© by Oldenbourg Wissenschaftsverlag, München

$\label{eq:crystal} Crystal \ structure \ of \ dichlorobis (4-amino-1,2,4-triazole) dimethyltin (IV), \\ SnCl_2 (CH_3)_2 (C_2H_4N_4)_2$

Mehrdad Pourayoubi^{*,I}, Mahnaz Rostami Chaijan^I, Teresa Mancilla Percino^{II} and Marco A. Leyva Ramírez^{II}

¹ Ferdowsi University of Mashhad, Department of Chemistry, 91779 Mashhad, Iran

^{II} Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Química, Apartado Postal 14-740, 07000 México, D.F., México

Received November 13, 2010, accepted and available on-line January 25, 2011; CCDC no. 1267/3285

Abstract

C₆H₁₄Cl₂N₈Sn, monoclinic, *P*12₁/c1 (no. 14), a = 8.689(2) Å, b = 7.524(3) Å, c = 11.359(3) Å, $\beta = 109.86(1)^{\circ}$, V = 698.5 Å³, Z = 2, $R_{gf}(F) = 0.023$, $wR_{ref}(F^2) = 0.057$, T = 293 K.

Source of material

To a solution of 4-amino-1,2,4-triazole (0.824 g, 9.8 mmol) in 10 ml methanol, a solution of dimethyltin dichloride (1.076 g, 4.9 mmol) in 5 ml methanol was added dropwise. The clear solution was stirred under reflux condition for 24 h. Colorless crystals were obtained after one day in refrigerator.

Experimental details

Hydrogens bound to nitrogen atoms were found in difference Fourier maps and refined freely. All the other hydrogen atoms were placed geometrically.

Discussion

Organotin(IV) complexes have attracted attention because of their versatile biological properties [1,2] as well as their industrial and agricultural applications [3]. Triazole derivatives also display a broad range of biological activity, showing potential applications as antitumor, antibacterial, antifungal and antiviral agents [4].

The Sn coordination in the title complex is octahedral with 4amino-1,2,4-triazole ligands in a *trans* fashion; the chlorine atoms are also *trans* (figure, top). The Sn atom is located in the inversion centre. 4-Amino-1,2,4-triazole ligands linked to Sn via N1 nitrogen atom of triazole ring. The Sn—N, Sn—Cl and Sn—C bond lengths are within expected values [2.358(2), 2.5808(9) and 2.107(2) Å, respectively]. The N–Sn–N angle is 180° and the Sn–N–N angle is 123.7(1)°. N1 atom is within the plane of the aminotriazole molecule but the Sn is not within in this plane. Thus the environment of N1 atom deviates from planarity: the torsion angle N3–C3–N1–Sn1 is 166.0(1)°. The N–H···N (*d*(N4···N2) = 3.109(3) Å) and N–H···Cl (*d*(N4···Cl1) = 3.303(2) Å) hydrogen bonds, Cl···*π* (*d*(Cl1···centroid) = 3.631(2) Å) and *π*··*π* contacts (*d*(centroid···centroid) = 3.522(2) Å) are responsible for aggregation of molecules in a 3D arrangement (figure, bottom).

* Correspondence author (e-mail: mehrdad_pourayoubi@yahoo.com)

Crystal:	colorless block, size $0.35 \times 0.46 \times 0.59$ mm	А
Wavelength:	Mo K_{α} radiation (0.71073 Å)	
μ:	22.05 cm^{-1}	Н
Diffractometer, scan mode:	Kappa CCD,	Н
$2\theta_{\text{max}}$:	56.4°	Н
N(hkl) _{measured} , N(hkl) _{unique} :	6263, 1517	Н
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \sigma(I_{\rm obs}), 1322$	Н
N(param) _{refined} :	89	Н
Programs:	SHELXS-97, SHELXL-97 [5],	Н
-	DIAMOND [6], WinGX [7]	_

Table 1. Data collection and handling.

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	z	$U_{\rm iso}$
		1.0.40	0.440.4	0.4054	0.047
H(IA)	4e	1.049	0.6624	0.4851	0.065
H(1B)	4e	0.8641	0.6890	0.4695	0.065
H(1C)	4e	0.9977	0.6934	0.6032	0.065
H(2)	4e	0.4839	1.2676	0.5765	0.043
H(3)	4e	0.8223	0.9111	0.7229	0.039
H(4A)	4e	0.612(3)	1.150(3)	0.845(2)	0.069(9)
H(4B)	4 <i>e</i>	0.471(2)	1.051(4)	0.763(3)	0.061(8)

Table 3. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	z	U_{11}	U ₂₂	U33	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
C (1)	4e	0.9742(3)	0.7236(3)	0.5167(2)	0.051(1)	0.030(1)	0.051(1)	0.0008(9)	0.021(1)	0.0025(9)
C(2)	4 <i>e</i>	0.5719(2)	1.1909(3)	0.5885(2)	0.0313(9)	0.042(1)	0.035(1)	0.0047(8)	0.0136(8)	-0.0033(8)
C(3)	4e	0.7571(3)	0.9961(2)	0.6695(2)	0.029(1)	0.042(1)	0.030(1)	0.0031(7)	0.0122(9)	0.0018(7)
N(1)	4e	0.7737(2)	1.0498(3)	0.5657(2)	0.0318(9)	0.0410(8)	0.0311(9)	0.0061(7)	0.0155(7)	0.0023(7)
N(2)	4e	0.6532(2)	1.1748(2)	0.5118(2)	0.0357(8)	0.0419(9)	0.0310(9)	0.0071(7)	0.0137(7)	0.0025(7)
N(3)	4e	0.6324(2)	1.0813(2)	0.6882(2)	0.0295(8)	0.0403(9)	0.0272(9)	-0.0039(7)	0.0135(6)	-0.0057(7)
N(4)	4e	0.5820(3)	1.0552(3)	0.7925(2)	0.040(1)	0.066(1)	0.032(1)	-0.005(1)	0.0224(8)	-0.005(1)
Cl(1)	4e	0.81592(8)	0.98494(8)	0.26783(6)	0.0342(3)	0.0646(4)	0.0286(3)	0.0033(2)	0.0049(2)	-0.0010(2)
Sn(1)	2c	0	0	1/2	0.0252(2)	0.0267(2)	0.0242(2)	0.00164(5)	0.01007(9)	-0.00004(5)

References

- Kemmer, M.; Dalil, H.; Biesemans, M.; Martins, J. C.; Mahieu, B.: Dibutyltin perfluoroalkanecarboxylates: synthesis, NMR characterization and *in vitro* antitumour activity. J. Organomet. Chem. 608 (2000) 63-70.
- Pellerito, L.; Nagy, L.: Organotin(IV)ⁿ⁺ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects. Coor. Chem. Rev. 224 (2002) 111-150.
- Ebdon, L.; Hill, S. J.; Rivas, C.: Organotin compounds in solid waste: a review of their properties and determination using high-performance liquid chromatography. Trends Anal. Chem. 17 (1998) 277-288.
- Holla, B. S.; Poojary, K. N.; Kalluraya, B.; Gowda, P. V.: Synthesis, characterisation and antifungal activity of some N-bridged heterocycles derived from 3-(3-bromo-4-methoxyphenyl)-4-amino-5-mercapto-1,2,4triazole. Farmaco. 51 (1996) 793-799.
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
- Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 2.1. Crystal Impact, Bonn, Germany 1998.
- Farrugia, L. J.: WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 32 (1999) 837-838.