.940,0.490). Also we compute the average credible length of a and l and they are (0.720,0.113).

Example 2. Now consider m ¼ 10 and T ¼ 19 and Ri’s to be the same as before. In this case, the progressively Type-II
hybrid censored sample obtained 1, 3, 5, 7, 11, 12, 16. It is observed that the data correspond to Case II and D¼ J¼7. Based
on the sample, we obtain the MLEs, AMLEs and Bayes estimates of a and l as (0.968,0.017), (1.112,0.027) and (0.63,0.048),
respectively. The average confidence lengths of a and l based on the MLEs are (1.569,0.798). Similarly, based on AMLEs
they are (1.80,0.044) and the average credible lengths of a and l are (1.490,0.189).

7. Conclusions

In this paper, we have discussed the classical and Bayesian inferential procedures for the progressively Type-II hybrid
censored data from the Weibull distribution. It is shown that the maximum likelihood estimator of the shape parameter
can be obtained by using an iterative procedure. The proposed approximate maximum likelihood estimators of the shape



Fig. 3. PP plot for goodness of fit.
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and scale parameters can be obtained in explicit forms. Bayes estimates of the unknown parameters can be obtained using
Gibbs sampling methods. A comparison is made through MSEs, bias, average confidence/credible widths and the
corresponding coverage percentages.
Acknowledgments

First and foremost, we would like to thank professor Balakrishnan for the valuable guidance and advice. We also would
like to thank referee for their time and consideration. We really appreciate it. This research was supported by a grant from
Ferdowsi University of Mashhad; No. MS88106HAB.

Appendix

To prove Theorem 2, we need the following lemma.

Lemma 1. For xiZ0 and bZ0, define gðaÞ ¼
Pn

i ¼ 1 xai þb. Then, ð@2=@a2ÞlngðaÞZ0 (see, Kundu, 2007).

Proof of Theorem 2. We consider here only Case I, and Case II follows exactly in the same manner. The conditional
density of a given the data is

LðajdataÞp
amp2ðaÞ

Qm
i ¼ 1 ya�1

i:m:n

ð
Pm

i ¼ 1 yai:m:nð1þRiÞþbÞaþm : ð36Þ

Therefore, ignoring the additive constant, the log-likelihood function of the posterior density function of a can be written
as

lnLðajdataÞ ¼ lnp2ðaÞþmlnaþða�1Þ
Xm
i ¼ 1

lnyi:m:n�ðaþmÞln
Xm
i ¼ 1

yai:m:nð1þRiÞþb

 !
:

Hence, by using Lemma 1 and the assumption on p2ðaÞ, it easily follows that LðajdataÞ is log-concave.

We just provide the posterior density function of a for Case II. Note that, for J40,

LðajdataÞp
aJp2ðaÞ

QJ
i ¼ 1 ya�1

i:m:n

ð
PJ

i ¼ 1 yai:m:nð1þRiÞþTaR�J þbÞaþ J
: ð37Þ
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