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Effects of Suction and Blowing on
Flow and Heat Transfer Between
Two Rotating Spheres With
Time-Dependent Angular
Velocities
The effect of suction and blowing in the study of flow and heat transfer of a viscous
incompressible fluid between two vertically eccentric rotating spheres is presented when
the spheres are maintained at different temperatures and rotating about a common axis
while the angular velocities of the spheres are arbitrary functions of time. The resulting
flow pattern, temperature distribution, and heat transfer characteristics are presented for
the various cases including exponential and sinusoidal angular velocities. These presen-
tations are for various values of the flow parameters including rotational Reynolds num-
ber Re, and the blowing/suction Reynolds number Rew. The effects of transpiration and
eccentricity on viscous torques at the inner and outer spheres are studied, too. As the
eccentricity increases and the gap between the spheres decreases the viscous torque
remains nearly unchanged. Results for special case of concentric spheres are obtained by
letting eccentricity tend to zero. �DOI: 10.1115/1.4003604�

Keywords: flow and heat transfer, rotating spheres, time-dependent angular velocities,
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Introduction
The flow and heat transfer in an annulus between two spheres

ave been studied in various cases by many researchers. Such
tudies can be classified into two main groups. In the first group,
here is neither suction nor blowing at the spherical walls. Such
ontainers are used in engineering designs such as centrifuges and
uid gyroscopes and also are important in geophysics. Available

heoretical works concerning such problems are primarily of a
oundary-layer or singular-perturbation character considered by
owarth �1�, Proudman �2�, Lord and Bowden �3�, Fox �4�,
reenspan �5�, Carrier �6�, and Stewartson �7�. The first numerical

tudy of time-dependent viscous flow between two rotating
pheres has been presented by Pearson �8� in which case one or
oth of the spheres is given an impulsive change in angular ve-
ocity starting from a state of either rest or uniform rotation. Mun-
on and Joseph �9� considered the case of steady motion of a
iscous fluid between concentric rotating spheres using perturba-
ion techniques for small values of Reynolds number and a Leg-
ndre polynomial expansion for larger values of Reynolds num-
ers. Thermal convection in rotating spherical annuli has been
onsidered by Douglass et al. �10�. A study of viscous flow in
scillatory spherical annuli has been done by Munson and Dou-
lass �11� in which a perturbation solution valid for slow oscilla-
ion rates is presented and compared with experimental results.
nother interesting work is the study of the axially symmetric
otion of an incompressible viscous fluid between two concentric

otating spheres done by Gagliardi et al. �12�, and also the study
y Yang et al. �13� and the finite element study by Ni and Nigro
14�. These problems include cases where one or both spheres
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rotate with prescribed constant angular velocities and the case in
which one sphere rotates due to the action of an applied constant
or impulsive torque. Recently, a numerical study of flow and heat
transfer between two rotating spheres has been done by Jabari
Moghadam and Rahimi �15� in which the fluid contained between
two vertically eccentric spheres maintained at different tempera-
tures and rotating about a common axis with different angular
velocities when the angular velocities are arbitrary functions of
time. Jabari Moghadam and Rahimi �16� also studied the similar-
ity solution for spheres rotating with constant angular velocity.

In the second group, the effects of transpiration on flow in an
annulus between two spheres have been investigated. The study of
flow in a spherical annulus along with transpiration is used in
many practical applications, such as rotary machines and spherical
heat exchangers and in the design of spherical fluid storage sys-
tems. In these applications transpiration is used to regulate the rate
of heat transfer.

The effects of transpiration on free convection in an annulus
between two stationary concentric porous spheres have been con-
sidered by Gulwadi and Elkouh �17�. Gulwadi et al. �18� studied
the laminar flow in an annulus between rotating porous spheres
and with injection and suction at spherical walls. They used a
perturbation technique to solve the steady-state Navier–Stokes
equations of motion and also used a finite-difference method to
validate their analytical results. Their results are valid for small
values of the rotational Reynolds number and an injection/suction
Reynolds number, and the heat transfer has not been considered. A
review of literature reveals that there are no studies on the tran-
sient motion and the heat transfer between two rotating spheres
with uniform transpiration.

In the present study, a numerical solution of unsteady momen-
tum and energy equations is presented for the general case of
viscous flow between two vertically eccentric rotating spheres
maintained at different temperatures along with suction and blow-
ing at their boundaries, which are rotating with time-dependent

angular velocities. Results for some example functions including
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xponential and sinusoidal angular velocities and various
lowing/suction Reynolds numbers Rew are presented when the
uter sphere initially starts rotating with a constant angular veloc-
ty and the inner sphere starts rotating with a prescribed time-
ependent function. Results for the special case of concentric
pheres are obtained by letting eccentricity tend to zero.

Problem Formulation
The geometry of the spherical annulus considered is indicated

n Fig. 1. The vertical eccentricity of the outer sphere is measured
y the distance e. If the outer sphere is placed above the central
osition, e has a positive value; otherwise it is negative. The ori-
in of the spherical coordinate system is the inner sphere center
nd the characteristic radius of the outer sphere Ro� is a function of
. A Newtonian, viscous, incompressible fluid fills the gap be-
ween the inner and outer spheres, which are of radii Ri and Ro
nd with constant surface temperatures Ti and To and rotate about
common axis with angular velocities �i and �o, respectively.
he components of velocity in r, �, and � directions are vr, v�,
nd v�, respectively. These velocity components for incompress-
ble flow and in the meridian plane satisfy the continuity equation
nd are related to the stream function � and angular momentum
unction � in the following manner:

vr =
��

r2 sin �
, v� =

− �r

r sin �
, v� =

�

r sin �
�1�

he blowing/suction Reynolds number is defined as

Rew =
vro

ro

�
�2�

n which vro
and ro are radial velocity and radius reference values,

espectively. The blowing/suction Reynolds number Rew is posi-
ive for blowing at the inner sphere and negative for suction. Since
he flow is assumed to be independent of the longitude �, the
ondimensional Navier–Stokes equations and energy equation can
e written in terms of the stream function and the angular velocity
unction as follows:

��
+

���r − �r��
2 =

1
D2� �3�

Fig. 1 Geometry of eccentric rotating spheres
�t r sin � �Re�
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�t
�D2�� +

2�

r3 sin2 �
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1

r2 sin �
��r�D2���
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2D2�

r3 sin2 �
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�5�

in which the nondimensional quantities Reynolds number �Re�,
Prandtl number �Pr�, Peclet number �Pe�, and Eckert number �Ek�
are defined as

Re =
�oro

2

�
, Pr = �/�, Pe = Re Pr =

�oro
2

�
, Ek =

��o

cp�To − Ti�
�6�

The following nondimensional parameters have been used in the
above equations and then the asterisks have been omitted:

t� = t�o, r� =
r

ro
, �� =

�

ro
3�o

, �� =
�

ro
2�o

, T� =
T − Ti

To − Ti

�7�

in which �o is reference value. The nondimensional boundary and
initial conditions for the above governing equations are

For t�0

�� = 0

� = 0

T = 0
� everywhere

For t�0

� = 0 → 
�r = 0,�� = 0,� = 0�,
�T

��
= 0

� = 	 → 
�r = 0,�� = 0,� = 0�,
�T

��
= 0

�8�

r = Ri/Ro → ��� =
Rew

Re
sin �
,�r = 0,� =

�iRi
2

�oRo
2sin2 �,T = 0

r = Ro�/Ro = e cos � + ��1 − e2 sin2 �� → ��� =
Rew · Ro�

2

Re · Ro
2 sin �,�r

= 0,� =
�oRo�

2

�oRo
2 sin2 �,T = 1


where

D2 �
�2

�r2 +
1

r2

�2

��2 −
cot �

r2

�

��

These governing equations along with the related boundary and

initial conditions are solved numerically in Sec. 3.

Transactions of the ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



3

d
�
t
e
i
e
s
t
u
s
s

s
m
s
c
o
t
m
c
�

J

Downloa
Computational Procedure
The two equations governing the fluid motion show that each is

escribing the behavior of one of the dependent variables � and
. On the other hand, these two equations are coupled only

hrough nonlinear terms. To solve the problem, the momentum
quations were discretized by the finite-difference method and
mplicit scheme. Because of the known velocity field, the energy
quation is linear and is solved keeping all its terms. In each time
tep �n+1�, the value of the dependent variables are guessed from
heir values at previous time steps �n�, �n−1�, and �n−2� and after
sing them in difference equations and repeating it until the de-
ired convergence will lead to the corrected values at this time
tep. This procedure is applied for the next time step.

The flow field considered is covered with a regular mesh. To
olve the system of linear difference equations, a tridiagonal
ethod algorithm is used in both directions r and � �19�. Direct

ubstitution of previous values of dependent variables by new
alculated values can cause calculation unstability in general. To
vercome this problem, a weighting procedure is used in which
he optimum weighting factor depends on Reynolds number. The

esh size used in the numerical solution for the equator of the
ircle is a uniform 40
20, 60
30, 80
40, and 100
50
�-direction 
r-direction, respectively� with the ratio of Rout /Rin

Fig. 2 Contours of � for Re=20, Rew=0.5, Ωoi=0, and e=0
Fig. 3 Contours of � for Re=1000, R
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=2, which all of them show that the problem is independent of
mesh size, but on one hand by noting the calculation time and on
the other hand since a finer mesh size is better we choose the
80
40 mesh size. In this work, the sphere angular velocity has
been considered a function of time and to apply this time function
to the program, an average value at the beginning of each time
step has been calculated and used for the sphere angular velocity
function. Therefore, for each considered time step, the sphere ve-
locity is defined and sectionally continues. To verify the validity
of the numerical procedure used in this work, a comparison with
Ref. �18� has been done, which shows very good agreement, as is
shown in Fig. 2. Also comparison with Ref. �15� is conducted to
examine the effects of transpiration on flow and heat transfer for
various values of blowing/suction Reynolds number Rew.

4 Presentation of Results
The flow pattern in the meridian plane for Re=20 and Rew

=0.5 is shown in Fig. 2�a�. Comparison between the present work
and Ref. �18�, Fig. 2�b�, shows very good agreement. In this case,
the outer sphere is stationary and the inner sphere rotates with
constant angular velocity ��oi=�o /�i=0�. Here, therefore, the
characteristics of the inner sphere including vRi

, �i, and Ri are
considered as reference values. Since the blowing/suction Rey-
nolds number Rew is low in comparison with the rotational Rey-
nolds number Re then as can be seen in Fig. 2 the eddies created
by the centrifugal effect generated by the rotation of the inner
sphere are confined within regions near the poles and cause two
stagnation points on the streamlines at the poles ��=0 deg and
�=180 deg�. As will be mentioned in section 5, these eddies are
preventive means for the heat transfer.

The contours of � and T for Re=1000, Rew=5, Pr=1, �io=
−exp�1− t�, e=0.1, and Ek=0 are shown in Figs. 3 and 4, respec-
tively. As can be seen from Fig. 3�a�, at the beginning the eddies
are created in the upper hemisphere and near the pole ��
=0 deg�, so that two stagnation points exist on the pole. Note that
due to eccentricity the flow field is asymmetric with respect to the
equator plane and on the other hand because of more Coriolis
forces in the lower hemisphere the eddies are eliminated near the
pole ��=180 deg�. Also it is seen from this figure that by decreas-
ing the eccentricity, the size of the eddies in the upper hemisphere
decreases while as the eccentricity tends to zero, the eddies will be
formed in the lower sphere, too. Then in the concentric case, four
stagnation points exist on the poles. Also, the effects of blowing
on vortices can be obtained in comparison with Ref. �15�. It is
ew=5, Ωio=−exp„1− t…, and e=0.1
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bserved that the blowing removes all of the vortices in the fourth
uadrant and also the vortices near the outer sphere in the first
uadrant. As time advances, the streamlines in the vicinity of the
quator become irregular while in the vicinity of the poles, the
treamlines are smoother, Fig. 3�b�. At this time, there is no eddy
n the vicinity of the poles. Now, considering the contours of ���,
he distribution of temperature �T� can be described better. From
ig. 4�a�, it is observed that at the beginning, the distribution of

emperature in the annulus space is nearly uniform and the eddies
n the upper hemisphere do not affect the temperature field. As
ime passes, the blowing effect covers the entire temperature field
o that it grows less than the case Rew=0; but, because of
moother streamlines in the vicinity of the poles, the cold flow
rom the inner sphere toward the outer sphere transfers more heat
han the regions far from the poles.

Figures 5–12 present the � and T contours for various blowing/
uction Reynolds numbers Rew for the same conditions as in Figs.

and 4. By comparing Figs. 5 and 3 , it can be seen that an
ncrease in blowing at the beginning, the eddies in the upper hemi-
phere are eliminated and the streamlines in the initial and final
imes are smoother. Also, because of more blowing, the vortices
o not penetrate from the first quadrant into the fourth quadrant by

Fig. 4 Contours of T for Re=1000, R
Fig. 5 Contours of � for Re=1000, R
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the final time. Figure 6�b� in comparison with Fig. 4�b� shows less
penetration of the temperature field in the final time due to an
increase in blowing rate.

Figure 7 shows the effect of increase in blowing on contours of
� in which increasing Rew �approximately larger than Rew�25�
induces fully straight streamlines or, in other words, the blowing
overcomes rotational motion in the annulus space completely.
Contours of T for Rew=20 are shown in Fig. 8. Note that at the
beginning the effect of blowing on temperature field is not much
visible in various Rew.

Figure 9 shows the streamlines for suction case with Rew=−5.
As is shown, in this case contrary to the case Rew=5, eddies are
created near the outer sphere in the upper hemisphere. The dis-
tance between the stagnation points in the first quadrant increases
with time and also eddies are created in the fourth quadrant but
with a lesser size. Effects of eddies, which can be seen in Fig.
9�b�, on the diffusion of heat from the outer sphere into the field
can be seen also in Fig. 10�b�. As can be seen in this case, in
regions near the poles the heat diffusion is less than the regions far
from the poles. In these regions the eddies are preventing the heat
convection, then near the poles, conduction is the dominant

=5, Pr=1, Ωio=−exp„1− t…, and e=0.1
ew=10, Ωio=−exp„1− t…, and e=0.1
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echanism of heat diffusion. Also note that the diffusion of heat
s more visible in the lower hemisphere.

With an increase in suction, it is observed that at the beginning,
ddies are eliminated, as is seen in Fig. 11�a� compared with Fig.
�a�. Also Fig. 11�b� shows that the streamlines penetrate with
ime from the first quadrant into the fourth quadrant. As can be
een in Fig. 12�b�, the effect of suction on the diffusion of heat

Fig. 6 Contours of T for Re=1000, R

Fig. 7 Contours of � for Re=1000
Fig. 8 Contours of T for Re=1000, Rew=

ournal of Heat Transfer
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from the outer sphere into the field is considerable. Note that the
factors such as Prandtl number �Pr� and blowing/suction Reynolds
number have important roles in the diffusion of heat, so that an
increase in Prandtl number or blowing/suction Reynolds number
decreases the heat diffusion of the outer sphere into the field.

Figures 13 and 14 have been presented for inner angular veloc-
ity �io=2 sin�	t /2� for Re=1000, Rew=5, Pr=10, e=0.1, and

10, Pr=1, Ωio=−exp„1− t…, and e=0.1

ew=20, Ωio=−exp„1− t…, and e=0.1
e =
, R
20, Pr=1, Ωio=−exp„1− t…, and e=0.1
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Fig. 9 Contours of � for Re=1000, Re =−5, Ω =−exp„1− t…, and e=0.1
w io
Fig. 10 Contours of T for Re=1000, Rew=−5, Pr=1, Ωio=−exp„1− t…, and e
=0.1
Fig. 11 Contours of � for Re=1000, Rew=−10, Ωio=−exp„1− t…, and e=0.1
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k=0 and in two consecutive periods �second and third� for the
inusoidal function. As can be seen in Fig. 13�a� eddies are cre-
ted in the vicinity of the poles as well as the equator in both
uadrants and because of larger Coriolis forces, the sizes of eddies

Fig. 12 Contours of T for Re=1000,
=0.1

Fig. 13 Contours of � for Re=100

Fig. 14 Contours of T for Re=1000,

=0.1
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in the lower hemisphere are smaller. Figure 13�b� shows that the
sizes of eddies in the vicinity of the poles have been increased,
especially at the upper pole. But change in the size and position of
the eddies in the vicinity of the equator is not considerable. Also

w=−10, Pr=1, Ωio=−exp„1− t…, and e

ew=5, Ωio=2 sin„�t /2…, and e=0.1

w=5, Pr=10, Ωio=2 sin„�t /2…, and e
Re
0, R
Re
JULY 2011, Vol. 133 / 071704-7
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n this case, it is seen that the eddies near the outer sphere �in the
icinity of the equator� have more effects on the temperature field
s these eddies prevent heat convection.

In the case Rew=10 and t=4.01 �Fig. 15�a��, the eddies are
early eliminated in the entire flow field. In this case, blowing
elps the Coriolis forces to remove the eddies in the flow field. On
he contrary, at t=11.01, Fig. 15�b�, because the inner sphere ro-
ates counter to the outer sphere �the inner sphere angular velocity
s �io=−1.998� the effects of Coriolis forces are against the blow-
ng effects. In comparison with Fig. 15�a� the eddies have not
een eliminated, although compared with Fig. 13�b�, eddies are
maller �because of larger the values of Rew�. As a result, a change
n the value and direction of rotation of the spheres and or the rate
f blowing/suction can be used to regulate the flow field and
herefore the rate of the heat transfer. The contours of T are shown
n Fig. 16.

In Figs. 17–20 the contours of � and T are presented for the
inusoidal angular velocities and suction cases. Looking at their
treamlines shows that eddies are created only in the vicinity of
he poles. It is obvious that the size of the eddies and the distances
etween the stagnation points decrease with increasing suction
ate.

Figures 21 and 22 present the flow field and heat transfer results
or sinusoidal and exponential inner angular velocities for the case

Fig. 15 Contours of � for Re=1000

Fig. 16 Contours of T for Re=1000,

=0.1

71704-8 / Vol. 133, JULY 2011
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of concentric spheres �e=0�. As it is observed from Fig. 21�a�, in
this case �Rew=5� two stagnation points exist on the streamlines
at the poles and also two stagnation points are at the equator.
Streamlines for Rew=10 have been drawn in Fig. 22�a� and it can
be seen that there are no eddies in the flow field in this case.

The dimensionless viscous torque at any radius r for the case of
eccentric spheres in general is

T� =
3

4�
0

	

�r� · r3 · sin2 �d� �9�

where the dimensionless shear stress �r� is

�r� = − r
�

�r
�v�

r
	 �10�

Using the above definitions, variations of the viscous torques at
the inner sphere T�,i and at the outer sphere T�,o with respect to
time are presented in Figs. 23 and 24.

Tables 1 and 2 compare the results of the presented work with
the analytical and numerical results of Ref. �18�. From these
tables, suction decreases the thickness of the boundary layer of the
inner sphere and, corresponding to this change, the coefficient of
friction and therefore viscous torques on this sphere are increased.

ew=10, Ωio=2 sin„�t /2…, and e=0.1

w=10, Pr=10, Ωio=2 sin„�t /2…, and e
, R
Re
Transactions of the ASME
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Fig. 17 Contours of � for Re=1000, Re =−5, Ω =2 sin„�t /2…, and e=0.1
w io
Fig. 18 Contours of T for Re=1000, Rew=−5, Pr=10, Ωio=2 sin„�t /2…, and e

=0.1
Fig. 19 Contours of � for Re=1000, Rew=−10, Ωio=2 sin„�t /2…, and e=0.1
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he effect of suction on the outer sphere is that the boundary-layer
hickness is increased and therefore the coefficient of friction and
iscous torques are decreased.

Figure 23 shows the variation of T�,i with respect to time for

Fig. 20 Contours of T for Re=1000,
=0.1

Fig. 21 Flow and heat transfer for Re=10
Fig. 22 Flow and heat transfer for Re=1000

71704-10 / Vol. 133, JULY 2011
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Re=1000, �io=2 sin�	t /2�, and e=0.1; it is seen that because the
angular velocities of the inner sphere are sinusoidal the viscous
torque is sinusoidal, too. Also it is observed that an increase in
value of blowing decreases the average viscous torque.

=−10, Pr=10, Ωio=2 sin„�t /2…, and e

Pr=10, Rew=5, Ωio=2 sin„�t /2…, and e=0
Rew
00,
, Rew=10, Pr=1, Ωio=−exp„1− t…, and e=0

Transactions of the ASME
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Table 3 shows that the effect of eccentricity is not considerable
on viscous torque on the outer sphere and its effect on inner
sphere is nearly zero.

Finally, the effect of Eckert number on heat transfer has been
presented in Figs. 25 and 26. As can be seen from Fig. 25�b� the
temperature field is over a wider area than Case �a� because of
viscous dissipation, which plays the role of a source of heat. The
effects of viscous dissipations are more visible in the vicinity of
the equator because in this region the velocity gradients are
longer. Also, the effect of Prandtl number on temperature field can
be seen by comparing Figs. 18�b� and 25�a�. A lower Prandtl
number leads to more diffusions of heat.

Figure 26 is presented for the same conditions as in Fig. 20
except for Rew=5. As can be seen in this case as well, the heat
diffusion caused by viscous dissipation effects is more visible in
the vicinity of the equator.

5 Conclusions
In this paper, the effects of transpiration on flow and heat trans-

fer in an annulus between two rotating spheres �concentric and

heres for Re=1000, Ωio=−exp„1− t…, and e=0.05

ifferent values of blowing and its comparison

T�,o

l
Presented
�T�

� Re�
Ref. 18

analytical
Ref. 18

numerical

204.640 198.114 205.474
243.826 237.102 243.177
324.892 323.848 323.146
409.619 419.739 407.537

ifferent values of suction and its comparison

T�,o

8
al

Presented
�T�

� Re�
Ref. 18

analytical
Ref. 18

numerical

1 204.640 198.114 205.474
3 169.269 162.558 169.805
7 106.164 103.275 107.252
8 59.896 62.311 60.168
ig. 23 Viscous torques at the inner sphere for Re=1000, Ωio
2 sin„�t /2…, and e=0.1
Fig. 24 Viscous torques at the inner and outer sp
Table 1 Viscous torques for Re=50, Ωoi=0 for d
with Ref. †18‡

Case

T�,i

Presented
�T�

� Re�
Ref. 18

analytical
Ref. 18

numerica

Rew=0 199.21 198.114 204.411
Rew=1 186.794 187.102 192.929
Rew=3 166.311 173.848 173.815
Rew=5 150.987 169.739 158.578
Table 2 Viscous torques for Re=50, Ωoi=0 for d
with Ref. †18‡

Case

T�,i

Presented
�T�

� Re�
Ref. 18

analytical
Ref. 1

numeric

Rew=0 199.21 198.114 204.41
Rew=−1 214.885 212.558 217.59
Rew=−3 254.80 253.275 251.17
Rew=−5 310.688 312.311 298.17
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Downloa
ccentric� have been studied when the spheres have time-
ependent prescribed values of angular velocities. The results
ave been presented for various values of blowing or suction Rey-
olds number, which indicates the strength of transpiration. Re-
ults show that increasing values of blowing or suction can be
sed to remove the eddies created in the flow field. Eliminating
hese eddies result in more heat to transfer. Eddies created in the
pper and lower poles in eccentric case become smaller and
arger, respectively, with decreasing the value of eccentricity and
herefore the distance between two stagnation points on the upper
ole decreases while in the lower pole the effect is opposite and
hese eddies obviously have equal sizes in the concentric case.

ith increasing blowing or suction the eddies are removed faster
n the lower hemisphere due to more Coriolis forces.

Temperature field results show how the blowing and suction
an be used to regulate the rate of heat transfer. In eccentric case,
he diffusion of heat is more where the distance between two
pheres is less. Results show that viscous dissipation effects ap-
ear near the equator because of higher velocities gradients caus-
ng more heat diffusions in this region. Finally, the effects of
lowing and suction and also the eccentricity on viscous torques

Table 3 Re=1000, Rew=−10, and Ωio=−exp„1−t…

ccentricity e=0 e=0.1

�,o 53.293 53.020

Fig. 25 Effect of viscous dissipation
−5, Pr=1, Ωio=2 sin„�t /2…, and e=0.1:

Fig. 26 Effect of viscous dissipation

=5, Pr=10, Ωio=2 sin„�t /2…, e=0.1: „a… Ek

71704-12 / Vol. 133, JULY 2011
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are studied. It is seen that the effects of the eccentricity on viscous
torque are not substantial while blowing or suction has consider-
able effects on viscous torques.

Nomenclature
Cp 
 specific heat at constant pressure
D 
 substantial derivative
E 
 nondimensional eccentricity

Ek 
 Eckert number= ���o /cp�To−Ti��
k 
 fluid conductivity

Pe 
 Peclet number=� /�
r ,� ,� 
 spherical coordinates

ro 
 reference value for radius
Ro� 
 characteristic radius of the outer sphere
Ri 
 inner sphere radius
Ro 
 outer sphere radius
Rio 
 =Ri /Ro
Re 
 Reynolds number= ��oro

2 /��
Rew 
 blowing/suction Reynolds number= �vro

ro /��
T 
 temperature
Ti 
 inner sphere surface temperature
To 
 outer sphere surface temperature

t 
 time
vr ,v� ,v� 
 velocity components

Greek
� 
 thermal diffusivity
� 
 kinematic viscosity

temperature field for Re=1000, Rew=
Ek=0 and „b… Ek=0.001

temperature field for Re=1000, Rew
on
„a…
on

=0 and „b… Ek=0.001
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R

J

Downloa
� 
 stream function
� 
 momentum function
�i 
 inner sphere angular velocity
�o 
 outer sphere angular velocity
�oi 
 �i /�o�in this case vRo

,Ro ,�o are reference�
�oi 
 =�o /�i �in this case vRi

,Ri ,�i are reference�
�o 
 reference value for angular velocity
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