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Abstract. In this paper we propose an estimator of the entropy of a
continuous random variable. The estimator is obtained by modifying
the estimator proposed by Vasicek (1976). Consistency of estimator is
proved, and comparisons are made with Vasicek’s estimator (1976),
van Es’s estimator (1992), Ebrahimi et al.’s estimator (1994) and
Correa’s estimator (1995). The results indicate that the proposed
estimator has smaller mean squared error than above estimators.

1 Introduction

Entropy is a useful measure of uncertainty and dispersion, and has
been widely employed in many pattern analysis applications. The en-
tropy of a distribution function F with a probability density function
f is defined by Shannon (1948) as:

H(f) = −
∫ ∞
−∞

f(x) log f(x) dx. (1)

There is an extensive literature on estimating the Shannon en-
tropy nonparametrically. Vasicek (1976), van Es (1992), Correa (1995),
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Ebrahimi et al. (1994) and Alizadeh Noughabi (2010) have proposed
estimates for the entropy of absolutely continuous random variables.
Among the various entropy estimators discussed in the literature, Va-
sicek’s estimator has gained prominence in developing entropy-based
statistical procedures due to its simplicity. To motivate the estimator,
express H(f) in the form of

H(f) =
∫ 1

0
log

{
d

dp
F−1(p)

}
dp, (2)

by using the fact that the slope d
dpF−1(p) is simply the reciprocal of

the density function at the pth population quantile, i.e.,

d

dp
F−1(p) =

1
f(F−1(p))

.

So an intuitive idea of estimating the slope would be to estimate
F by the empirical distribution function Fn and replace the differ-
ential operator by a difference operator. This motivation yields a
very simple estimator of the slope which is n

2m times the difference
between two sample quantiles whose indexes are 2m apart, one on
the upper side of the pth sample quantile and the other on the lower
side. The entropy estimator is then given by

HVmn =
1
n

n∑
i=1

log
{

n

2m
(X(i+m) −X(i−m))

}
. (3)

Here, the window size m is a positive integer smaller than n/2, X(i) =
X(1) if i < 1, X(i) = X(n) if i > n and X(1) ≤ X(2) ≤ ... ≤ X(n) are
order statistics based on a random sample of size n. Vasicek proved
that HVmn −→ H(f) as n →∞, m →∞, m

n → 0.
Van Es (1992) proposed another estimator of entropy based on

spacings and proved the consistency and asymptotic normality of
this estimator under some conditions. Van Es’ estimator is given by

HV Emn =
1

n−m

n−m∑
i=1

(
n + 1

m
(X(i+m) −X(i))

)
+

n∑
k=m

1
k

+ log(
m

n + 1
).

Ebrahimi et al. (1994), adjusted the weights of Vasicek’s esti-
mator, in order to take into account the fact that the differences
are truncated around the smallest and the largest data points. (i.e.
X(i+m) − X(i−m) is replaced by X(i+m) − X(1) when i ≤ m and
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X(i+m) −X(i−m) is replaced by X(n) −X(i−m) when i ≥ n−m + 1).
Their estimator is given by

HEmn =
1
n

n∑
i=1

log
{

n

cim
(X(i+m) −X(i−m))

}
,

where

ci =


1 + i−1

m , 1 ≤ i ≤ m,
2, m + 1 ≤ i ≤ n−m,
1 + n−i

m , n−m + 1 ≤ i ≤ n.

They proved that HEmn −→ H(f) as n →∞, m →∞ ,mn → 0. They
compared their estimator with Vasicek’s estimator and Dudewicz and
Van der Meulen estimator (1987), and by simulation, showed that
their estimator has smaller bias and mean squared error. Also they
mentioned that their estimator is better, in terms of bias and MSE,
than Mack’s estimator, kernel entropy estimator and Theil (1980)’s
estimator.

Correa (1995) proposed a modification of Vasicek estimator which
produces a smaller MSE; considering the sample information repre-
sented as

(Fn(X(1)), X(1)), (Fn(X(2)), X(2)), ..., (Fn(X(n)), X(n)),

rewriting Eq. (2) as

HVmn = − 1
n

n∑
i=1

log

{
(i + m)/n− (i−m)/n

X(i+m) −X(i−m)

}
,

and noting that the argument of log is the equation of the slope
of the straight line that joins the points (Fn(X(i+m)), X(i+m)) and
(Fn(X(i−m)), X(i−m)) , Correa (1995) used a local linear model based
on 2m + 1 points to estimate the density of F (x) in the interval
(X(i+m), X(i−m)) ,

F (x(j)) = α + βx(j) + ε j = m− i, ..., m + i .

Instead of taking only two points to estimate the slope β, as Va-
sicek does, he uses all the sample points between X(j−m) and X(j+m),
via least square method. The consequent estimator of entropy pro-
posed by Correa (1995) is given by

HCmn = − 1
n

n∑
i=1

log


i+m∑

j=i−m
(X(j) − X̄(i))(j − i)

n
i+m∑

j=i−m
(X(j) − X̄(i))2

 ,
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where

X̄(i) =
1

2m + 1

i+m∑
j=i−m

X(j) .

He compared his estimator with Vasicek’s estimator and van Es’s
estimator. The mean square error (MSE) of his estimator is consis-
tently smaller than the MSE of Vasicek’s estimator. Also for some m
his estimator behaves better than van Es’s estimator. No comparison
has been made with Ebrahimi et al.’s estimator. Correa’s estimator
can be generalized to the two–dimensional case.

Many researchers have used the estimators of entropy for devel-
oping entropy-based statistical procedure. See for example Esteban
et al. (2001), Park (2003), Choi et al. (2004), Goria et al. (2005),
Choi (2008) and Alizadeh Noughabi and Arghami (2010).

It is clear that

si(m,n) =
n

2m
(X(i+m) −X(i−m)) (4)

is not a correct formula for the slope when i ≤ m or i ≥ n−m+1. In
order to correctly estimate the slopes at these points the denominator
and/or the numerator should be modified for i ≤ m or i ≥ n−m+1.
Our goal in this paper is, therefore, to remedy this situation, in a
way different from that of Ebrahimi et al.

In section 2, we introduce an estimator of entropy and show that
it is consistent. Scale invariance of variance and mean squared error
of the proposed estimator is established. In section 3 we report results
of a comparison of our estimator with the competing estimators by a
simulation study.

2 The New Estimator

We see in Ebrahimi et al. (1994) that, for the small sample sizes
(n = 10, 20, 30), almost everywhere, their estimator underestimates
the entropy, in almost all cases. This includes the cases of uniform
and normal distributions. Therefore we modify the coefficients of
Ebrahimi et al. estimator as

ai = min
i

ci =


1, 1 ≤ i ≤ m,
2, m + 1 ≤ i ≤ n−m,
1, n−m + 1 ≤ i ≤ n .
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Therefore we propose to estimate the entropy H(f) of an unknown
continuous probability density function f by

HAmn =
1
n

n∑
i=1

log
{

n

aim
(X(i+m) −X(i−m))

}
, (5)

where

ai =


1 , 1 ≤ i ≤ m,
2, m + 1 ≤ i ≤ n−m,
1, n−m + 1 ≤ i ≤ n,

and X(i−m) = X(1) for i ≤ m and X(i+m) = X(n) for i ≥ n − m.
Comparing (5) and (3) we obtain

HAmn = 1
n

n∑
i=1

log
{

n
aim

(X(i+m) −X(i−m))
}

= 1
n

n∑
i=1

log
{

2n
2aim

(X(i+m) −X(i−m))
}

= HVmn + 1
n

n∑
i=1

log 2
ai

= HVmn + 1
n

(
m∑

i=1

log 2 +
n∑

i=n−m+1

log 2
)

= HVmn + 2
n (m log(2)) .

(6)

Also from Ebrahimi et al. (1994) we have

HEmn = HVmn +
2
n

{
m log(2m) + log

(m− 1)!
(2m− 1)!

}
. (7)

Therefore we obtain from (6) and (7)

HA1n = HE1n .

Remark. Theil (1980) computed the entropy H(fME
n ) of an empiri-

cal maximum entropy density fME
n , which is related to HV1n, HE1n

and HA1n, as follows.

H(fME
n ) = HV1n +

2− 2 log 2
n

= HA1n −
2
n

log 2 +
2− 2 log 2

n

= HA1n +
2− 4 log 2

n
= HE1n +

2− 4 log 2
n

.

Theorem 2.1. Let X1, . . . , Xn be a random sample from distribu-
tion F (x). Then

i ) HAmn > HVmn

ii) HAmn ≥ HEmn
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Proof. i). From (6) we have

HAmn = HVmn +
2
n
{m log 2} .

Since 2
n {m log 2} > 0 then (i) holds.

ii). From (6) and (7) it is enough to show

2
n
{m log(2)} ≥ 2

n

{
m log(2m) + log

(m− 1)!
(2m− 1)!

}
,

or equivalently

mm ≤ m(m + 1)...(2m− 1).

But the above inequality is true for all m ≥ 1. For m = 1 inequality
convert to equality and for m > 1 we have strict inequality.

The next theorem states that the scale of the random variable X
has no effect on the accuracy of HAmn in estimating H(f). Similar
results have been obtained for HVmn and HEmn by Mack (1988) and
Ebrahimi (1994), respectively.

Theorem 2.2. Let X1, . . . , Xn be a sequence of i.i.d. random vari-
ables with entropy HX(f) and let Yi = kXi, i = 1, ..., n, where k > 0.
Let HAX

mn and HAY
mn be entropy estimators for HX(f) and HY (g)

respectively. (here g is pdf of Y = kX). Then the following properties
hold.

i ) E
(
HAY

mn

)
= E

(
HAX

mn

)
+ log k,

ii ) V ar
(
HAY

mn

)
= V ar

(
HAX

mn

)
,

iii ) MSE
(
HAY

mn

)
= MSE

(
HAX

mn

)
.

Proof. Since

HV kX
mn = HV X

mn + log(k),

then from (6) we have

E(HAkX
mn) = E(HV kX

mn ) +
2
n

(m log(2))

= E(HV X
mn) + log(k) +

2
n

(m log(2))

= E(HAX
mn) + log(k) .
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Also

V ar(HAkX
mn) = V ar(HV kX

mn ) = V ar(HV X
mn) = V ar(HAX

mn) ,

and

MSE(HAkX
mn)

= V ar(HAkX
mn) +

{
E(HAkX

mn)−HKX(f)
}2

= V ar(HAX
mn) +

{
E(HAX

mn) + log(k)−HX(f)− log(k)
}2

= V ar(HAX
mn) +

{
E(HAX

mn)−HX(f)
}2

= MSE(HAX
mn) .

Therefore the proof of this theorem is complete.
The following theorem establishes the consistency of HAmn.

Theorem 2.3. Let C be the class of continuous densities with finite
entropies and let X1, . . . , Xn be a random sample from f ∈ C. If
n →∞, m →∞ and m

n → 0, then

HAmn −→ H(f).

Proof. It is obvious by (6) and consistency of HVmn.

3 Simulation study

A simulation study was performed to analyze the behavior of the
proposed estimator of entropy, HAmn. Some comparisons among Va-
sicek’s estimator, van Es’s estimator, Correa’s estimator, Ebrahimi
et al.’s estimator and our estimator were done. For each sample size
10000 samples were generated and the RMSEs of the estimators were
computed. We considered normal, exponential and uniform distri-
butions which are the same three distributions considered in Correa
(1995).

Still an open problem in entropy estimation is the optimal choice
of m for given n. We choose to use the following heuristic formula
(see Grzegorzewski and Wieczorkowski (1999)):

m =
[√

n + 0.5
]

.

In addition, we considered the other values of m.
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Table 1: proposed values of m for different values of n

Sample size n Windows size m

n ≤ 7 2
8 ≤ n ≤ 14 3
15 ≤ n ≤ 24 4
25 ≤ n ≤ 35 5
36 ≤ n ≤ 45 6
46 ≤ n ≤ 60 7
61 ≤ n ≤ 80 8

In order to compute our estimator for a given data set, one needs
to specify the order of spacings m. Since n is always known, it is
obvious that m may be taken as a function of n.

In practice, of course, a general guide for the choice of m for a fixed
n would be valuable to the users. However, simulations show that the
optimal m(in terms of RMSE) also depends on the distribution that
one may have in mind. This is shown in Tables 2-4. From these
tables we see that there is no m that is optimal for all distribution.
Thus if one has a particular distribution in mind, one can choose the
optimal m from Tables 2-4. Otherwise, that is if one wants to guard
against all distributions a compromise should be made.

Generally, with increasing n, an optimal choice of m also in-
creases, while the ratio m/n tends to zero.

We suggest the values of m which the proposed estimator obtains
reasonably good (not best) RMSE. These values of m are tabulated
in Table 1.

Tables 2-4 contain the RMSE values (and standard deviation) of the
five estimators at different sample size for each of the three considered
distributions. In the last four columns of each Table we have shown
the quantity

Ri =
Hi −HAmn

Hi
× 100 , i = 1, 2, 3, 4

which shows the RMSE-performance of the HAmn with respect to
the others four, where H1 = HVmn, H2 = HV Emn, H3 = HCmn and
H4 = HEmn.
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Table 2: Root of mean square error (and standard deviation) of esti-
mators in estimate of entropy H(f) for standard normal distribution.

n m HVmn HV Emn HCmn HEmn HAmn R1 R2 R3 R4
5 2 0.987 0.506 0.782 0.652 0.537 45.59 -6.13 31.33 17.64

(0.414) (0.451) (0.409) (0.414) (0.414)
3 1.064 0.490 0.823 0.648 0.496 53.38 -1.22 39.73 23.46

(0.401) (0.424) (0.398) (0.401) (0.401)
10 3 0.619 0.366 0.465 0.403 0.302 51.21 17.49 35.05 25.06

(0.266) (0.282) (0.268) (0.266) (0.266)
4 0.666 0.376 0.498 0.394 0.266 60.06 29.26 46.59 32.49

(0.259) (0.279) (0.259) (0.259) (0.259)
5 0.719 0.380 0.537 0.389 0.256 64.39 32.63 52.33 34.19

(0.255) (0.276) (0.253) (0.255) (0.255)
20 4 0.374 0.276 0.263 0.245 0.183 51.07 33.70 30.42 25.31

(0.175) (0.182) (0.177) (0.175) (0.175)
5 0.396 0.295 0.282 0.243 0.181 54.29 38.64 35.82 25.51

(0.181) (0.186) (0.184) (0.181) (0.181)
6 0.418 0.306 0.297 0.239 0.182 56.46 40.52 38.72 23.85

(0.178) (0.184) (0.182) (0.178) (0.178)
30 5 0.281 0.243 0.192 0.184 0.142 49.47 41.56 26.04 22.83

(0.142) (0.146) (0.144) (0.142) (0.142)
6 0.292 0.258 0.202 0.180 0.146 50.00 43.41 27.72 18.89

(0.144) (0.147) (0.147) (0.144) (0.144)
7 0.305 0.269 0.209 0.177 0.154 49.51 42.75 26.32 12.99

(0.144) (0.145) (0.147) (0.144) (0.144)
50 7 0.199 0.212 0.134 0.128 0.114 42.71 46.23 14.93 10.94

(0.110) (0.110) (0.112) (0.110) (0.110)
8 0.204 0.223 0.137 0.125 0.121 40.69 45.74 11.68 3.20

(0.110) (0.111) (0.112) (0.110) (0.110)
9 0.209 0.233 0.140 0.123 0.133 36.36 42.92 5.00 -8.13

(0.111) (0.110) (0.114) (0.111) (0.111)

Table 3: Root of mean square error (and standard deviation) of esti-
mators in estimate of entropy H(f) for exponential distribution with
mean one.

n m HVmn HV Emn HCmn HEmn HAmn R1 R2 R3 R4
5 2 0.930 0.590 0.750 0.659 0.589 36.67 0.17 21.47 10.62

(0.557) (0.581) (0.561) (0.557) (0.557)
3 0.964 0.574 0.758 0.644 0.574 40.46 0.00 24.27 10.87

(0.567) (0.570) (0.582) (0.567) (0.567)
10 3 0.564 0.389 0.435 0.400 0.358 36.52 7.97 17.70 10.50

(0.358) (0.372) (0.362) (0.358) (0.358)
4 0.581 0.397 0.443 0.392 0.383 34.08 3.53 13.54 2.30

(0.368) (0.381) (0.375) (0.368) (0.368)
5 0.595 0.388 0.446 0.381 0.436 26.72 -12.37 2.24 -14.44

(0.372) (0.377) (0.382) (0.372) (0.372)
20 4 0.352 0.272 0.269 0.260 0.242 31.25 11.03 10.04 6.92

(0.241) (0.249) (0.244) (0.241) (0.241)
5 0.364 0.282 0.277 0.259 0.259 28.85 8.16 6.50 0.00

(0.247) (0.253) (0.251) (0.247) (0.247)
6 0.364 0.279 0.274 0.251 0.288 20.88 -3.23 -5.11 -14.74

(0.247) (0.251) (0.252) (0.247) (0.247)
30 5 0.270 0.224 0.206 0.203 0.197 27.04 12.05 4.37 2.96

(0.193) (0.197) (0.194) (0.193) (0.193)
6 0.271 0.227 0.208 0.200 0.215 20.66 5.29 -3.37 -7.50

(0.195) (0.199) (0.198) (0.195) (0.195)
7 0.275 0.232 0.212 0.200 0.239 13.09 -3.02 -12.74 -19.50

(0.199) (0.200) (0.203) (0.199) (0.199)
50 7 0.198 0.181 0.156 0.153 0.164 17.17 99.91 -5.13 -7.19

(0.150) (0.151) (0.152) (0.150) (0.150)
8 0.198 0.186 0.155 0.150 0.176 11.11 5.38 -13.55 -17.33

(0.150) (0.152) (0.151) (0.150) (0.150)
9 0.197 0.187 0.156 0.151 0.195 1.02 -4.28 -25.00 -29.14

(0.151) (0.151) (0.154) (0.151) (0.151)
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Table 4: Root of mean square error (and standard deviation) of esti-
mators in estimate of entropy H(f) for uniform distribution on (0,1).

n m HVmn HV Emn HCmn HEmn HAmn R1 R2 R3 R4
5 2 0.778 0.405 0.575 0.461 0.374 51.93 7.65 34.96 18.87

(0.346) (0.405) (0.343) (0.346) (0.346)
3 0.839 0.379 0.598 0.444 0.341 59.36 10.03 42.98 23.20

(0.332) (0.379) (0.338) (0.332) (0.332)
10 3 0.453 0.218 0.294 0.235 0.166 63.36 23.85 43.54 29.36

(0.166) (0.218) (0.166) (0.166) (0.166)
4 0.485 0.221 0.312 0.213 0.186 61.65 15.84 40.38 12.68

(0.160) (0.221) (0.162) (0.160) (0.160)
5 0.533 0.228 0.343 0.210 0.249 53.28 -9.21 27.41 -18.57

(0.166) (0.228) (0.171) (0.166) (0.166)
20 4 0.276 0.120 0.158 0.135 0.088 68.12 26.67 44.30 34.81

(0.087) (0.120) (0.089) (0.087) (0.087)
5 0.291 0.126 0.168 0.123 0.109 62.54 13.49 35.12 11.38

(0.085) (0.126) (0.088) (0.085) (0.085)
6 0.308 0.127 0.179 0.112 0.143 53.57 -12.60 20.11 -27.68

(0.081) (0.127) (0.084) (0.081) (0.081)
30 5 0.211 0.087 0.112 0.097 0.066 68.72 24.14 41.07 31.96

(0.060) (0.087) (0.061) (0.060) (0.060)
6 0.221 0.088 0.120 0.089 0.086 61.09 2.27 28.33 3.37

(0.058) (0.088) (0.060) (0.058) (0.058)
7 0.235 0.092 0.130 0.084 0.112 52.34 -21.74 13.85 -33.33

(0.199) (0.200) (0.203) (0.199) (0.199)
50 7 0.155 0.057 0.075 0.062 0.057 63.23 00.00 24.00 8.06

(0.037) (0.057) (0.038) (0.037) (0.037)
8 0.163 0.060 0.082 0.059 0.073 55.21 -21.67 10.98 -23.73

(0.037) (0.060) (0.039) (0.037) (0.037)
9 0.171 0.061 0.087 0.055 0.090 47.37 -47.54 -3.45 -63.64

(0.036) (0.061) (0.038) (0.036) (0.036)

We observe that the proposed estimator performs well as com-
pared with other estimators under the normal distribution. Gener-
ally, for small sample sizes the new estimator behaves better than
other estimators. Also we observe that the estimators HVmn, HEmn

and HAmn have the same standard deviation, because we have

HEmn = HVmn +
2
n

{
m log(2m) + log

(m− 1)!
(2m− 1)!

}
,

HAmn = HVmn +
2
n
{m log 2} .

Since the new estimator HAmn and the estimators HVmn, HEmn

have the same variances and by Theorem 2.1 the new estimator is
larger than old ones, with probability 1, then it seem the new esti-
mator reduces the bias.
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