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In this paper we find different types of black holes for the Born-Infeld extended new massive gravity.

Our solutions include (un)charged warped (anti-)de Sitter black holes for four and six derivative expanded

action. We also look at the black holes in unexpanded Born-Infeld action. In each case we calculate the

entropy, angular momentum and mass of the black holes. We also find the central charges for the

conformal field theory duals.
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I. INTRODUCTION

The black hole solutions of three dimensional gravity
have been investigated during recent years. The first black
hole solutions, known as the Banados-Teitelboim-Zanelli
(BTZ) black holes, were found in [1]. These solutions were
found in the presence of a negative cosmological constant.
Adding the higher derivative terms to the Einstein-Hilbert
action in the presence of a cosmological constant changes
the solutions and their asymptotic behaviors and their
physical properties.

The topological massive gravity describes propagation
of the massive gravitons around the flat, de Sitter or anti-
de Sitter (AdS) background metrics. This theory is con-
structed by adding a parity-violating Chern-Simons term to
the Einstein-Hilbert action [2]. The cosmological topologi-
cal massive gravity solutions contain either the BTZ black
holes [1] or the warped AdS3 black holes [3]. The charged
black hole solutions for topologically massive gravity
electrodynamics are presented in [4].

The new massive gravity (NMG) was found in [5]. This
theory was constructed by adding a parity-preserving
higher derivative term to the tree level action. In the
NMG theory there are the BTZ and warped AdS3 solutions
too [6]. The charged black hole solutions for new massive
gravity electrodynamics are given in [7].

Several attempts have been made to extend the three
dimensional gravity theories to the higher curvature
corrections. One of the most recent extensions is the
Born-Infeld extension of the new massive gravity [8]
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where we have added a gauge field strength and a Chern-
Simons term in order to study the charged solutions of this
theory.1 In the above action, g�� is the metric and G�� ¼
R�� � 1

2Rg�� is the Einstein tensor for the curvature

tensor R. F is the field strength for a Uð1Þ gauge field.
We consider m as a mass parameter and a and � as two
constant parameters, here � ¼ 8�GN. To have a positive
coefficient for the scalar curvature we choose � ¼ �1.
By inserting a ¼ � ¼ 0, and by expansion to second

order of the small curvature parameter of the above action,
one finds the new massive gravity action in [5]. The next-
order terms add other extensions to the new massive grav-
ity, which are consistent with deformations of NMG ob-
tained from AdS/CFT correspondence [9]. The other
extension of the NMG using the AdS/CFT method in 3D
is given by [10]. The uncharged AdS black-hole solution
for this theory has been found in [11] (see also [12]).
In this paper and in Sec. II, we review a method for

finding the black-hole solutions for this theory. This
method has been used in [6] to find the warped solutions
in new massive gravity. In Secs. III and IV we expand the
action (1.1) to four and six derivative terms. By solving the
equations of motion, we find the charged and uncharged
black holes. We discuss the domain of validity of each
solution and find the physical parameters (mass, angular
momentum, temperature and entropy) of our black holes.
We show that at each order of expansion the behavior of the
solutions (the physical parameters) depend on a different
range of the parameters of the theory. In Sec. V we do the
same steps as in Secs. III and IVexcept for the Born-Infeld
(BI) action (1.1) (unexpanded action). We show that the
behavior of the solutions is totally different when one
considers the BI action (so we need to study the theory at
each order of expansion to find the behavior of the black
holes at that order). In Sec. VI we find the central charges
for the conformal field theory (CFT) duals. In Sec. VII we
summarize our results.
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1One may consider other terms here. For example consider a
more general form as aF�� ! aF�� þ bF2g�� þ cF�

�F��.
Our computations shows a similar behavior with a complicated
form of solutions depending on a, b and c parameters.
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II. HOW TO FIND A BLACK-HOLE SOLUTION?

To find the stationary circularly symmetric solutions for
the Lagrangian (1.1) at different orders, we use the dimen-
sional reduction procedure, presented in [4,6]. We use the
following ansatz for the metric and the Uð1Þ gauge field

ds2 ¼ �abð�Þdxadxb þ 	�2ð�ÞR�2ð�Þd�2;

A ¼ Aað�Þdxa;
(2.1)

where (a, b ¼ 0, 1) and (x0 ¼ t, x1 ¼ ’). The parameter �
can be expressed as a 2� 2 matrix

� ¼ T þ X Y
Y T � X

� �
; (2.2)

and R2 � X2 ¼ �T2 þ X2 þ Y2 is the Minkowski pseu-
donorm of the ‘‘vector’’ Xð�Þ ¼ ðT; X; YÞ. We do the
following steps to find the solutions:

(1) We insert the ansatz (2.1) into the Lagrangian and
reduce the action to I ¼ R

d2x
R
d�L. By variation

with respect to Aa, 	 , T, X and Y we find the
equations of motion.

(2) The black-hole solutions for equations of motion in
step 1 can be found by choosing the following ansatz
for the vector field X and the gauge field A (this
behavior is general, for example, see the gauge field
solutions in [4,7])

X ¼ ��2 þ �þ �;

A ¼ cð2zdt� ð�þ 2!zÞd’Þ:
(2.3)

Inserting this ansatz into the equations of motion for
T, X or Y or into the equation of motion for 	 , we
always find two conditions �2 ¼ � � � ¼ 0. We
will find the values of c and z for the above ansatz
by using the equations of motion.

(3) Without loss of generality we choose 	ð�Þ ¼ 1 in all
equations of motion.

(4) Following [6],we can choose a rotating frame and a
length-time scale such that
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�
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2
;� 1

2
; 0

�
;

� ¼ ð!;�!;�1Þ;
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(2.4)

where u ¼ 
2
0
�2
0

4z þ!2z. By these parameters one

finds R2 ¼ ð1� 2zÞ�2 þ �2 � 
2
0ð�2 � �2

0Þ. By

the above parameters, we are able to write the
metric in the warped-AdS3 Arnowitt-Deser-Misner
form [6]
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where �0 (describes the location of the horizon)
together with ! are two parameters of the theory

and r2 ¼ �2 þ 2!�þ!2ð1� 
2
0Þ þ 
2

0
�2
0

1�
2
0

.

(5) As indicated in [6], in order to avoid the closed
timelike solutions, we must have 0<
2

0 < 1 or

0< z < 1
2 . We impose this condition in order to

find the domain of validity of our solutions. For
charged solutions we consider the reality condition
for the gauge field strength.

(6) For each black hole solution we can find the entropy
according to the Wald formula

S ¼ 4�Ah

�
�L

�R0202

ðg00g22Þ�1

�
h
; (2.6)

where Ah ¼ 2�ffiffiffiffiffiffiffiffiffi
1�
2

0

p ½�0 þ!ð1� 
2
0Þ� is the area of

the horizon.
(7) The computation of the mass and angular momen-

tum is possible if we can linearize the field equations
and use the Abbot-Deser-Tekin approach [13,14].
Equivalently, we can follow the Clément’s approach
in [6]. The main idea of this approach is the fact that
the Lagrangian has SLð2; RÞ symmetry. This sym-
metry allows us to write the metric as (2.1). By this
symmetry we can find a conserved current and its
conserved charge. Under infinitesimal symmetry
transformation we can find the transformations of
the gravitational and electromagnetic fields. By us-
ing these transformations we can find the conserved
current, called the superangular momentum vector,
J. We have discussed the details of computing the
superangular momentum in Appendix A.

The conserved charge is the angular momentum and it
can be read from the superangular momentum by using the
relation J ¼ 2�ð�JT � �JXÞ. Here �J is the difference
between the values of the superangular momentum for the
black hole and for the background solution. The back-
ground solution is given by the values �0 ¼ ! ¼ c ¼ 0.
Using these values we can find from (2.5), a horizonless
background metric

ds2¼�
2
0dt

2þ�2

�
d�� 1

�
dt

�
2þ 1


2
0	

2

d�2

�2
; (2.7)

with �� ¼ ð12 ;� 1
2 ; 0Þ, �� ¼ ð0; 0;�1Þ, �� ¼ ðz; z; 0Þ. To

compute the mass, one could use the first law of thermo-
dynamics for black holes in the modified Smarr-like
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formula [4], which is appropriate for the warped AdS3
black holes, i.e,

M ¼ THSþ 2�hJ: (2.8)

Using the Arnowitt-Deser-Misner form of the metric we
can read the Hawking temperature and the horizon angular
velocity (see [4])

TH ¼ 	
2
0�0

Ah

; �h ¼
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

0

q
Ah

: (2.9)

Inserting (2.9) into (2.8) and by using the value of the
angular momentum we can find the mass of the black
holes. For every solution, we must check that, the physical
parameters satisfy the differential form of the first law of
thermodynamics for black holes, i.e,

dM ¼ THdSþ�hdJ: (2.10)

In our solutions, the physical parameters of mass, entropy
and angular momentum are functions of two free parame-
ters, �0 and !, so the differentiations are with respect to
these two free parameters. For more details of computa-
tions see Appendix B.

Note: For every Lagrangian we will use, we find three
types of black holes. The first one is the uncharged black
hole when c ¼ � ¼ 0. The second one is the Maxwell
charged (M-charged) black hole, where we consider a � 0
but � ¼ 0. The third one is the Maxwell-Chern-Simons
charged black hole (MCS-charged). In the latter case, we
consider a � 0 and � � 0, but to write the Lagrangian in
the canonical form we choose a2 ¼ � �

2m2 and� ¼ 1. Note

that we are able to perform all the calculations for general
values of a and �.

III. THE FOUR DERIVATIVE ACTION

Expanding the general Lagrangian (1.1) up to four de-
rivative terms, gives us the following Lagrangian
(TrðABÞ ¼ A��B

��)
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The equations of motion coming form the variation with
respect to the gauge field are
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The variation with respect to 	 gives
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64
� 3
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and finally variations with respect to T, X and Y give the
following equations:

�L4

�T
¼ �L4

�X

¼ � 1

16m2�
ð17þ 8z� 8m2 þ 2a2c2m2

� ð8m2 þ 9þ 12zÞ þ 16a4c4m4zÞ ¼ 0;

�L4

�Y
¼ 0: (3.4)

A. Uncharged solution

In this case we find the known NMG solution [6]

z¼�17

8
þm2; �¼ 1

16

21�48m2þ16m4

m2
: (3.5)

With the above values, the domain of validity of the
solution for m2 will be 17

8 <m2 < 21
8 and for the cosmo-

logical constant it is 1:806<�< 4:081.
The superangular momentum is given by

JBH ¼ �ð8m2 � 21Þð8m2 � 17Þ
32�m2

ð1þ!2; 1�!2; 2!Þ

þ �2
0

2�m2

8m2 � 21

8m2 � 17
ð1;�1; 0Þ: (3.6)

Using the method reviewed in Sec. II, we can find the
entropy, the angular momentum and the mass as follows

S ¼ Ah

2m2GN

;

J ¼ 8m2 � 21

4GNm
2

�
�2
0

8m2 � 17
� 8m2 � 17

16
!2

�
;

M ¼ �ð8m2 � 21Þð8m2 � 17Þ
32GNm

2
!:

(3.7)

B. M-charged solution

In this case we consider a � 0 and � ¼ 0. The equa-
tions of motion give the following solution
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z ¼ �1� 1

8m2
;

� ¼ 1

16

�3� 24m2 þ 16m4

m2
;

c2a2 ¼ 1� 1

m2
:

(3.8)

The domain of validity of this solution form2 will be� 1
8 <

m2 <� 1
12 , which looks totally different from the un-

charged case. The cosmological constant is limited be-
tween �0:125<�< 0:667, so it has both plus and

minus signs. It changes its sign at m2 ¼ 3
4 �

ffiffi
3

p
2 ffi

�0:116. We also find from the above solution that 9<
c2a2 < 13. Using the method in Sec. II, the superangular
momentum can be found as

JBH ¼ �ð8m2 þ 1Þð12m2 þ 1Þ
32�m4

ð1þ!2; 1�!2; 2!Þ

þ �2
0

2�

12m2 þ 1

8m2 þ 1
ð1;�1; 0Þ; (3.9)

and the entropy, angular momentum and mass are given by

S ¼ Ah
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;

J ¼ 12m2 þ 1
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�
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16m4
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(3.10)

C. MCS-charged solution

In this case we consider a2 ¼ � �
2m2 and � ¼ 1. We find

the following parameters from the equations of motion

z ¼ � 1

12

�
1þ 1

m2

�
;

� ¼ � 1

48

�
16þ 1

m2

�
;

�c2 ¼ 2�m2

1þm2
:

(3.11)

The domain of validity of this solution will be �1<
m2 <� 1

7 . Inserting this into the cosmological constant

relation, we find that it is always negative �0:312 ffi
� 5

16 <�<� 3
16 ffi �0:187 in this domain. Finally, we

find from the solution that 5
2 < �c2.

The superangular momentum for MCS-charged black
hole is given by

JBH ¼ �ð7m2 þ 1Þðm2 þ 1Þ
144�m4

ð1þ!2; 1�!2; 2!Þ

þ �2
0

4�

7m2 þ 1

m2 þ 1
ð1;�1; 0Þ; (3.12)

and the entropy, angular momentum and mass are as
follows

S ¼ Ah
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;

J ¼ 7m2 þ 1
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�
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�
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144m4GN
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(3.13)

As we see, each of the above solutions has its own
domain of validity for m2 and the cosmological constant.
In all the above cases, the entropy is proportional to the
area of the horizon. The angular momentum and mass have
the same functionality in terms of ! and �0 but with
different coefficients.

IV. THE SIX DERIVATIVE ACTION

By expanding the Lagrangian (1.1) up to six derivative
terms we find the following Lagrangian

L6¼L4þ2m2
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(4.1)

The gauge field equations of motion are given by

�L6
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The variation with respect to 	 gives
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and variations of the Lagrangian with respect to T, X and Y
give the following relations
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4
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3
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�
¼ 0;

�L6

�Y
¼ 0: (4.4)

We now try to solve the above equations of motion and find
different (un)charged black hole solutions. As in the pre-
vious section we will find the superangular momentum,
and by computing the value of the entropy from the Wald
formula and by using the first law of thermodynamics for
black holes we will be able to find the angular momentum
and the mass of our solutions. Our calculations for all the
solutions show that, there is a general behavior. In fact, we
find that the superangular momentum can be written as

JBH ¼ 1

2�m4
Uð1þ!2; 1�!2; 2!Þ

þ 1

4�m4z
V�2

0ð1;�1; 0Þ; (4.5)

and the entropy, angular momentum and mass are given by

S ¼ Ah

4GNm
4

V

z� 1
2

;

J ¼ 1

4GNm
4

�
U!2 þ 1

2z
V�2

0

�
;

M ¼ !zðU!� V�0Þ
GNm

4ð�0 þ 2!zÞ ;

(4.6)

where U, V, z and Ah depend on the solution.

A. Uncharged solution

For uncharged black holes, when a ¼ 0 one finds the
following solution for z and �2

m2 ¼ 1311

1448
þ 3

181
z� 9

724
ð11695� 208z� 320z2Þ1=2;

(4.7)

� ¼ 1

m4

�
45

32
þ 5

4
m2 � 7

3
m4 þ 16

27
m6 � 5

54

�
m4 � 27

16

�

� ð81þ 144m2 � 80m4Þ1=2
�
: (4.8)

To have a causally regular warped black hole one needs to
consider 0< z < 1

2 , so we find the following domains by

looking at Eq. (4.7):
The upper sign of (4.7): In this case 2:247<

m2 < 2:250. The lower bound happens at z ¼ 1
2 and the

upper bound is located at the point of z ¼ 1
8 . Inserting this

domain into Eq. (4.8), for the upper sign of (4.8) we find
�0:176<�<�0:167 and for the lower sign of (4.8) one
obtains �0:167<�<�0:034.
The lower sign of (4.7): In this case �0:420<

m2 <�0:043. Here the lower bound happens at z ¼ 1
2

and the upper bound is located at z ¼ 0. Inserting again
the above domain into Eq. (4.8), for the upper sign of (4.8)
one finds 1:348<�< 1:500 and for the lower sign we
have 2:368<�< 3:325.
The superangular momentum (4.5) and the entropy,

angular momentum and mass in (4.6) all are given by the
following values for U and V

U ¼ z

�
m4 �

�
1

8
þ 5z

�
m2 � 1

128
� 5

8
zþ 11

2
z2
�
;

V ¼
�
z� 1

2

��
m4 �

�
1

8
þ z

�
m2 � 1

128
� 1

8
zþ 3

2
z2
�
:

(4.9)

B. M-charged solution

To find the Maxwell charged black holes we consider
a � 0. We find the following equation for the value of z in
terms of m

6144ðzþ 1Þ2m8 � ð8192z3 þ 15360z2 þ 5376z

� 1792Þm6 þ ð8192z4 þ 14336z3 þ 5376z2

� 640zþ 272Þm4 þ ð1024z3 þ 768z2

� 16zþ 24Þm2 � 15z2 � 12z ¼ 0: (4.10)

2This special case has been found in [11]. Here we find the
domain of validity of their solution and the domain of the
cosmological constant.
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By finding the roots of the above polynomial one is able
to find the values for � and c. For simplicity we define

� ¼ ð�20m4 þ 2ð1� 8zÞm2 þ 16z2 � 4zþ 1Þ1=2 then

� ¼ 1

1728m4
½1024m6 � 2016m4

þ ð1536z2 þ 768z� 336Þm2 � 2048z3 � 384z2

� 96z� 5� 32ð10m4 � 4ðzþ 1Þm2 þ 16z2

þ 5zþ 1Þ��; (4.11)

c2a2 ¼ 1

24zm2
ð�8m2 � 8z� 5� 4�Þ; (4.12)

where the plus sign in (4.11) corresponds to the minus sign
in (4.12) and vice versa.
To find the domain of validity for this black hole one

needs to find the roots of (4.10). A numerical analysis
shows that there are two real solutions for m2. Figure 1
(left) shows the results of this numerical analysis. For the
negative roots we find that �0:167<m2 <�0:100. For
the positive roots we have 0<m2 < 0:038, where in this
case the extremum point is near to the point z ffi 0:180.

FIG. 1. Left: Real roots of Eq. (4.10). Right: Real roots of Eq. (4.14).

FIG. 2. Cosmological constant for upper (left) and lower (right) signs of (4.11).
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The numerical calculations show the following values of
the cosmological constant (see Fig. 2).

The upper sign: For Eq. (4.11) with the upper sign the
cosmological constant is always negative (left diagram in
Fig. 2). For m2 < 0 we have �54:821<�<�0:635 and
for m2 > 0 we find �<�38:026, where the extremum is
located at z ffi 0:124.

The lower sign: The numerical analysis shows that for
Eq. (4.11) with the lower sign the cosmological constant is
always positive (the right diagram of Fig. 2). For m2 < 0
we have 0:229<�< 0:826 and for m2 > 0 we have
1:763<�, where the extremum is located at z ffi 0:347.

It remains to find the behavior of c2a2 in Eq. (4.12). For
the upper or lower signs of (4.12) one could find either
positive or negative values (see Fig. 3). Since the value of c
must be real (c2 > 0), depending on the a2 sign one may
choose either the left or the right diagram.

The superangular momentum (4.5) and the values for the
entropy, angular momentum and mass in Eq. (4.6) are
given by the following values for U and V

U ¼ 1

3
z

�
ð2z�m2Þ�þ 14m4 þ 2ð1� 4zÞm2

þ 8z2 � zþ 3

16

�
;

V ¼ 1

9

�
z� 1

2

���
2z�m2 � 1

4

�
�þ 14m4 þ ð1� 8zÞm2

þ 8z2 � 2zþ 5

16

�
: (4.13)

C. MCS-charged solution

The Maxwell-Chern-Simons black holes with a2 ¼
� �

2m2 and � ¼ 1 are given by the following relation

zð5zþ4Þ�1024

3

�
z3þ3

4
z2� 1

64
zþ 3

128

�
m2

�4096

�
z4þ5

6
z3� 13

384
z2� 77

1536
zþ 7

384

�
m4

þ4096

�
z3þ23

24
z2� 25

192
z� 11

192

�
m6

�1792

�
z2þ59

42
zþ 73

336

�
m8�3072

�
zþ 1

12

�
m10¼0;

(4.14)

by finding the roots of the above polynomial again, one

could find the values for � and c. We define � ¼ ð4m4 þ
2ð1� 8zÞm2 þ 16z2 � 4zþ 1Þ1=2, then we find

� ¼ 1

1728m4
½�1280m6 � ð1440þ 1152zÞm4

þ ð1536z2 þ 768z� 336Þm2 � 2048z3

� 384z2 � 96z� 5� 32ð20m4 þ 4ðzþ 1Þm2

� 16z2 � 5z� 1Þ��; (4.15)

�c2 ¼ 2

3z

�
m2 þ zþ 5

8
� 1

2
�

�
; (4.16)

where the plus sign in (4.15) corresponds to the minus sign
in (4.16) and vice versa.
Similar to previous sections we can find the domain of

validity of our solution. Looking at Eq. (4.14) one finds that

FIG. 3. a2c2 in Eq. (4.12) for domain of 0< z < 1
2 .
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this equation has two negative and one positive roots, Fig. 1
(right).

Inserting these roots into the relation (4.15) one finds:
The positive root: For m2 > 0 we have �> 0 for the

upper sign of (4.15) and for the lower sign we find �< 0
(see Fig. 4).

The negative roots: For m2 < 0 we have both
signs (depending on z). For the upper sign of (4.15)
we can draw Fig. 5 (left) and for lower sign we find
Fig. 5 (right).

The U and V values in this case are given by

U ¼ 1

3
z

�
ð2m4 þm2 � 2zÞ�þ 4m6 þ 4

�
zþ 15

8

�
m4

þ 2ð1� 4zÞm2 þ 8z2 � zþ 3

16

�
;

V ¼ 1

9

�
z� 1

2

��
�
�
2z�m2 � 1

4

�
�þ 11m4

þ ð1� 8zÞm2 þ 8z2 � 2zþ 5

16

�
: (4.17)

V. ALL ORDER SOLUTION

As we saw in previous sections, at each level of expan-
sion we have different properties for our solutions. It is
interesting to consider the BI action (1.1) without expan-
sion and find its physical properties too. If we use our
ansatz then we will find the following sets of equations
of motion:
The gauge field equations of motion are given by

�L

�At

¼ c

�

�
��þ 4a2m3

�
� �1þ 4m2 þ 8z

1� 8m2 þ 16ð1� 2a2c2zÞm4

�
1=2

�
¼ 0;

�L

�A’

¼ �L

�A�

¼ 0: (5.1)

The variation with respect to 	 gives

FIG. 4. Values of cosmological constant in Eq. (4.15) for
domain of 0< z < 1

2 and positive roots of (4.14).

FIG. 5. Values of cosmological constant in Eq. (4.15) for domain of 0< z < 1
2 and negative roots of (4.14).
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�L

�	
¼ 2m2

�

�
1þ �

2m2

�
� 16m6 � 8ð1� ð2þ a2c2Þz� 4a2c2z2Þm4 þ ð1þ 8zÞm2 � 3z

�mðð4m2 þ 8z� 1Þð16ð1� 2a2c2zÞm4 � 8m2 þ 1ÞÞ1=2 ¼ 0; (5.2)

and variations of the Lagrangian with respect to T, X and Y give the following relations

�L

�T
¼ �L

�X
¼ �8a2c2m6 þ 4ð1� 6ðzþ 1

4Þa2c2Þm4 � 10m2 þ 9
4

�mðð4m2 þ 8z� 1Þð16ð1� 2a2c2zÞm4 � 8m2 þ 1ÞÞ1=2 ¼ 0;
�L4

�Y
¼ 0: (5.3)

A. Uncharged solution

Inserting a ¼ � ¼ 0 in the above equations of motion
we find (see also [11])

�4m4þð1�4zÞm2�3zþmð2m2þ�Þð4m2þ8z�1Þ1=2
�mð4m2þ8z�1Þ1=2

¼0;

4m2�9

4�mð4m2þ8z�1Þ1=2¼0: (5.4)

The solution for these equations is

m ¼ � 3

2
; � ¼ 12þ 8z� 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðzþ 1Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðzþ 1Þp : (5.5)

Unlike the previous cases here the value of m is fixed.

To have a regular black hole we need either � 9
2 þ 3

ffiffiffi
2

p
<

�< 0 when 0< z <� 15
64 þ 9

64

ffiffiffiffiffiffi
17

p
or 0<�<� 9

2

þ 8
3

ffiffiffi
3

p
when � 15

64 þ 9
64

ffiffiffiffiffiffi
17

p
< z < 1

2 .

The entropy of such a black hole can be found by using
the Wald formula for m ¼ � 3

2

S ¼ � Ah

3GN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðzþ 1Þp : (5.6)

As we see, in order to have a positive value entropy we
must choose m ¼ 3

2 .

We can find the superangular momentum as before

J ¼ � 2z

3�

2z� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðzþ 1Þp

�
ð1þ!2; 1�!2; 2!Þ

� 1

4z2
�2
0ð1;�1; 0Þ

�
: (5.7)

Using the above results the angular momentum and the
mass of the solution can be found as

J ¼ � ð2z� 1Þ
12GNz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðzþ 1Þp ð�2

0 � 4z2!2Þ;

M ¼ � 2!zð2z� 1Þ
3GN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðzþ 1Þp :

(5.8)

B. M-Charged solution

Solving the equations of motion when a � 0, the only
consistent solution to the equations of motion will be
m2 ¼ 1

4 . Inserting this value into other equations of motion

gives z ¼ 0 and c ¼ 0 with � ¼ � 1
2 . So in this case the

gauge field vanishes and we have not charged the black
hole.

C. MCS-Charged solution

Solving equations of motion gives the following solution

z ¼ � 1

48

4m2 þ 3

m2
; � ¼ � 1

3
; �c2 ¼ 9� 4m2

3þ 4m2
:

(5.9)

As we see in this case the value of cosmological constant is
fixed. The values of m2 are limited between � 3

4 <m2 <

� 3
28 , also we find 11

3 < �c2.

The superangular momentum for this black hole is
equal to

J ¼ � 1

2304

ð3þ 28m2Þð3þ 4m2Þ
�m4

ð1þ!2; 1�!2; 2!Þ

þ 3þ 28m2

4�ð3þ 4m2Þ�
2
0ð1;�1; 0Þ: (5.10)

The entropy, angular momentum and mass of this black
hole are given by

S ¼ Ah

4GN

;

J ¼ 3þ 28m2

8GN

�
�2
0

3þ 4m2
� ð3þ 4m2Þ!2

576m4

�
;

M ¼ �ð3þ 4m2Þð3þ 28m2Þ
2304GNm

4
!:

(5.11)

VI. A NOTE ON THE CENTRAL CHARGES

In previous sections we found the warped AdS3 solu-
tions. It is natural to ask what are the properties of the 2
dimensional CFT duals to these solutions. In the pure
Einstein gravity, the global SOð2; 2Þ symmetry is enhanced
to two copies of an infinite dimensional Virasoro algebra
with the SLð2; RÞ � SLð2; RÞ symmetry which has the
central charge [8,15], c ¼ 3l

2G3
, where l is the length of
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AdS space. When one considers the higher derivative terms
or adds the gauge fields, the value of the central charge
changes. Some properties of the CFT dual theories for
warped AdS3 and BTZ black holes have been found in
[11,12,16,17]. The isometery group of the dual CFT in the
asymptotic limit of the warped AdS black hole is
SLð2; RÞR �Uð1ÞL, [18]. To find the central charge we
use the Cardy’s formula

SBH ¼ �2l

3
ðcLTL þ cRTRÞ; (6.1)

where TL, TR are the left and right temperatures. The
relation between the area of the horizon and the left (right)
temperatures is given by [11,18,19],

Ah ¼ 2�2l2


2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4
2 � 1Þ

3

s
ðTL þ TRÞ; (6.2)

where the left and right temperatures in terms of inner and
outer horizons are given by

TL ¼
�

3
2

4
2 � 1

�
rþ þ r� � 2


ffiffiffiffiffiffiffiffiffiffiffi
rþr�

p
2�l

;

TR ¼
�

3
2

4
2 � 1

�
rþ � r�
2�l

:

(6.3)

In terms of our parameters we have the following relations

�0 ¼ rþ � r�
2

;

ð1� 
2Þ! ¼ rþ þ r� � 2

ffiffiffiffiffiffiffiffiffiffiffi
rþr�

p
2

:

(6.4)

In our computations since we have fixed 	 ¼ 1 and since
the Ricci scalar is always equal to R ¼ � 6

l2
then we find

that l ¼ 6ffiffiffiffiffiffiffiffiffiffi
9�24z

p .

We have two different types of Lagrangians here. In first
type the gravity is coupled to a Maxwell field in a parity-
preserving theory and in the second type we add a
Maxwell-Chern-Simons term, so it is a parity-violating
theory. In the first case we have c ¼ cL ¼ cR, but for the
parity-violating theory this equivalence is not true. For
the first type by substituting (6.2) into (6.1) we obtain the
following central charges, (using 
2 ¼ 1� 2z)

cð4Þ ¼ 3

G3

2

ð1� 2zÞm2
;

cð4MÞ ¼ 3

G3

2

ð1� 2zÞ ;

cð6Þ ¼ 3

G3

V

ð1� 2zÞðz� 1
2Þm4

;

cBI ¼ 4

G3

1

ð1� 2zÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðzþ 1Þp ;

(6.5)

where cð4Þ, is the central charge of NMG, cð4MÞ and cð6Þ are
central charges for four and six derivative new massive
gravity electrodynamics, respectively. V is given by (4.9)
and (4.13) for uncharged andM-charged black holes. In the
second type there are distinguishable left (right) central
charges

cð4ÞðL;RÞ ¼
3

ð1� 2zÞG3

�
2� �0 þ 2!z

�0 � 2!z

�
;

cð6ÞðL;RÞ ¼
3

ð1� 2zÞG3

�
V

ðz� 1
2Þm4

� 1

3

�
�0 þ 2!z

�0 � 2!z

��
;

cBIðL;RÞ ¼
4

ð1� 2zÞG3

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðzþ 1Þp �
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðzþ 1Þp � 3

4

�

� �0 þ 2!z

�0 � 2!z

�
; (6.8)

where V has the corresponding value of M-charged black
holes (4.13).3

VII. SUMMARYAND DISCUSSION

In this paper we have found different black hole solu-
tions for the Born-Infeld extension of new massive gravity.
We have extended the NMG in two directions, gravity and
electromagnetism. The electromagnetic part contains a
Maxwell term and a Chern-Simons term. We have found
three types of warped (A)dS solutions. These are un-
charged, Maxwell charged and Maxwell-Chern-Simons
charged black holes. For each of them we have found the
domain of validity (closed timelike curve free and the
reality of the gauge field strength). We have found these
black holes for expanded (up to four and six derivative) and
unexpanded BI action. The physical properties of the so-
lutions in each case are totally different and one cannot find
the four or six derivative properties from the BI properties.
In this theory we have two types of parameters. The first

type includes parameters in the Lagrangian. The m2 which
is the mass parameter for our massive gravity theory and
the cosmological constant�. The second type includes the
parameters which are coming from the solutions. From
(2.5) we see three parameters. The parameter 
0 or equiv-
alently z which is limited by the closed timelike curve free
condition, and two free parameters �0 and !. There is
another parameter c, in (2.3), which corresponds to the
electric or magnetic charge of the solutions.
Among these parameters in all the solutions, the values

of m2, � and c are controlled by the value of the z
parameter. Our computation shows that each of these pa-
rameters may have positive or negative values. So we may
have de Sitter or anti-de Sitter solutions in our theory

3For a general value of� one can obtain the chiral point where
cL ¼ 0.
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which depends on the level of expansion and existence of
the M-charges or MCS-charges in the theory. Our results
are summarized as follows:

In the four derivative case we have only one set of roots
form2 which is either positive or negative depending on the
solution. However in the six derivative case for uncharged
and M-charged cases we have two sets of roots, one
positive and one negative. For MCS-charged solutions we
have three sets of roots, one positive and two negative. In
the BI case the situation is totally different. For the un-
charged case we find only a single point for m2. For the BI
case there is no M-charged solution and for MCS-charged
black holes there is only one set of roots for m2.

In four derivative action for uncharged solutions m2 > 0
and�> 0. For M-charged solutionsm2 < 0 but� changes
its sign in a specific point z. For MCS-charged black holes
m2 < 0 and �< 0.

In six derivative action for uncharged solutions m2 and
� can have both signs, this is true for M-charged solutions.
For MCS-charged black holes we have the same behavior
but there are situations where � changes its sign in a
specific value of z.

In unexpanded BI action, for uncharged solutionsm2 has
a fixed value and the cosmological constant has both plus
and minus signs. For M-charged solutions there is no
solution. For MCS-charged black holes m2 < 0 and the
cosmological constant has a fixed value � ¼ � 1

3 .

For all the above solutions we have found the entropy,
angular momentum and mass. Our results satisfy the dif-
ferential form of the first law of thermodynamics for black
holes. We have used the free parameters of the theory, �0

and ! to show this.
In all of the solutions, the entropy is proportional to the

area of the horizon. Using the Cardy’s formula we also find
the central charges of the CFT duals. For parity-preserving
theories we find (6.5) central charges and for parity-
violating theories the left and right central charges are
given by (6.8).
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APPENDIX A: THE SUPERANGULAR
MOMENTUM

To compute the angular momentum it is essential to note
that the Lagrangian has SLð2; RÞ symmetry and the super-
angular momentum is a SLð2; RÞ conserved current. Under
the infinitesimal transformation, we find the following
transformation for the fields,

�T¼�1Y��2X; �X¼�0Y��2T;

�Y¼��0Xþ�1T; �A0¼1

2
ð�0þ�1Þ A1�1

2
�2A0;

�A1¼1

2
ð��0þ�1ÞA0þ1

2
�2A1; �A2¼0: (A1)

Using the above relations one can find the conserved
currents (Superangular momentum). For the gravity part
we find

JGr ¼
�
þ
�
@L

@X0 Y � @L

@Y0 X
�
�

��
@L

@X00

�0
Y �

�
@L

@Y00

�0
X

�

þ
�
@L

@X00 Y
0 � @L

@Y00 X
0
�
;þ

�
@L

@T0 Y þ @L

@Y0 T
�

�
��

@L

@T00

�0
Y þ

�
@L

@Y00

�0
T

�
þ

�
@L

@T00 Y
0 þ @L

@Y00 T
0
�
;

�
�
@L

@T0 X þ @L

@X0 T
�
þ

��
@L

@T00

�0
X þ

�
@L

@X00

�0
T

�

�
�
@L

@T00 X
0 þ @L

@X00 T
0
��

; (A2)

where primes denote the derivatives with respect to the �
variable. One may write this result as �L

�X ^X (see [6]).

Also for the electromagnetic part one finds

J EM ¼ 1

2

��
@L

@A0
0

A1 � @L

@A0
1

A0

�
;

�
@L

@A0
0

A1

þ @L

@A0
1

A0

�
;�

�
@L

@A0
0

A0 � @L

@A0
1

A1

��
: (A3)

The total superangular momentum then will be J ¼ JGr þ
JEM.

APPENDIX B: THE DIFFERENTIAL FORM OF
THE FIRST LAW

As we mentioned in Sec. II, the black hole solutions in
this paper have two free parameters �0 and !. In order to
check that the entropy, angular momentum and mass sat-
isfy the differential form of the first law of thermodynam-
ics for black holes we need to know every parameter in
terms of these two free parameters.

The area of the horizon is equal to AH ¼
ffiffi
2
z

q
ð�0 þ 2!zÞ.

The temperature of the black holes is given by TH ¼
ð1�2zÞ

2

ffiffiffiffi
2z

p
�0

�0þ2!z , and the angular velocity can be read from

the metric and it is equal to �H ¼ 2z
�0þ2!z .

For all solutions in this paper we must check the follow-
ing relations

@M

@�0

� TH

@SBH
@�0

��H

@J

@�0

¼ 0;

@M

@!
� TH

@SBH
@!

��H

@J

@!
¼ 0:

(B1)
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As an example (we have checked the above relations for every solution, the computations are very lengthy in most cases)
for uncharged solutions in the four derivative case we find

@M

@�0

� TH

@SBH
@�0

��H

@J

@�0

¼ � 1

2

�0ð8m2 � 17� 8zÞ
ð�0 þ 2!zÞGm2ð8m2 � 17Þ ¼ 0;

@M

@!
� TH

@SBH
@!

��H

@J

@!
¼ � 1

4

ðz� 21
8 þm2Þð8m2 � 17� 8zÞ
ð�0 þ 2!zÞGm2

¼ 0;

(B2)

where we have used the equation of motion z ¼ m2 � 17
8 in this case. As another example for the uncharged solution in the

six derivative case we find

@M

@�0

� TH

@SBH
@�0

��H

@J

@�0

¼ � 1

64

!2z3ð124m4 � 128m2z� 272m2 þ 192z2 þ 240z� 33Þ
ð�0 þ 2!zÞ2Gm4

¼ 0;

@M

@!
� TH

@SBH
@!

��H

@J

@!
¼ 1

64

!z3�0ð124m4 � 128m2z� 272m2 þ 192z2 þ 240z� 33Þ
ð�0 þ 2!zÞ2Gm4

¼ 0;

(B3)

where we have used the equation of motion again.
For charged solutions, for example, consider the M-charged solution at the four derivative case, we find

@M

@�0

� TH

@SBH
@�0

��H

@J

@�0

¼ � 4�0ðm2 þ zm2 þ 1
8Þ

ð�0 þ 2!zÞGð8m2 þ 1Þ ¼ 0;

@M

@!
� TH

@SBH
@!

��H

@J

@!
¼ 2�0ððz� 3

2Þm2 � 1
8Þðm2 þ zm2 þ 1

8Þ
ð�0 þ 2!zÞGm4

¼ 0:

(B4)

In all cases in this paper, by using the equations of motion one can show that the equations (B1) are correct.
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