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SUMMARY

In a multi-machine power system, it is important to determine the best location for the application of power system
stabilizers. A number of techniques have been proposed to perform this selection. In this paper a new selection
measure based on relative gain array and singular value decomposition is proposed. A comparison is made
between the performance of the new measure and the older methods. The proposed methodology is based on the
use of system transfer function. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Most available control designs assume that a control structure is given at the outset, but one of the first

steps for an engineer is to determine the variable that should be controlled, the variable that should be

measured, and the input that should be manipulated. An important task in the design of a control

system is the specification of the control structure, referred to as control structure design. This leads to

closing the gap between theory and application in this area [1,2]. Relative gain arrays (RGA), singular

value decomposition (SVD) [3], partial relative gains (PRG) [4] and closed loop interaction number

(CLIN) [5] have been introduced as measures of control structure design.

In power systems, several techniques have been proposed in the literature to determine the best

location for applying power system stabilizers. The participation factor method is one of the methods

for detecting the contribution of various generators in each mode and for suitable location for applying

the PSSs [6]. Some authors have proposed the sensitivity of PSS effect (SPE) as a measure for

determining the suitable location of PSSs [7]. Modal controllability and modal observability is also

considered as a measure for determining the suitable location of PSSs and suitable signal as input of

PSSs [8,9]. The relationship among the most popular techniques for identifying a suitable location for

applying PSSs is given in Reference [10]. For the selection of the best position for applying static var
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compensators, residue has been used as a screening measure and final selection has been done with

relative gain array [11]. RGA is used as a measure for the selection of suitable locations of stabilizers

[12].

Singular value decomposition has been proposed as a measure of the distance of a controllability

and observability matrix from singularity in a state space model [8,9]. This distance is used as a

measure to compare the ability of inputs to control an oscillation mode.

The main drawback of the above approaches is the determination of linear models from the state

space models that usually have large dimensions. Some authors have used the transfer function

approach to locate the PSSs. In Reference [13] the peak of transfer function elements in the frequency

domain is used as a measure. Transfer function residues are used in Reference [14] to locate PSSs. The

singular value is used as a measure to determine the suitable signal for PSSs and their locations in

References [15–18].

Surprisingly, the use of RGA and SVD in conjunction with power systems seems to be new, or at

least has not been clearly exploited. In this paper the mathematical consideration of RGA and SVD is

used for control structure design in power systems. The relationship between measures based on SVD

and methods based on controllability measure, observability measure and residue are introduced as

well. In this paper only the transfer function of a system is used and thus there is a large reduction in

the size of the involved matrices.

The paper is organized as follows: RGA and SVD are described in Sections 2 and 3, respectively;

application of the new measures in a power system is described in Section 4; the relationship of results

based on SVD and controllability, observability and residue methods is given in Section 5; and the

application of RGA and SVD in multi-machine power systems is described in Section 6.

2. RELATIVE GAIN ARRAY

The relative gain array of an l� m matrix G is defined as

RGAðGÞ ¼ �ðGÞ ¼ G� ðGyÞT ð1Þ

where Gy is the pseudo inverse of G, ð:ÞT
means the transpose and� denotes element by element

multiplication. The RGA has a number of interesting control properties, of which the most important

ones are [3]:

* For a non-singular square matrix G, RGA(G) is independent of input and output scaling. For a full
row rank matrix, it is independent of output scaling, and for a full column rank matrix, it is
independent of input scaling.

* The sum norm of the RGA matrix is very close to the minimized condition number ��. This
means that plants with large RGA elements are always ill-conditioned.

* The RGA of a matrix can be used to measure diagonal dominance, by the simple equality

RGA no ¼ k�ðGÞ � Iksum ð2Þ

For decentralized control to avoid instability caused by interaction in the crossover, one should prefer

pairing for which the RGA number at crossover frequency is close to zero. Also, to avoid instability

caused by interactions at low frequency, one should avoid pairing with negative steady state RGA

elements.
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* RGA elements imply sensitivity to element-by-element uncertainty. The non-singular and square
matrix G becomes singular if one makes a relative change 1=�ij in the ij-th element of G. That is,
if a single element in G is perturbed from gij to g0ij in Equation (3), then G becomes singular:

g0ij ¼ gij 1 � 1

�ij

� �
ð3Þ

So a large �ij means that with a small change in gij, G becomes singular.
* The i-th row sum of the RGA is equal to the square of the i-th output projection, and the j-th

column sum of the RGA is equal to the square of the j-th input projection as below:

Xm
j¼1

�ij ¼ eT
i ur

�� ��2

2

Xl

i¼1

�ij ¼ eT
j vr

��� ���2

2
ð4Þ

where ei ¼ ½0; 0; . . . ; 1; . . . ; 0�T is a vector with a 1 in position i and zeros elsewhere; ur, and vr,

respectively, are the output and input directions with non-zero gains extracted from singular value

decomposition.

3. SINGULAR VALUE DECOMPOSITION

Consider M is a constant matrix in Cl�m. Then M can be decomposed into its singular value

decomposition according to the following theorem [8].

Theorem. Let M 2 Cl�m. Then there exist R 2 Rl�m and unitary matrices U 2 Cl�l and V 2 Cm�m

such that

M ¼ URVC ð5Þ

where R ¼ S 0

0 0

� �
, S ¼ diagf�1; �2; . . . ; �rg with �1 � �2 � . . . � �r and r � minfl;mg

U ¼ ½u1; u2; . . . ; ul�; V ¼ ½v1; v2; . . . ; vm� and VC is the complex conjugate transpose of V. The

column vector elements of U, identified by ui, are orthogonal and of unit length, and represent the

output directions. The column vector elements of V, identified by vi, are orthogonal and of unit length,

and represent the input directions [3]. These input and output directions are related through singular

values. So one can write:

Mvi ¼ �iui ð6Þ

It means that if an input is applied in the direction vi, then the output is in the direction ui and has a

gain of �i. The input direction vi for i> r corresponds to inputs that do not have any influence on

outputs and similarly output direction ui for i> r corresponds to the outputs that cannot be accessed by

any input. Since the diagonal elements of S are arranged in a descending order, it can be shown that the

largest gain for any input direction is equal to the maximum singular value �1 and so one can write:

�1 ¼ max
d 6¼0

Mdk k2

dk k2

¼ Mv1k k2

v1k k2

ð7Þ
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where d is any input signal and :k k2 is the Euclidian norm. Expansion of Equation (5) leads to the

following equation:

M ¼
Xr

k¼1

�kukv
C
k ð8Þ

4. APPLICATION OF RGA AND SVD MEASURES IN POWER SYSTEMS

To see the applicability of RGA and SVD in power systems, consider that there is one machine

connected to an infinite bus as shown in Figure 1. The generator is modelled by a seventh order

dynamic set of equations [19]. Parameters of generator, exciter, governor and transmission system, and

operating point are given in Reference [17]. The input candidates are: exciter Ex and governor Gov,

and the output candidates are: power angle �, speed of generator !, terminal voltage Ut, electrical

power Pe, generator current It, and integral of acceleration power
Ð

Pe � Pmð Þdt. Power angle is in rad,

speed is in rad/s and other outputs are in per unit. Scaling plays an important role in figuring out the

best input and output [17]. For scaling variables, the maximum expected deviation from the normal

value should be chosen. Here, the expected maximum deviation value for the exciter and governor

inputs, for current and power is considered as 1 p.u., for voltage it is 0.5 p.u., for power angle � rad, and

for speed 0.01 !0. Dividing each variable by its maximum value scales all variables.

The transfer function of the system at steady state is:

Gall ¼

�1:5735 0:2669

0:0000 0:0000

1:9874 �0:0077

�0:0000 1:0000

�0:7506 0:9707

�1:0873 0:1844

2
6666664

3
7777775

where columns 1 and 2 are the two manipulators, exciter and governor, respectively, and rows 1 to 6

are the candidate measurements: power angle, speed of generator, terminal voltage, electrical power,

generator current and integral of acceleration power, in that order. The corresponding RGA matrix and

row sums K� are:

K ¼

0:3024 0:0006

0:0000 0:0000

0:5425 �0:0014

�0:0000 0:5495

0:0107 0:4510

0:1444 0:0003

2
6666664

3
7777775

K� ¼

0:3030

0:0000

0:5411

0:5495

0:4617

0:1447

2
6666664

3
7777775

One finds from the row sums of the steady state RGA matrix given in K� that four outputs

ð�;Pe; It;UtÞ have the largest projections onto the output space of Gall. Of course, for control proposes

Figure 1. Single machine infinite bus system.
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one must also consider higher frequencies up to crossover. The row sums versus frequency are shown

in Figure 2. It shows that the speed of the generator ! (which has no steady state effect), the integral of

acceleration power
Ð

Pe � Pmð Þdt, electric power Pe and generator current It are effective at crossover

frequency whereas power angle � and terminal voltage Ut are less effective.

The elements of the RGA matrix for any two choices of the set fUt; �; It;Peg versus frequency are

shown in Figure 3. Note that the RGA of a 2 � 2 matrix is symmetric and diagonal elements are equal, so

every subplot of Figure 3 has two graphs; the diagonal element is shown by a solid line and the off-

diagonal element is shown by a dashed line. Section 2 implies that the RGA matrix near to a unit matrix is

preferred. It is seen from Figure 3 that the suitable candidates are fðEx;UtÞ; ðGov; �Þg; fðEx;UtÞ;
ðGov;PeÞg; fðEx;UtÞ; ðGov; IeÞg and fðEx;UtÞ; ðGov;PeÞg and the best one is fðEx;UtÞ; ðGov;PeÞg
since its RGA matrix is the nearest one to a unit matrix. One of the four outputs !, Pe, It or acceleration

power
Ð

Pe � Pmð Þdt must be chosen for higher frequency according to Figure 2.

The above pairing (AVR and governor) is the normal mode of operation in power systems. To

improve the system operation, a PSS, effective around the frequency of oscillation, must be added.

One of the above signals is used in the PSS to act at the desired frequency through a washout block.

For choosing the best input–output pair for improving the dynamics of the system one must find the

SVD of the system at s ¼ pþ " where p is the oscillation mode of the system and " is a small value

added to p to make GallðsÞ analytical. The SVD is:

Gall ffi 57862

0:0848 � 0:0321i

0:0939 þ 0:5628i

0:0059 þ 0:0080i

0:4271 þ 0:0015i

0:4101 � 0:0044i

0:1525 þ 0:5406i

2
6666664

3
7777775

0:9983

0:0143 � 0:0571i

� �C

Figure 2. Row sum of RGA matrix.
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Absolute value elements of u1 and v1 are shown by ûu1 and v̂v1 correspondingly:

ûu1 ¼

0:0907

0:5706

0:0100

0:4271

0:4101

0:5617

2
6666664

3
7777775

v̂v1 ¼ 0:9983

0:0588

� �

The relative magnitude of elements of v̂v1 shows that the exciter is the most important input and the

relative magnitude of elements of ûu1 shows that ! is the best signal, after which comes
Ð

Pe � Pmð Þdt,
then Pe, and so on. So one must use ! or

Ð
Pe � Pmð Þdt as the measurement signal and apply a suitable

signal to the exciter.

5. RELATIONSHIP BETWEEN INDICES BASED ON SVD AND OTHER METHODS

The state equation of the linearized model of a multi-machine power system can be written as:

_XX ¼ AXþ Bu ð9Þ

Figure 3. RGA elements for different outputs versus frequency.
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y ¼ CX ð10Þ

where A 2 Rm�m;B 2 Rm�n;C 2 Rp�m, m is the number of states, n is the number of possible inputs

and p is the number of possible outputs. If �i is the eigenvalue of matrix A, and j
i

and  
i

are the

corresponding right and left eigenvectors of the state matrix A with respect to �i, then:

Aj
i
¼ �iji

ð11Þ

 T

i
A ¼  T

i
�i ð12Þ

Right and left eigenvectors are normalized such that:

 T

I
j
i
¼ 1 ð13Þ

The relative controllability of different inputs on �i can be extracted from the corresponding elements

of vector bi:

bi ¼ ð T

I
BÞT ð14Þ

where bi is a vector of dimension n� 1. Its elements indicate how much the i-th mode is excited by

different inputs. Relative observability of different outputs on �i can be extracted from the

corresponding elements of vector ci:

ci ¼ Cj
i

ð15Þ

where ci is a vector of dimension p� 1. Its elements indicate how much the i-th mode is observed by

different outputs. So the large element of bi corresponds to the more effective input and the large

element of ci corresponds to the more observable output. Thus one can choose the best measured

signal and the best inputs.

The residue of �i corresponding to different input–output pairs can be extracted from the residue

matrix R:

R ¼ Cj
i
 T

I
B ¼ cib

T
i ð16Þ

R is a p� n matrix that considers both controllability and observability together. The largest element

of residue matrix corresponds to the best measurement signal and the best input to apply to the

controller. Note that because of practical considerations (decentralized controller) the largest diagonal

element is preferred. If A is diagonalizable, the transfer function of the system described by Equations

(9) to (10) can be described by the following equation:

GðsÞ ¼
Xm
i¼1

1

s� �i
cib

T
i ð17Þ
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If M in Equation (8) is substituted by GðsÞ then Equation (8) can be rewritten as:

GðsÞ ¼
Xr

k¼1

�kðsÞukðsÞvkðsÞ
C ð18Þ

If s is near a pole of the system ( pi), then the transfer function of the system from Equation (17) can be

simplified as:

GðsÞ ffi 1

s� pi
cib

T
i ð19Þ

since other terms are small enough. For s near to pi, �1 goes to infinity and the other terms can be

omitted. So Equation (18) reduces to:

GðsÞ ffi �1ðsÞu1ðsÞv1ðsÞ
C ð20Þ

As mentioned before, the relative magnitude elements of ci correspond to the relative observability

of output candidates, the relative magnitude elements of bi correspond to the relative controllability of

input candidates and the elements of cib
T
i correspond to the residues of �i with respect to different

input–output pairs. The following lemma with Equations (19) to (20) shows that u1ðsÞ has information

about observabitity and v1ðsÞ has information about controllability and u1v
C
1 gives information about

residue of the oscillation mode corresponding to different input–output pairs.

Lemma.

Consider c and u are p� 1 vectors, b and v are n� 1 vectors, and k1; k2; k3 and k4 are scalars. Then

k1c b
T ¼ k2u v

C ð21Þ

implies that

u ¼ k3c and v� ¼ k4b ð22Þ

ð:Þ� means conjugate. Proof of the lemma is in Appendix A.

6. APPLICATION OF RGA AND SVD IN MULTI-MACHINE POWER SYSTEMS

To use the method based on RGA and SVD to locate PSSs in a MIMO power system, RGA elements

are considered in the frequency range from 1 rad/s to 16 rad/s corresponding to the frequency of

oscillation. The system has large sensitivity of element-by-element uncertainty for large elements in

the RGA matrix. Some generators contribute to each oscillation mode and there is a large interaction

among them. Large RGA elements are a measure of interaction, so one can find generators

contributing in each oscillation mode through RGA elements. After finding generators contributing

in each oscillation mode, the input and output directions and their products lead to the determination of

the best locations according to Section 5.
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6.1. Four-machine system with resonance mode

Using the example of a four-machine system (Figure 4), it is shown in Reference [20] that this system

has two oscillation modes very close to each other. It is also illustrated in Reference [20] that in this

case the indices according to eigenvector methods do not work correctly and one must make minor

variations in some system parameters (inertia of all machines of one area in Reference [20]) to find

suitable results for applying PSSs according to the eigenvector methods.

A study has been conducted to examine the applicability of the RGA and SVD methods to such

systems with modal resonance. Considering the exciters of generators as inputs and their speeds as

outputs, the transfer function of the system is extracted. Elements of RGA versus frequency are shown

in Figure 5. It can be seen that there are two peaks in the RGA elements. The absolute value of RGA

elements at 3.35 rad/s is:

�̂�ð j3:35Þ ¼

0:7169 1:0937 0:3551 0:4968

0:7529 0:4311 0:3633 0:5053

0:3709 0:4676 5:8485 6:1447

0:4002 0:5991 6:2690 5:6513

2
664

3
775

Figure 4. Example of a four-machine power system.

Figure 5. RGA elements of a four-machine system.
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The relative values of RGA elements show that all generators contribute in this mode. The absolute

value of RGA at 6.7 rad/s is:

�̂�ð j6:7Þ ¼

2:7723 2:4357 0:0146 0:0198

2:4054 2:7594 0:0098 0:0180

0:0351 0:0337 1:6323 1:6771

0:0370 0:0390 1:6918 1:5789

2
664

3
775

At this frequency there is interaction only between the sets fG1;G2g and fG3;G4g. Thus, there are two

local oscillation modes corresponding to each set.

For choosing the best input–output pair for improving the damping of inter-area mode p, one must

find the SVD of the system at s ¼ pþ ". The SVD of the system at this pole is:

Gall ffi 41:6

0:1578 � 0:0578i

0:1117 � 0:0581i

�0:6039 � 0:3962i

�0:5487 � 0:3648i

2
664

3
775

0:4794

0:4904 þ 0:0239i

�0:5028 þ 0:0004i

�0:5251 � 0:0242i

2
664

3
775
C

Absolute values of elements of u1 and v1 are shown by ûu1 and v̂v1 correspondingly:

ûu1 ¼

0:1680

0:1259

0:7223

0:6589

2
664

3
775 v̂v1 ¼

0:4794

0:4910

0:5028

0:5256

2
664

3
775

u1v
C
1 gives the residue, R, of the system, the absolute value of R is shown by R̂R

R̂R ¼

0:0806 0:0825 0:0845 0:0883

0:0603 0:0618 0:0633 0:0662

0:3463 0:3547 0:3632 0:3797

0:3159 0:3236 0:3313 0:3464

2
664

3
775

The relative magnitude of v̂v1 shows that the exciter of generator four is the best input candidate and the

relative magnitude of ûu1 shows that the speed of generator three is the best measurement signal. The

absolute value of residue matrix R̂R considers both controllability and observability and suggests

generator three for applying the PSS.

For a study on the local oscillation modes, RGA shows that there are two local modes for sets

fG1;G2g and fG3;G4g. For the local mode of set fG1;G2g one must extract the transfer function

corresponding to these generators. The SVD of this transfer function at s ¼ pþ " is:

Gall ffi 22:51
0:6213 � 0:0422i

�0:7807 þ 0:0522i

� �
0:7143

�0:6995 � 0:0236i

� �C

Absolute values of elements of u1 and v1 are shown by ûu1 and v̂v1 correspondingly:

ûu1 ¼ 0:6227

0:7825

� �
v̂v1 ¼ 0:7143

0:6999

� �
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absolute value elements of the residues of the system are:

R̂R ¼ 0:4448 0:4358

0:5589 0:5476

� �

The relative magnitude of v̂v1 shows that the exciter of generator one is the best input candidate and the

relative magnitude of ûu1 shows that the speed of generator two is the best measurement signal. The

absolute value of residue matrix R̂R suggests generator two for applying PSS. The same procedure for

the set fG3;G4g shows that the exciter of generator four is the best input candidate and the speed of

generator four is the best measurement signal. So generator four is the best candidate for applying PSS.

6.2. Five-machine system with multi-mode oscillations

A single line diagram of a five-machine eight-bus system is shown in Figure 6. The parameters of the

model and operating conditions are given in Reference [21]. A known signal is applied to the exciter of

each generator and both the input signal and the speed of each generator, as the output, are recorded.

Using this procedure, a twelfth order transfer function for each output–input pair of the system model

is determined. This system has a low damping oscillation mode with frequency of 4 rad/s and all

generators are convolving in this mode [18], The SVD of the system at this oscillation mode is:

Gall ffi 101

�0:1521 þ 0:1742i

0:3574 � 0:4489i

0:2422 � 0:3945i

�0:2692 þ 0:3333i

0:2451 � 0:3992i

2
66664

3
77775

0:2029

�0:8500 � 0:0662i

�0:0634 � 0:0015i

0:4736 þ 0:0023i

�0:0603 � 0:0017i

2
66664

3
77775

C

The absolute values of elements of u1 and v1 are shown by ûu1 and v̂v1 correspondingly:

ûu1 ¼

0:2312

0:5738

0:4629

0:4284

0:4685

2
66664

3
77775 v̂v1 ¼

0:2029

0:8526

0:0635

0:4736

0:0603

2
66664

3
77775

Figure 6. Example of a five-machine power system.
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the absolute value elements of the residues of the system are:

R̂R ¼

0:0469 0:1971 0:0147 0:1095 0:0139

0:1164 0:4892 0:0364 0:2717 0:0346

0:0939 0:3946 0:0294 0:2192 0:0279

0:0869 0:3653 0:0272 0:2029 0:0258

0:0951 0:3994 0:0297 0:2219 0:0283

2
66664

3
77775

The relative magnitude of v̂v1 shows that the exciter of generator two is the best input candidate, the

relative magnitude of ûu1 shows that the speed of generator two is the best measurement signal. The

absolute value of residue matrix R̂R considers both controllability and observability and suggests

generator two for applying the PSS. For another oscillation mode with frequency of 6.4 rad/s,

generators one and four are in this mode. The SVD of their corresponding transfer function is:

Gall ffi 31
�0:0599 þ 0:7549i

0:0134 � 0:6530i

� �
0:5845

�0:8078 þ 0:0763i

� �C

The absolute values of elements of u1 and v1 are shown by ûu1 and v̂v1 correspondingly:

ûu1 ¼ 0:7573

0:6531

� �
v̂v1 ¼ 0:5845

0:8114

� �

the absolute value elements of the residues of the system are:

R̂R ¼ 0:4426 0:6144

0:3817 0:5299

� �

The relative magnitude of v̂v1 shows that the exciter of generator one is the best input candidate, the

relative magnitude of ûu1 shows that the speed of generator four is the best measurement signal. The

absolute value of residue matrix R̂R considers both controllability and observability and suggests

generator four for applying PSS.

Results of non-linear simulation when one PSS (Equation (23)) is applied on each of the large

generators, i.e. 1, 2 and 4 in turn and a 200 ms 3-phase short circuit is applied on bus 3, are shown in

Figures 7(a) and (b) and for a short circuit on bus 2 are shown in Figures 7(c) and (d).

FðsÞ ¼ 0:5
10s

1 þ 10s

1 þ 0:2s

1 þ 0:04s

1 þ 0:2s

1 þ 0:04s
ð23Þ

It can be seen that applying PSS on generator two leads to the best performance of the system for the

damping of the inter-area mode as determined by the above analysis.

7. CONCLUSIONS

In this paper new measures according to RGA and SVD are introduced and the relationship between

the measure according to SVD and the measure according to residues is investigated. The new measure
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can consider controllability and observability of oscillation modes as well as the residue method. This

measure only uses the information of the transfer function matrix and can be used to find the best

location for applying PSSs. The advantages of the proposed method are:

* No computation involving the right (left) eigenvectors and eigen sensitivity analysis is required.
* This method requires information about the transfer function that can be found from system

simulation or modelling.
* There is considerable reduction in the size of the convolved matrices, since it uses only the

transfer function of a system and doesn’t consider the states of a system.

Test results on power system networks, especially a system with resonance mode, show the

applicability of the method for systems with resonance modes.

Figure 7. Result for the five-machine system.
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8. LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

G transfer function matrix

gij ij-th element of matrix G

U output direction matrix

� singular value matrix

ûur absolute value of r-th output direction

v̂vr absolute value of r-th input direction

� power angle

Ut terminal voltage

It generator current

Gall transfer function with all input–output candidates

�̂� absolute value elements of RGA matrix

A state matrix

C coefficient matrix of output vector

ci observability matrix corresponding to �i
R residue matrix corresponding to �i
j
i

right eigenvector corresponding to �i
�� minimized condition number

�ij ij-th element of RGA matrix

V input direction matrix

ur r-th output direction

vr r-th input direction

�r r-th singular value

! speed of generator

Pe electrical powerÐ
ðPe � PmÞdt integral of acceleration power

K RGA matrix

K� row sum of RGA matrix

B coefficient matrix of input vector

�i i-th eigenvalue

bi controllability matrix corresponding to �i
R̂R absolute value elements of residue matrix

 
i

left eigenvector corresponding to �i

Abbreviations

RGA Relative Gain Arrays

PRG Partial Relative Gains

PSS Power System Stabilizer

Gov Governor

MIMO Multi Input Multi Output

SVD Singular Value Decomposition

CLIN Closed Loop Interaction Number

Ex Exciter

AVR Automatic Voltage Regulator
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APPENDIX A

Rewriting Equation (21) by its elements leads to

k1

c1

c2

�
�
cp

2
66664

3
77775 b1b2 . . . bn½ � ¼ k2

u1

u2

�
�
up

2
66664

3
77775 v�1 v�2 . . . v

�
n

� �
ðA1Þ

where ci; bi; ui and vi are elements of a; b; u and v, respectively. Multiplication of vectors in Equation

(A1) leads to:

k1

c1b1 c1b2 . . . c1bn
c2b1 c2b2 . . . c2bn
� � . . . �
� � . . . �

cpb1 cpb2 . . . cpbn

2
66664

3
77775 ¼ k2

u1v
�
1 u1v

�
2 . . . u1v

�
n

u2v
�
1 u2v

�
2 . . . u2v

�
n

� � . . . �
� � . . . �

upv
�
1 upv

�
2 . . . upv

�
n

2
66664

3
77775 ðA2Þ

Now comparing elements of the first row of Equation (A2) shows that

k1c1 b1b2 . . . bn½ � ¼ k2u1 v�1 v�2 . . . v
�
n

� �
ðA3Þ

and comparing elements of the first column of Equation (A2) shows that

k1b1 c1 c2 . . . cp
� �T¼ k2v

�
1 u1 u2 . . . up
� �T ðA4Þ

Equations (A3) and (A4) directly lead to Equation (22) with k3 ¼ k1b1=k2v
�
1 and k4 ¼ k1c1=k2u1.
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