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Abstract

A method is presented for calculating the free atilons

of an isentropic thin-walled circular cylindricahal
with different boundary conditions. The method éséd

on Love’s theory of shells. An experimental studgsw
conducted on a circular cylindrical shell with sigp
supported boundary conditions. The objective was to
evaluate the validity of the theory. To investigéte
effects of a shell's dimension and boundary coodgi

on its natural frequencies, various models werdistl
Shells with different lengths and radius/thicknessos
were compared. Moreover, shells with simply supgbrt
and clamped boundary conditions were modeled and
analyzed. By comparing such varying terms intemgsti
results were obtained, especially from designinitpo
of view.

Keywords: circular cylindrical shell, natural frequency,
mode shape, Love theory.

Introduction

Vibration analysis of circular cylindrical shells iof
considerable importance as they are extensivelg iurse
many fields, such as; aerospace, mechanical, andl
marine engineering structures. A thin-walled shela
three dimensional body bounded by two closely space
curved surfaces. Compared with other dimensiores, th
distance of these two surfaces is small. Many regar
shells as generalizations of flat plates; howeeeflat
plate is a special case of a shell with zero cureat
Furthermore, because of the inability to separae t
bending terms of a shell from its stretching terstatic

and dynamic analyses of shells has been of great

complexity.

The literature concerning the vibration of shels i
extremely extensive and readers can refer to Lgi§sa
or more recently Amabili and Paidoussis [2] for
comprehensive reviews of models and results predent
in the literature.

Love [3] modified the Kirchhoff hypothesis for pest
and established the assumptions used in the sedcall
classic theory of thin shells. These assumptiorschv
have now become the foundations of nearly all shell
theories, are commonly known as Love'’s approxinmatio
of the first kind. Soedel [4] introduced a set bfete
closed form solutions for the natural frequencids o
cylindrical shells and also obtained mode shape
coefficients of a simply supported cylindrical dhiey
applying normal solutions to the Love theory [3].
Therefore, apart from the theoretical aspects @flsh

The main aim of the present paper is to investigjate
limits of validation of the Love theory. These Ilisi
include the type of boundary conditions employéu, t
type of vibration applied to the shell and the dasiens

of the shell. A general approach was made towdres t
Love theory, by applying it to; simply supportedaply
supported and clamped-clamped thin-walled cyliradric
shells with varying dimensions. Hence, a long
cylindrical shell was first chosen for experimenasad
analytical studies. Analytical and experimentaluftss
were compared, in order to verify the validationtloé
theory and the experimental setup. Analytical and
experimental results showed great adjacency, esdpeci
at certain frequencies and modes. Finally, se&rall
models were investigated to understand a shell's
vibration behavior towards dimensional and struatur
variations. By applying such variations good
agreements and great conclusions were yield.

Formulation of Problem

Consider a shell of constant thickness h, meanusadi
axial length L, with a Poisson’s ratio @f density of p
and Young's modulus of elasticity. Shell coordinates
in longitudinal and circumferential directions axeand
4, respectively, as shown in Figure 1.

Figurel : Circular cylindrical shell: coordina
system and dimensions.

The equations of motion for a cylindrical shell
according to the Love theory can be written in iwatr
form as followed:

Ly Ly Lyl[u
L21 L22 L23 \ :0 (1)
Ly Ly Lyglw

vibrations, there has also been many experimental Whereu, v andw are orthogonal directions respectively

studies made, see, e.g., References [5, 6, antbr7],
comparison with theoretical predictions.

in the axial, circumferential and radial directipgeown



in Figure 1, and L,(i,j=123)are differential

operators with respect tax and 8. If the shell has a
uniform wall thickness, the allowable spatial foiwh
distortion of a cross section must be periodic he t
length of the circumference. The axial, tangengiad
radial displacements of the wall must vary with éxel
position x and angleg as:

u = Acosk,,X) cosfif) cosiut)

v = Bsin(k,,x)sin(ng) cosgut)

w = Csin(k,,X) cosfid) cosiut)
in which k_ and n are the axial wavenumber and the
circumferential wave parameter respectivelyB and

C are respectively, the modal (wave) amplitudeshin t
x,6 and z directions, anda is the circular driving

frequency.

)

Direct Solution of the Love Theory

Substituting equation (2) into the Love theory dissed
earlier, a set of homogenous equations having the
following matrix form is yield:

Cll C12 C13 A 0
C21 C22 C23 B = 0 (3)
C31 C32 C33 C 0

in which |.Cij]|: (i,j = 1,2,3)are functions ofp, K., and

. For the nontrivial solution the determinant ot th
coefficient matrix in equation (3) must be zero:

deflc,] )=0.i,j=1.23. @)
A characteristic equation is obtained from the ewgoan

of equation (4) in which three unknowns are present
nk, and . In order to solve the characteristic

equation according to the exact solution, one s t
undergo several complicated operations. Therefore,
according to the direct solution analysis, the lawiave
number k_ and the circumferential wave parameter

of the corresponding natural frequency are assutmed
be known. The circumferential wave paramater
should always be represented by an integer number,
independent from the type of boundary conditions
opposed. Howeverk strongly depends upon the

boundary conditions employed. For simplicity the
flexural mode shapes of cylindrical shells in theéah

in which
_2\p2
2 _ PQ UE)R o ®)

Q is called the non-dimensional frequency parameter.
The solutions of equation (7) are [5]:

Q

Q% = -2 ai ~3a, cosS - ©
2n a
Q2 =-% [a7-3a cos? T & 10
2mn 3 4 a2 3 3 ( )
+4n a
2 —_2 [32 35 cos? A 11
3mn 3 4 a2 3 3 ( )
in which
+2ad -
a = cos? 278, +2a, - 93,8, 12)

2|(e2 -3a,f
For any combination ok and n, bi-cubic equation

(7) would have three positive roots. A shell ofiaeg
length may vibrate in any of these three frequencie
with all of them having the same longitudinal and
circumferential wave numbers. Therefore in a
cylindrical shell every mode shape has three distin
natural frequencies, however, the modes associetad
each of these frequencies can be classified asaghm
radial (or flexural), longitudinal (or axial) or
circumferential (or torsional). In the above eqoas

Q,., is the lowest, andQ, is the highest natural

frequency of a shell. Usually the lowest frequengy
associated with a motion that is primarily radial.
Nevertheless, depending upon shell dimensions, some
low frequency modes are recognized as primarily
longitudinal or circumferential rather than radiak an
example, for long shells which behave more likeearb
rather than a ring, some low frequency modes are
associated with axial dominant motions. Such modes
produce bending motions in a long shell.

Experimental Setup

Tests were conducted on a circular cylindrical Ishel
made of aluminum with a total length of 1830mm and
radii of 76.2mm. Material properties of the shekre,
E=68.2GPa (young’s modulus), ,0:2700Kg/m3
(density) and v = 033 (Poisson’s ratio). Two steel

disks with external radii of 76.2mm were insertatbi
each end of the shell. The disks were fastenedyigly

direction are assumed to be of the same form as a two fastening chains to the aluminum shell, in orte

transversely vibrating beam, with the same boundary
conditions. Therefore according to beam functiarsaf
shell with simply supported boundary conditions one
has:
mn

Kn=77 (5)
and similarly for a clamped shell one has:

2m+1
kf%' (6)

In the above equations is the axial wave parameter.
By applying the direct solution method a new
characteristic equation is yield for the Love theor

having the following form [1]:

Q°%+a,Q"+a,Q*+a,=0 )

produce simply supported boundary conditions on the
two ends.

The cylinder was then subjected to a non-contact
acoustical excitation, by means of two external
loudspeakers. The experimental setup is shown in
Figure 2. The whole shell setup was then put into a
reverberant room in order to make the sound pressur
equal at all surface points, inside and outsidestil,

so that the acoustical excitation could easily texci
axisymmetric §=0) modes of the shell. 60 measurement
points were uniformly distributed over the sheléagth

and circumference in order to identify various mode
shapes. The shell response was then measuredtwsing
accelerometers.
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Table 1: Experimental results with their relativeoes.

Longitudinal | Circumferential
Wave Wave Frequency (Hz)
Parameter Parameter
m n Experiment | Love | Error
1 1 138.40 13893 | 5.9
1 2 190.30 17294 | 04
2 2 310.50 24478 | 115
3 2 496.60 42415 | 91
1 3 502.20 47146 | 21.2
2 3 477.00 481.44 | 14.6
e N 3 3 558.90 | 514.47| 1.2
Exte_rnaI_Loudspeakers % 2 1 464.70 518.02 | 6.1
(Vibration Exciter) [ 4 3 638.30 | 586.64 | 0.9
Figure 2: Experimental setup in a reverberant room. 4 2 679.80 688.23 8.0
5 3 782.00 706.05| 8.1
It is interesting here to point out that, many ekpents 6 3 833.80 87062 | 97
have been carried out regarding flow induced vibrat 1 0 842.50 | 89208 | 44
of circular cylindrical shells. In the majority dhese 1 4 884.40 | 90229 | 2.0
experiments the shell is either filled or surrowhdsy 2 4 887.00 906.75 | 22
water from inside or outside. In these experimehés 3 4 981.60 917.34| 6.6
shaker or the hammer should be kept dry. This is 4 4 945.80 938.28 | 0.8
usually very time consuming, or even at some 5 4 964.70 97447 | 1.0

circumstances an unaccomplished task to do. Whereas
by using an acoustical excitation this problem is
completely solved and the measurements of empty and
fluid-filled shells could be done simultaneouslytivaut

any change in the experimental setup.

Results and Discussions
A shell with such dimensionst — 2267—R: 5172, IS
R "h

In Figure 3 the lowest natural frequency of a stig|l ,
is plotted as a function of the axial wave

parameter/length ratid . Two sets of data have been
L

plotted in this figure: (1) the experimented shveith a
thickness parameter (radius/thickness) ﬁf: 5172

more complex than other cases, because this system(the solid line), and (2) a shell with a thickness

exhibits; (1) axisymmetric (n=0), (2) beam-like @)=
and (3) asymmetric (n>1) modes, all in low rangés o
frequency (0 Hz-1000 Hz). Therefore the type of
excitation employed and its capability in excitiag)
such modes is of great importance. In order to
demonstrate the validity of the experiment andtipe

of excitation employed, an analytical approximate
method was selected for comparison which was the
direct solution of the Love theory.

In Table 1, the experimental and approximate aitallyt
results, along with their relative errors are présd.

The mode shape identification is of crucial impoc&
Indeed, the high modal density in the case of shell
makes it difficult to compare experimental and
theoretical modes using natural frequencies only,
therefore, the visualization is mandatory.

Comparisons reported in Table 1 show that the Love
theory produces great results, especially in thee o

the axisymmetric (=0) and beam-like nfE1) modes,
which are of great importance acoustically, andneve
from vibration point of view. Furthermore, it is
remarkable how the theory predicts the fundamental
frequency so accurately, with an error of less t6&m
Generally, the experimental and analytical results
converge better at higher frequencies. Thereforauiit

be concluded that the Love theory is more accufate,
higher numbers of axialm) and circumferential n
waveparameter combinations. However, the theory
endures its highest errorsret2 andn=3 modes.

parameter ofR _ 500 (the dashed line).
h

5]

g

Frequency (Hz)
=]

miL {1/ meter)
Figure 3: variation of the lowest natural frequency f1rm

with . (1) B =5172(
L h

It is obvious from Figure 3 that, for two shells thie
same length the one with a higher thickness paemet

B(Iarger radius or less thickness), yields lowemursdt
h

frequencies. Moreover, as the length increases the
magnitudes of the natural frequencies decreaswilsiee
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Meaning that, shorter shells have lower natural
frequencies. It is also interesting to note that, ghells
with larger thickness ratios frequencies are mtwseaty
gapped and the frequency lines rapidly converga to
certain frequency. Consequently in Figure 3 it ten

observed for the thinner sheIJE(: 500), that after a

certain frequency, namely 1200 Hz or less, theeenar
natural frequencies available. However on the other
hand, shells with smaller thickness ratios, simitathat

of the experiment, yield a wider variety of natural
frequencies which are further gapped. Furthermore f
shells of smaller thickness ratios, natural freaiesn
converge much slower. As a result, for such shilkse

are numerous natural frequencies present at high
frequency ranges. Therefore, shells with largeskitness
ratios have higher modal densities compared tolshel
with smaller thickness ratios.

According to Figure 3, it is also interesting poout
that the fundamental (lowest) frequency does not
necessarily occur at the lowest or a certirbut, the
circumferential wave parameter of the fundamental
mode, varies depending upon the length or radiubeof
shell.

In Figure 4 the lowest natural frequency of a shgll,

is plotted versus circumferential wave parametefor
shells with dimensions similar to that of the exment,
though, with two different boundary conditions: (1)
simply supported and (2) clamped. Experimentalltesu
are also shown in Figure 4.

—— Bimply Supported-Simply Suppaorted
=e=+=Clamped-Clamped 3
® Experimental Results
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Figure 4: variation of the lowest natural frequerigy with

n.

As it can be seen in this figure, simply supporaed
clamped shells possess the same behavior, though wi
different frequencies. According to Figure 4, alshe
with  simply  supported boundary conditions
(experimented) vyields lower natural frequencies
compared to a shell with clamped boundary condition
Moreover, the fundamental frequency always occtirs a
m=1, unlike then component of the fundamental mode
which is a variable, dependent upon the lengthisadi
ratio. Furthermore as the frequency increases the
frequency lines tend to converge and get closencEle
the modal density of a shell structure increasethas
frequency increases. Therefore the mode identifioat

process is much harder and complex at higher fregue
ranges, where the modal density is higher.

Conclusion

The basic behavior of circular cylindrical shellash
been examined using Love's equations. First,
aluminum cylindrical shell was chosen for experitaén
and analytical analysis. A shell with a long lengtas
intentionally chosen, so that all three mode grops
axisymmetric, (2) beam-like and (3) asymmetric were
present at low frequency ranges. Therefore thelitsli

of the Love theory and the experiment were confdme
for all these mode groups. It was also discovehatl &s

m andn increase the accuracy of the theory increases
likewise, resulting in errors less than 1% for high
frequencies. Thus the theory could be used as act ex
solution at high frequencies.

Moreover the effects of length and radius variatioha
shell, on its natural frequencies, were studiedigure

3. It was observed that, as the length or the
radius/thickness ratio increase, the lowest natural
frequencies of a shell decrease conversely. Morgove
shells with smaller radius/length ratios were found
have higher modal densities, especially at lower
frequencies.

Finally the effects of boundary conditions weredgtd

on a cylindrical shell. It was found out that claedp
shells have higher natural frequencies compared to
simply supported ones.

an
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