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A quantitarive structure-retention relationship (QSRR) study, has been carried out on 50 diveNe phenols in gas chromatography (CC) in
a dual-capillary column system made of DB-5 (SE-54 bonded phase) ard DB-17 (OV- l7 bonded phase) firsed-silica capillary columns by
using molecular st1rctural descriptors. Modeling of retention times of these compounds as a function of the theoretically dedved descriptors
was established by multiple linear regression (MLR), partial least squares (PLS) regression and artificial neural network (ANN). Stepwise
SPSS was used for the selection of the variables (descripion) that resulted in the bescfitted models. For prediction ret€otion times of
compounds in DB-5 rud DB- l7 columns, three and four descriptors, lrspectively were used to develop a quantirative rclatioDship between
the retention times and structural properti€s, Appropriate models with low standard erro$ and high correlation coef6cients were obtained.
After variables selection, compounds randomly were divided into two traioing and test $ets ard MLR and PLS methods (with leave-one-
out cross validation) and ANN used for buildirlg of the best models. The predictive quality of the QSRR mod€ls were tested for an extemal
prediction set of 10 compounds randomly cho$er from 50 compounds. The squarcd regression coefficients of pEdiction for the MLR,
PLS and ANN models for DB-5 columo were 0.9645, 0.9606 and 0.9808, respectively and also for DB-17 colurur were 0.9757, 0.9757
and 0.9875, respectively. Result obtained sho\,r'ed that non-linear model can simulate the relationship between structural desc.iptors and
the retention times of the molecules in data sets accurately.

Key rr\brds: Molecular d€scriptoN, Retention time, Phenol, Quantitative structurs.rctention rclatiotrship, Artitcial nex|:8l networ*s.

IN'I'RODUCTION

As a potcntial alternative to expensive and time-consu-
ming experimental tri l l l  and error approach traditionally
rdoptctl to optinriuc chronratogrrphic .eparrtion.. retention
ptedictive models have rcceived considcrablc attention in
recent years!. An important property that has been extensively
studied in QSAR is the chromatographic retention time. A
quantitative structure-retention relationship (QSRR) study
involves the prediction of chromatographic retention para-
meters using molecular structure. Quantitative structure-
retention relationship studies are widely investigated in gas
chrornatography (GC) and high-performance liquid chroma-
tography (HPLC):. Chromatographic retention is a physical
phenomenon that is primarily dependent on the interactions
betwcen thc solutc and thc stationary phase. Molecular group
contribution methods are widely employed to estimate gas
chrornrtugrrphie rctention parlmelers .

Artificial neural networks (ANNs) are among the best
available tools to generate nonlinear models. Artificial neural
networks arc parallel computational devices consisting of

groups of highly interconnected processing elements called
neurons. Anificial neural networks (ANNs), was inspired by
scientist's interpretation ofthe architecture and functioning of
the human brainr5. However, a methodology related to non-
Iinear regression techniques war derelopedo-. Reviews have
been published conceming applications of ANN in different
fields"'. Recently, artificial neural networks (ANNs) have been
used to a wide variety of chemical problems such as spectral
analysis "', prediction of dielectric constantrr and mass spectral
search'r. Artificial neural networks have been applied to QSPR
analysis due to its f lexibil i ty in modeling of non-linear
problems, mainly in response to increase accuracy demands.
They have been widely used to predict many physico-chemical
propertiesrrrT. Cunently the phenols, a group of ubiquitous
compounds in environmental sarnples mainly because oftheir
heavy uses in the chemical industries. consti lute an imponanl
c lass  o f  g round water  contaminants r3 'zo .  The pheno l ic
micropollutants generally include chloro-, bromo-, nitro- and
alkyl- phenols. Some of theses are either known or suspected
endocrine disrupters. with the growing concern about the
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waterquality, trace-level analysis ofthese phenols has become
important in recent years?r.

The main aim of the present work is development of a

QSRR models by using ANN as non-linear method to predict
the retention times of various phenols and comparison with
MLR and PLS as linear methods.

In the present work, a QSRR study has been caried out
on the GC retention times (tx) for 50 diverse phenols by using
stuctural molecular descripton. The two linearmethods, MLR
and PLS and non-linear method, feed forward neural network
with back-propagation taining along with stepwise SPSS as
variable selection software were used to model the retention
times with the structural descriDtors.

EXPERIMENTAL

The experimental data ofthe retention times data (tR), for
50 chemical compounds including phenols were taken from
Kim et al.rr, as shown in Table-1. The data set randomly was
divided into two subsets in ANN, MLR and PLS: training and
test sets including 40 and l0 compounds, respectively.

Multiple linear regression and partial least squar€s
analysis: The multiple linear regression (MLR) is an extension
of the classical regression method to more than one dimension".
Multiple linear regression calculates QSAR equation by perfor-
ming standa.rd multivadable regression calculations using multiple
variables in a single equation. The stepwise multiple linear regre-
ssion is a commonly used vadant of MLR. In this case, a multiple-
term linear equation is also produced, but not all independent
variables are used. Each variable is added to the equation at a
time and a new regression is performed. The new term is
retained only if equation passes a test for significance. This
regression method is especially useful when the number of
variables is large and when the key descriptors are notknown2r.

The PLS model will try to find a few PLS tactors (also
known as components or latent vadables) that explain most of
the variations in both predictors and responses. Factors that
explain response variation provide good predictive models for
new responses and factors that explain predictor variation
which are represented by the observed values ofthe predictors.
The panial least squares (PLS) regression method is well suited
for problems with multicollinear predictor and response vari-
ables. Panial least squares is explained in detail in literature'?a'?s.
To obtain the PLS model with the best predictive performance,
the number of PLS components that optimize the predictive
ability of the model should be determined. This is typically
done by cross-validation, a procedure in which the available
data within the training set are split into several subgroups
called validation sets. The prediction residual sum of squares
(PRESS) for the test samples is determined as a function of
the PLS components retained in the regression model which
was formed with the taining data. The procedure is usually
repeated several times, with each subset in the haining set
being pan of the test samples at least once26.

Artificial neural networks(ANN): Principles, functioning
and applications of artif icial neural networks have been
adequately described elsewherez7 23. The relevant principle of
supervised leaming in anANN is that it takes numerical ilputs
(the training data) and transfers them into desired outputs- The

input and output nodes may be connected to any other nodes
within the network. The way in which each node transforms
its input depends on the so-called 'connection weights' or '

connection strength' and bias of the node, which are modi-
fiable. The output values of each node depend on both the
weight stength and bias values. Training of the ANN can be
performed by using the backpropagation algorithm. In order
to train the network using the back propagation algorithm, the
differences between the ANN output and its desired value are
calculated after each taining iteration and the values ofweights
and biases modified by using these error terms.

A three-layer feed-forward network formed by one input
layer consisting of a number of neurons equal to the number
ofdescriptors, one output neuron and a number of hidden units
fully connected to both input and output neurons, were adopted
in this study. The most used leaming procedure is based on
the back-propagation algorithm, in which the network reads
inputs and corresponding outputs from a prop€r data set
(taining set) and iteratively adjusts weights and biases in order
to minimize the eror in prediction. To avoid overraining and
consequent deterioration ofits generalization ability, the Fedic-
tive performance of the network after each weight adjustment
is checked on unseen data (validation set).

In this work, training gradient descent with momentum is
applied and the performance function was the mean square
error (MSE), tbe average squared error betwe€n the network
outputs and the actual outPut.

The QSRR modets for the estimation ofthe retention times
ofvarious compounds are established in the following six steps:
molecular structure input and generation of the files containing
the chemical structures stored in a computer-readable format;
quantum mechanics geometry optimization with a semi-
empidcal method; stuctural descriptoncomputation; struch[al
descriptors selection; structure-retention models generation
with the multivariate methods and statistical analysis.

Computer hardware and software: All calculations were
run on a Pentium IV pe$onal computer with windows XP as
operating system. The molecular 3D stuctures of data set were
sketched using hyperchem (ver. 7.l ), then each molecule was
"cleaned up" and energy minimization was performed using
the geometry. Optimization was done using semiempirical
AMI (Austin Model) Hamiltonian method. After optimization
ofstructures, several descriptors are cornputed by hyperihem.
Then 3D structures with lower energy conformers obtained
by the aforementioned procedure were fed into dragon (ver
5.2-2005) for calculation of the structural molecular descriptors
(constitutional, topological, connectiviry geometrical, getaway
and charge descripton). Through these descriptors which having
values exceeding 90 Vo zeto or have eqtal values further than
90 7o are not useful and should be removed. Then Descriptor
selection was the accomplished by using Stepwise SPSS (SPSS
Ver. 11.5, SPSS Inc.). PLS regression (PlS_Toolbox, version
2.1, Eigenvector Company) and other calculations were
performed in the MAILAB (version 7.0, MathWorks, Inc.)
envlronment.

RESTJLTS AI\ID DISCUSSION

Descriptors selection: Generally the first step in variables
selection is the calculation of the correlation between variables
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TABLE.!
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25 1.3.4'Tficblorophenol

26 i-Naphtol

l7 2-Phenllphenol

28 Catechol

29 2.5-Dinitrophcl]ol

l0 2.4-Di[itrof'hcnol
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32 2-Melhyhcsorcinol

33 Penlrchbrophcnol

34 4-Phenylpbcn(' l

35 Pyrogalld

36 Phlorclrlucirrol

37 3-Brornopher()l

38 4-Bronl(ipheDol

39 2-lodophenol

1388 l :10:.1 l4U).7 l4l1..+ Phenol

l . l l t l  l i6l  I  l - l t{5.1 1.182.7 .)-Crcsol

1.192 1519.9 l5l7.t i  1513.7 ,n-Crcsol

l5l l  1552.7 158'1.2 1579.5 /r-Crcsol
1529 l5-16.l t  155-1.4 1554.0 1.6-Dimethylphenol

l-S16 1540.I l5-18.2 1545.9 2-El lrylphenol

15,16 1531.3 1606.6 1607.1 2-Chhrophenol

| 5S,1 1550.1 l5t l  l . l  1567.4 3-Chlorophenol

l58b 1561.-1 1570.:1 1575.3 :.-5-Dimethylphencl
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1686 |,677.5 1701.-5 1705.2 3,5-Dichlorophcnol

l7l() 1691.0 169-3.5 I679.9 l .-r Dichlorophenct

1122 l '72O.7 1718.9 1719.6 , lr?-Pfopylphcnol

l716 l7l4. l  1633.0 1691.8 ],3-Dichlorophenol

1727 1731.3 l '779.9 1761.'7 3.4-Dichlorophenol

1765 l7?6.3 1705.5 1716.9 4-r"/-Butylphcnol

t7L)t) 1742.3 t693.5 1708.2 l-Nitrophenol

179-l I799.7 l8l 1.. ]  1807.7 1..1,6-Trichl{)rophenol

1327 1868.,1 I l l74.u l87l. l  4-Nilrophenol

11173 lSl l .0 l i l52. l  l t{- '16.9 +' l-Butylphcnol

1l{95 1900.7 l8:1.3 lu6ti .0 2,3.4-Trichlorophenol

lql l  1038.2 20:3.5 l{)53.2 l-Naphtol

l96l 1979.6 2006.5 2010.9 2-Phenylphcnol

198.1 1938.,1 1950.9 1966.,1 Crteuhol

2021 2U)9.9 1965.8 1989.5 2.4-Dinitrophenol

l{) ' r() 2{x,x.{r 20.iJ.{) l {15.l .E H}Jr(htoinonc

:105 l l2l .J l061.t j  2{)55.3 Penlachlorophcnol

2l l7 1137.7 1137.9 2106.-1 4-Phe ylphenol

I l l r i  20i7.7 20:2..1 2051.5 Orcinol

11fi6 li-1?.,1 1612..l 2626.1 PyroSaliol

269) 16l l .  I  16l l .0 1611.0 Phloroglucinol
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l?l( i  l?.15.3 1727.6 l?0-1.0 2-Iodophenol

t6 t7  1632.8
t6-t6 t7t2.2
t7 l9  1724.8
l73 t  1691.5
t733 1785.7
1745 t'762.2
r804 t814.3
I780 l8 t  1 .2
1780 1763.0
t36 1800.1

t903 1839.3
182 | 1885.9
t833 t719.7
t882 1852.1
1884 t868.6
1942 t952.1
t911 r96 t.0
r9l9 1923.2
2001 t970.8
1876 r958.9
t95? t96?.2
2068 2017.6
204t ?081. t
2l l0 2121.4
2026 2051.6
2t76 2092.8
2248 2236,0
2306 2319.3
1298 236r.5
2419 2428.3
21| 2369.1
2{48 2448.2
2541 2532.9
2461 2142.4
2908 29t2.6
2991 2990.5
l9f 5 1907.2
te27 1930.4
2063 2019.-5
2068 20S3.8

t67.3 1667.3
1735.3 1735.3
l?50.t r750.3
t7t |.2 t1tt.2
r?8?.rJ 1787.8
r755.8 1755,8
t8!4.2 t824.2
1819.5  1819.5
1760.8 1760.8
1805.2 1805.1
1825.5 r 825.5
r859.5 1859.5
1778.8 t778.4
r826.3 t826.3
1850.5 1850.5
t946.7 1946.7
196?.5 t962.5
t914.6  1914.6
t917.9 1977.9
t957.5 r957.5
t948.? 1948.7
2058.9 2058.9
2r03.6 2 t03.6
2124.4 21U.4
20-s7.5 2057.5
2123.9 2t23.9
2238.1 2238.1
2384.3 23U.3
2307.5 2307j
2492.8 2492.8
2305.1 2305.1
7433.2 2433.2
2434.2 2434.2
2361.8 2361.8
2970.4 2970.4
3004.5 3004.5
1928.3 1928.3
t952.7 1952.7
2026.2 2026.2
2069.'t 2069.7.l'lodtrpht'nol l ?60 l'761.1 1122.5 1694.9 3-lodophenol

'fc\t 
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4l o-Cresol
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''18 Orcinol

19 l-Bronrophenol

50 .{-lodophenol
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I t66 2l-18.3
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1715 1117.t)

1,190.-r 1.190.8
t58l.2 t56'1.4
l-s80.9 1596.8
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2056.a 2012.2
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2.1,5-Trimethylphcnol
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4,6-Dinilrc-()-cresol

2-Mcthylresrcinol
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4-lodophenol

t804 t838.4
t9l1 1895.7
!928 1933.1
2089 208'7.2
2087 2080.7
2375 2253.6
2463 2158.8
uo3 2286.3
1903 1857.9
2090 210,1'.4

1855.0 t854.9
1900.7 1900.7
1834.3 1834.3
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2100.9 2100.9
2453.8 2453.8
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TABLE-2
MOLECTJLAR DESCRIPTORS EMPLOYED FOR THE PROPOSED QSRR MODEIJ

Descriptor Notation Coeffrcienl

DB-5 Column

hy
allrr
x5

I
2
l

Hydrophilic factor
Chose-Crippen molar refractivity
Connectivity index chi-s
Constanl

576.146
m376
152.561
741.198

DFIT Column

I
2
l
4

Hydfophilic factor
Detour index

Qzz COMMA2 value / weighted by atomic masses
Dipole (debyes) sum Y
Constant

hy

aTZn
DSY

579.47 |

2.Wl
18.9E3

1516.534

and with seeking property. ln present cuse. to decrease the
redundancy existed in the descriptors data matrix, the corrc-
lations of descriptors with each other and with the tR of the
molecules were examined and descripbrs which showcd high
interrelation (i.e., r > 0.9) with tR and low interrelution (i.c..
r < 0.9) with each other were dctected. For each class of the
descriptor just one of thenr was selectcd tbr conslruction the
final QSRR model and the rest were deleted. [n second step,
stepwise SPSS was used for variable selection. Afier thesc
process for DB-5 and DB-lTcolumns thrcc and four descriptors
were remained, respectivcly, that kecps most intcrpretive
information for retention time. Table-2 shows dcscriptors nd
their coefficients that used in MLR method. A correlation
analysis was carried out to evaluate correlations between
selected descriptors with each other and with retcntion time
(Table 3a-b).

TABLE-3a
CORRELATION MATRTX OF TTIE THREE DESCRIFTORS

AND L USED IN THIS WORK FOR DB-5 COLUMN"

weights and biased are optimized by the back-propa8ation
iterative procedure. training error typically decreases, but test
errol llrst decreases and subsequently begins to rise again,
revealing a progressive worsening of generalization ability of
the network. Thus training was stopped when the test error
reachcs a minimum value. Table-4 shows the architecture and
soecification of the oDtimized networks.

TABLE-4
ARCHITFCTTJRE AND SPECIFICATIONOF

TTIE GENERATED ANNS

The definitions of the descliptors are given in Table-2.

TABLE.3b
CORRELATION MATRX OF THE FOIjR DESCRIPTORS

AND rR USED IN THIS WORK FOR DB- 17 COLl.JMtf

azzrn
hy

azztn
DSY

DB-5 DB- 17
colunn Colurm

Number of nodes in dE input layer
Number of nodes in the hidden layer
Nuftber of nodes in the output layer
Iraming rate
Mor|entum
Epoch
Transfer function

Results ofartificial neural network analysis and compa-
rison with multiple linear regression and partial least
squares: The non-linear QSRR model provided by the optimal
ncural networks is presented in Fig. l(a-b) where computed
or predicted retention time values are plotted against the corres-
ponding experimental data. Fig.2(a-b) shows a plotof residuals
Iersrrs the observed retention time values. The substantial random
pa(em of this plot indicates that most of the data variance is
explained by the proposed models.

The agreement between computed and obseNed values
in ANN training and test scts are shown in Table- l. The statis-
tical parametcrs calculated for the ANN, MLR and PLS models
are prcsented in Table-5. Goodness of the ANN-based model
is further demonstrated by the high value of the correlation
coetficient R between calculated and observed te values for
DB-5 and DB-lTcolumns are (0.990,0.985) and (0.994,0.986)
for training and test set, respectively. For comparison, a linear

QSRR model relating retention times to the selected descriptors
were obtaincd by means of MLR and PLS methods. With the
purpose of MLR and PLS models built on the same subsets
was uscd in ANN anrlysis.

Multiplc l inear regression (MLR) is one of the most
conrmonly used modeling methods in QSRR. The colinearity
problem of the MLR mcthod has been overcome through the
devclopment of the partial least-squares (PLS) projections to
latcnt struclures method. which has been shown to be an
eflicient approach in monitoring many complex processes,

3 4'1 4
l l

o.? 0.3
0.9 0.4

6000 5(m
Sigooid Siernoid

hy
hy

afir

a5

-0.441
I

-0.302
0.768

I

0.759
0.194
o.296

l

hy
4.210

I

0. t  l8
-0.281
-0.t l0

I

0.729
0.454
0.257
0.023

I

-0.2t1
0.398

I

'Tbe definitions of the descriptors arc given in Table-2.

Artilicial ncural n€twork optimization: A three-layer
neural network was used and starting network weights and
biases wcrc randomly gencrated. Dcscriptors sclected by
stepwise method were used as inputs of network and the signal
of the output node represent the retention time of phenols.
Thus, networks havc threc and fbur ncLrrons in input laycr lbr
DB-5 and DB-17 columns. respectively and one neuron in
output layer. The nctworks perfbrmancc was optimized lilr
the number of neurons in thc hidden laycr (hnn). the learning
rate (lr) of back-propagation. momentum and thc epoch. As
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TABLE.5
STATISTICAL PARAMETERS OBTAINED USING THE ANN ,MLR AND PlJ MODELS'

SEt SEc ModelRcRtK'CR1FcFl
26t.O3l 1942.695
t42.ffi q27.516
n9.t97 1032.028

0.970
0.94'l
0.937

0.981
0.961
0.964

0.985
0.9'13
0.968

0.990
0.980
0.982

40.670
49.919
s5.222

31.1m
52.69

ANN
PLS
MLR

DB.5
Colurnn

l 3 l
290.2U 3022320
152.903 1528.809
152.980 1528.707

0.973
0.950
0.950

0.988
0.976
o.9't6

0.986
0.975
0.975

32.40
56.835
56.824

35.571
49.422
49.424

ANN
PIJ
MLR

DB.17
Column

0994
0.988
0.988

'c r€fers to the cnlibration (training) s€t: t refers ro test seq R is the corelarion coefficienr; R: is rhe cor€lation coeflicient squarc aod F is the
statistical F value.

30@
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2600
2400
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Fig. l. Plots of predicted tk estimated by ANN lbr DB-5 column (il) and
ANN for  DB-17 column (b)  modcl ing r . , r / r r  exper imcnt. r l  th
comDounds

reducing the high dimensional strongly cross-correlated data
to a much smaller and interpretable set of principal compo-
nents or latent variables. The number of significant lactors for
the PLS algorithm was determined using the cross-validation
method. The optimum number of factors was concluded as
the first local minimum in the PRESS lersrs numberof factors.
The best PLS models contained three and four selected
descriptors in two and four latent variables space for DB-5
and DB-17 columns, respectively.

Compari;on between statistical parameters in Table-5
reveals that non-linear ANN model produced better results
with good predictive ability than linear modcls.

Conclusion

Quantitative structure-retention relationship analysis was
performed on a series of phenols using ANN. MLR und PLS
methods which correlate tn values of these conlpound to their
structural descriptors. According to the obtained results. it is
concluded that the (hy, amr, x5) lbr DB-5 column and (hy. w.

QZZn, DSY) for DB- I7 column can be used successfully tbr
modeling tx property of the under study compounds. The

rR(EXP)

Fig.2.  Pbts of  residual  l ,4r l rs cxpcr imental  tR inANN for  DB-5 column
(a) nd ANN l i ) r  DB-17 column (b)  models

s(atistical parameters ofthe built QSRR Inodels were satisfac-
tory showing the high quality of the chosen descriptors. High
correlation coefficients and low prcdiction errors obtained
confirm good predictive ability ofANN nodel. The proposed

QSRR models with the simply calculated rnolecular descrip-
tors can be used to estimate the chromatographic retention
times for new compounds evcn in lhe absence of the standard
candidates.

REFERENCES

L R. Knliszan. Quanlitalive Strucrure-Ch(nn lographjc Retentk,n Rcla-
ti{)nships. John Wilcy & Sons. New York I I987).

L J. Ghascmi. S. As dpour and A. Abdolmaleki, Auul. Chitn. Acra.st8,
2fi) (2fi)7).

3. f. Tcodorir and I. Ovidi\t.lnt(nrct EI.'11. J. M(,1 D?sign,l,94 \2tn2).
. { .  W.S. Mcul loch and W Pi(s.  r l l / l  Muth.  Biopht t . .5,  l15 (1 3\ .
5. D-E. Rumelhan. P.rrallel Dislrihured Prolcssing. London: Mil Prcss

(  t 9 8 : , .
6. J. Zupiu nnd J. Gusleiger. A,?rrl Chhn. Atrrt.24A, 1 (1991\.
7. D.T. M:rn llack. D.D. Elljs and D.J. l,ivingsronc, .1. M(d. Cl'en..31.3'75a

t l .  A.  Cucz i rnd I .  Ne\ t r .  Cl i  .Chi ,LA.kt .2J8.73(1996).

y{4O.9a7rl}It5.71



2576 Alit:dclr et al- Asion J. Chem

9. V.Jakus, Cr,., . Ir|rry,gl,262 (193). 20, N. Masqu., E. Pocurull, R.M. Matlc ad F. B$\tll,ChtunaroSmphio,
10. J.M. vqas and PJ. zofiria, Cicn€ralized Ncursl Netrl,o* for Sp.ctral 47, 176 (1998).

Analysis: Dynamics and Liapunov Functions, Neur.l Ncrwql(s, p. l7 21. K.R. Kirn arld H.Kjr\1. ch@rutogr. A, t66,87 €mq.
(2m4). 22. RI|. Myera Closeical atd Modeo Rlgr€ssion with Applicdion Pwr-IGnt

ll. R.C. Schn€itzcr and J.B. Monis, dral Crrrl dctd, 3Ol, 285 (199), Publiding ComFny: Bo6!0tr (1990).
12. C.S. TonS and K.C. Mtg,Chenon tr Intell. Lrt S$t,49, 135 (1999). 23. J. Ghaseni and Sh, Ahnadi, A|t|r. Ciirr (Rorn ),n,69 (2f(}il),
f3. F,Lrd,Y.LiargardC,C,ChcntornarInt.lztStrLtl,120(2006). 24. A" l,lt r,LE Wrng.n.dB.R lbralsyi,J.ClE t'@rr'!'t.,l,l909nr.
14. H, colmohammrdi dtdu.H.F{et Li, Electmphorcsis,25, 3438 (2O5). 25. A. Ho6kuld$on,, Chemoti,2,2ll (lgtB).
15. E. B.hcr, M.H. Fatemi, E. Konoz and H. Colmohanmadi, Mrbrochirr 26. H. Swiercnga, A.P.D. Wcijer, R.J.V. Wijk and L.M.C. Buydrns,

Ac.o,liE,ll7 (2cryl). Ch.,no,n tt ttt tL lab. Syst.,4q I (1999).
16. M.H. Fatcmi, J. Chmnatogr A,l03E,23l (2fu4r, 27. J, Zupan and J. C.steiScr, Neursl Networ*s In Chemisty and Drug
17. M.H. Foterni, J. Chrotutogr A, S,ni (2W2), Dcsign, Wilcy-VCH \rtrlag, Wcinhcim (1999),
18. C. Schleri and B. Pfeife\ Uom vy'asscr.79.65 (1992\. 2E. L. Frusett, Fundamcntals ofNeuml Nctworts, ftlrticc I{a[, NcwYor*
19. J. Tt€np, P. MartsEl, S. Fingler and w. Ciger, wat.r Air Soil &llut., (1994).

6t, l 13 0993).

: r


