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In this paper, we introduce a test for uniformity and use it as the second stage of an exact goodness-of-fit test
of exponentiality. By simulation, the powers of the proposed test under various alternatives are compared
with exponentiality test based on Kullback–Leibler information proposed by Ebrahimi et al. [N. Ebrahimi,
M. Habibullah, and E.S. Soofi, Testing exponentiality based on Kullback–Leiber information, J. R. Statist.
Soc. Ser. B 54 (1992), pp. 739–748]. The results are impressive, i.e. the proposed test has higher power
than the test based on entropy.
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1. Introduction

In numerous applications in reliability studies and engineering and management sciences,
it is very important to test whether the underlying distribution has a particular form. Most
statistical methods assume an underlying distribution in the derivation of their results. How-
ever, when we assume that our data follow a specific distribution, we take a serious risk.
If our assumption is wrong, then the results obtained may be invalid. For example, the
confidence levels of the confidence intervals or error probabilities of tests of hypotheses imple-
mented may be completely off. The consequences of mis-specifying the distribution may
prove very costly. One way to deal with this problem is to check the distribution assumptions
carefully.

Many researchers have been interested in testing exponentiality. See, for example, [1–4].
Therefore different exponentiality tests have been developed.

In Section 2, we propose a new test statistic for testing uniformity and compare the performance
of the proposed test with the existing tests. In Section 3, we introduce a test for exponentiality
based on the test introduced in Section 2 and show, by simulation, that it has higher power than
Ebrahimi et al. [4] test.
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512 H. Alizadeh Noughabi and N.R. Arghami

2. Testing uniformity

2.1. Test statistic and critical points

Given a random sample X1, . . . , Xn from a population with absolutely continuous density function
f (x) concentrated on the interval [0,1], distribution function F(x); consider the problem of testing
the hypothesis H0 that the Xi are uniformly distributed, denoted by U(0, 1). For this test we suggest
the following test statistic:

T = 1

n

n∑
i=1

|xi · f̂ (xi) − F0(xi)|,

where F0(x) is the uniform distribution function and | · | is an absolute function. Also,

f̂ (xi) = 1

nh

n∑
j=1

K

(
xi − xj

h

)
,

where the kernel function is chosen to be the standard normal density function and the bandwidth
h is obtained from the normal optimal smoothing formula, h = 1.06sn−1/5, where s is the sample
standard deviation (Silverman [9]).

Since the density function and the distribution function of a uniform random variable are equal
to 1 and x, respectively, it is obvious that large values of T indicate that the sample is from a
non-uniform distribution. Therefore, we reject H0 at the significance level α if T ≥ C(α), where
the critical point C(α) is determined by the α quantile of the distribution of the T -statistic under
the hypothesis H0. We determine the critical points C(α) of the T -statistic by means of Monte
Carlo simulations for α equal to 0.01, 0.05 and 0.1. For n ≤ 50, we generated 10,000 uniform
samples of size n and computed T . The upper α quantile of the empirical distribution of T was
used to determine C(α). Table 1 gives the critical values C(α) for several sample sizes.

2.2. Power comparison

In this subsection, we compare the proposed test with the existing tests, namely,Anderson–Darling
A2, Cramer–von Mises W 2, Watson U 2, Kolmogrov–Smirnov D, Kuiper V and the test based on
the entropy measure Kmn [5], in terms of power.

Table 1. Critical values of T -statistic.

α

n 0.01 0.05 0.10

5 1.002 0.518 0.339
10 0.407 0.264 0.202
15 0.295 0.206 0.164
20 0.256 0.176 0.150
25 0.228 0.164 0.141
30 0.202 0.152 0.132
50 0.159 0.130 0.117
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The (continuous) alternatives studied consist of those specified by the following distribution
functions F :

Ak : F(x) = 1 − (1 − x)k, 0 ≤ x ≤ 1 (f or k = 1.5, 2),

Bk : F(x) =
{

2k−1xk, 0 ≤ x ≤ 0.5

1 − 2k−1(1 − x)k, 0.5 ≤ x ≤ 1
(f or k = 1.5, 2, 3),

Ck : F(x) =
{

0.5 − 2k−1(0.5 − x)k, 0 ≤ x ≤ 0.5

0.5 + 2k−1(x − 0.5)k, 0.5 ≤ x ≤ 1
(f or k = 1.5, 2).

Alternatives A, B and C were used by Stephens [6] in his study of power comparisons of
several tests for uniformity. According to Stephens, alternative A gives points closer to zero than
expected under the hypothesis of uniformity, whereas B gives points near 0.5 and C give two
clusters (close to 0 and 1). The same alternatives were used by Dudewicz and Van der Meulen [5].

The power estimates resulting from our Monte Carlo study against the seven alternatives con-
sidered are given in Tables 2 and 3 for α = 0.05, 0.10 and n = 10, 20. The values in these tables
are based on 10,000 simulated samples of size n.

Table 2. Power comparisons of tests with size 0.05.

n Alternative T Kmn D W 2 V U2 A2

10 A1.5 0.041 0.142 0.159 0.169 0.101 0.103 0.163
A2 0.050 0.301 0.400 0.435 0.232 0.224 0.417
B1.5 0.200 0.217 0.040 0.027 0.130 0.137 0.015
B2 0.418 0.492 0.048 0.023 0.313 0.339 0.010
B3 0.821 0.878 0.095 0.053 0.713 0.760 0.021
C1.5 0.026 0.017 0.112 0.099 0.128 0.141 0.127
C2 0.025 0.014 0.206 0.158 0.311 0.335 0.235

20 A1.5 0.057 0.239 0.281 0.316 0.167 0.164 0.318
A2 0.091 0.617 0.699 0.770 0.468 0.440 0.761
B1.5 0.307 0.366 0.056 0.039 0.224 0.246 0.035
B2 0.682 0.778 0.122 0.101 0.591 0.651 0.103
B3 0.981 0.994 0.411 0.508 0.969 0.984 0.561
C1.5 0.019 0.018 0.149 0.122 0.225 0.243 0.162
C2 0.018 0.017 0.310 0.248 0.593 0.652 0.378

Table 3. Power comparisons of tests with size 0.10.

n Alternative T Kmn D W 2 V U2 A2

10 A1.5 0.105 0.229 0.245 0.266 0.178 0.177 0.254
A2 0.137 0.451 0.526 0.579 0.346 0.339 0.560
B1.5 0.330 0.332 0.090 0.074 0.221 0.229 0.049
B2 0.610 0.621 0.121 0.088 0.453 0.474 0.060
B3 0.924 0.934 0.242 0.231 0.821 0.863 0.185
C1.5 0.044 0.045 0.198 0.174 0.218 0.228 0.208
C2 0.045 0.041 0.308 0.258 0.454 0.480 0.365

20 A1.5 0.148 0.386 0.403 0.446 0.268 0.271 0.437
A2 0.211 0.770 0.813 0.862 0.612 0.595 0.860
B1.5 0.447 0.545 0.128 0.109 0.351 0.373 0.100
B2 0.798 0.895 0.262 0.273 0.733 0.783 0.289
B3 0.995 0.999 0.671 0.805 0.990 0.995 0.837
C1.5 0.050 0.037 0.250 0.210 0.345 0.377 0.263
C2 0.062 0.041 0.469 0.422 0.731 0.782 0.549
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514 H. Alizadeh Noughabi and N.R. Arghami

We see from Tables 2 and 3 that the power of the proposed test is generally less than that of the
entropy test introduced by Dudewicz and Van der Meulen [5], while it is greater than the powers
of other tests for B alternatives while the reverse holds for other alternatives.

Since, in this paper, our aim is to introduce a more efficient test of exponentiality, the prevalent
low powers of the above test, which is going to be used as a tool in the test introduced in the next
section, is not of any importance.

3. Testing exponentiality using transformed data

Given a random sample X1, . . . , Xn from a continuous probability distribution F with a density
f (x) over a non-negative support and with mean μ < ∞, the hypothesis of interest is

H0 : f (x) = f0(x) = λ exp(−λx),

where λ = 1/μ is unspecified. The alternative to H0 is

H1 : f (x) �= f0(x).

In order to obtain a test statistic, we use the following theorem, which is proved in Alzaid and
Al-Osh [7] and is also mentioned in Balakrishnan and Basu [8].

Theorem 3.1 Let X1 and X2 be two independent observations from a distribution F . Then
X1/(X1 + X2) is distributed as U(0, 1) if and only if F is exponential.

Let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the order statistics of a random sample of size n. First, we
transform the sample data to

Yij = X(i)

X(i) + X(j)

, i �= j, i, j = 1, 2, . . . , n.

By the above theorem, under the null hypothesis, each Yi has a uniform distribution, and it
seems to be appropriate to use our proposed test for uniformity (introduced in Section 2) to test
the uniformity of the distribution of Yi’s and thus the exponentiality of the distribution of Xi’s.
Therefore, the summary of the test is as

X1, . . . , Xn −→ Yij = X(i)

X(i) + X(j)

, i �= j =⇒ T = 1

n′

n′∑
i=1

|yif̂ (yi) − F0(yi)|,

where n′ = n(n − 1).
Large values of T indicate that the sample is from a non-exponential distribution.
For small to moderate sample sizes 5, 10, 15, 20, 25, 30 and 50, we used Monte Carlo methods

with 10,000 replicates from the exponential distribution with mean one to obtain critical values
of our procedure. These values are reported in Table 4.

To facilitate comparisons of the power of the present test with the powers of the tests pub-
lished, we selected the same three alternatives listed in Ebrahimi et al. [4] and their choices of
parameters are:

(1) the Weibull distribution with density function

f (x; λ, β) = βλβxβ−1 exp{−(λx)β}, β > 0, λ > 1, x ≥ 0;
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Table 4. Critical values of T -statistic.

α

n 0.01 0.05 0.10

5 0.7365 0.3350 0.2120
10 0.3320 0.1965 0.1422
15 0.2401 0.1588 0.1221
20 0.2123 0.1369 0.1094
25 0.1743 0.1195 0.0993
30 0.1594 0.1167 0.0983
50 0.1281 0.0915 0.0837

Table 5. Monte Carlo power estimates of the KLmn and T tests
against the gamma distribution.

n β α KLmn T

10 2 0.01 0.101 0.115
0.05 0.315 0.334

3 0.01 0.284 0.317
0.05 0.627 0.678

4 0.01 0.485 0.531
0.05 0.822 0.860

20 2 0.01 0.228 0.313
0.05 0.502 0.629

3 0.01 0.658 0.790
0.05 0.889 0.953

4 0.01 0.898 0.960
0.05 0.982 0.997

(2) the gamma distribution with density function

f (x; λ, β) = λβxβ−1 exp{−λx}
�(β)

, β > 0, λ > 1, x ≥ 0;

(3) the log-normal distribution with density function

f (x; v, σ 2) = 1

xσ
√

2π
exp

{
− 1

2σ 2
(ln(x) − v)2

}
, −∞ < v < ∞, σ 2 > 0, x > 0.

Table 6. Monte Carlo power estimates of the KLmn and T tests
against the Weibull distribution.

n β α KLmn T

10 2 0.01 0.345 0.366
0.05 0.681 0.724

3 0.01 0.855 0.852
0.05 0.981 0.985

4 0.01 0.986 0.987
0.05 1.000 1.000

20 2 0.01 0.734 0.821
0.05 0.933 0.961

3 0.01 0.999 1.000
0.05 1.000 1.000

4 0.01 1.000 1.000
0.05 1.000 1.000
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Table 7. Monte Carlo power estimates of the KLmn and T tests
against the log-normal distribution.

n v α KLmn T

10 −0.3 0.01 0.083 0.094
0.05 0.285 0.334

−0.2 0.01 0.228 0.259
0.05 0.560 0.636

−0.1 0.01 0.690 0.764
0.05 0.938 0.980

20 −0.3 0.01 0.198 0.304
0.05 0.475 0.600

−0.2 0.01 0.560 0.713
0.05 0.835 0.941

−0.1 0.01 0.985 0.998
0.05 1.000 1.000

We also chose the parameters so that E(X) = 1, i.e. λ = �(1 + 1/β) for the Weibull, λ = β

for the gamma and v = −σ 2/2 for the log-normal family of distributions.
We estimated the powers of the Ebrahimi et al. test with the powers the present test based on

10,000 samples of size n equal to 10 and 20. Tables 5–7 show the estimated powers at significance
levels α = 0.01 and α = 0.05. The powers reported for the test based on KLmn-statistic are based
on the window sizes reported in Ebrahimi et al. [4], which give the maximum power for their test.

We observe that the proposed test performs very well compared with the test based on KLmn-
statistic for the Weibull, gamma and log-normal alternatives. Also, it can be seen that the relative
superiority of the proposed test over Ebrahimi et al. test increases with sample size.
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