Effects of Suction and Blowing on
Flow and Heat Transfer Between
Two Rotating Spheres With
Time-Dependent Angular
Velocities

The effect of suction and blowing in the study of flow and heat transfer of a viscous
incompressible fluid between two vertically eccentric rotating spheres is presented when
the spheres are maintained at different temperatures and rotating about a common axis
while the angular velocities of the spheres are arbitrary functions of time. The resulting
[flow pattern, temperature distribution, and heat transfer characteristics are presented for
the various cases including exponential and sinusoidal angular velocities. These presen-
tations are for various values of the flow parameters including rotational Reynolds num-
ber Re, and the blowing/suction Reynolds number Re,,. The effects of transpiration and
eccentricity on viscous torques at the inner and outer spheres are studied, too. As the
eccentricity increases and the gap between the spheres decreases the viscous torque
remains nearly unchanged. Results for special case of concentric spheres are obtained by
letting eccentricity tend to zero. [DOL: 10.1115/1.4003604]
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1 Introduction

The flow and heat transfer in an annulus between two spheres
have been studied in various cases by many researchers. Such
studies can be classified into two main groups. In the first group,
there is neither suction nor blowing at the spherical walls. Such
containers are used in engineering designs such as centrifuges and
fluid gyroscopes and also are important in geophysics. Available
theoretical works concerning such problems are primarily of a
boundary-layer or singular-perturbation character considered by
Howarth [1], Proudman [2], Lord and Bowden [3], Fox [4],
Greenspan [5], Carrier [6], and Stewartson [7]. The first numerical
study of time-dependent viscous flow between two rotating
spheres has been presented by Pearson [8] in which case one or
both of the spheres is given an impulsive change in angular ve-
locity starting from a state of either rest or uniform rotation. Mun-
son and Joseph [9] considered the case of steady motion of a
viscous fluid between concentric rotating spheres using perturba-
tion techniques for small values of Reynolds number and a Leg-
endre polynomial expansion for larger values of Reynolds num-
bers. Thermal convection in rotating spherical annuli has been
considered by Douglass et al. [10]. A study of viscous flow in
oscillatory spherical annuli has been done by Munson and Dou-
glass [11] in which a perturbation solution valid for slow oscilla-
tion rates is presented and compared with experimental results.
Another interesting work is the study of the axially symmetric
motion of an incompressible viscous fluid between two concentric
rotating spheres done by Gagliardi et al. [12], and also the study
by Yang et al. [13] and the finite element study by Ni and Nigro
[14]. These problems include cases where one or both spheres
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rotate with prescribed constant angular velocities and the case in
which one sphere rotates due to the action of an applied constant
or impulsive torque. Recently, a numerical study of flow and heat
transfer between two rotating spheres has been done by Jabari
Moghadam and Rahimi [15] in which the fluid contained between
two vertically eccentric spheres maintained at different tempera-
tures and rotating about a common axis with different angular
velocities when the angular velocities are arbitrary functions of
time. Jabari Moghadam and Rahimi [16] also studied the similar-
ity solution for spheres rotating with constant angular velocity.

In the second group, the effects of transpiration on flow in an
annulus between two spheres have been investigated. The study of
flow in a spherical annulus along with transpiration is used in
many practical applications, such as rotary machines and spherical
heat exchangers and in the design of spherical fluid storage sys-
tems. In these applications transpiration is used to regulate the rate
of heat transfer.

The effects of transpiration on free convection in an annulus
between two stationary concentric porous spheres have been con-
sidered by Gulwadi and Elkouh [17]. Gulwadi et al. [18] studied
the laminar flow in an annulus between rotating porous spheres
and with injection and suction at spherical walls. They used a
perturbation technique to solve the steady-state Navier—Stokes
equations of motion and also used a finite-difference method to
validate their analytical results. Their results are valid for small
values of the rotational Reynolds number and an injection/suction
Reynolds number, and the heat transfer has not been considered. A
review of literature reveals that there are no studies on the tran-
sient motion and the heat transfer between two rotating spheres
with uniform transpiration.

In the present study, a numerical solution of unsteady momen-
tum and energy equations is presented for the general case of
viscous flow between two vertically eccentric rotating spheres
maintained at different temperatures along with suction and blow-
ing at their boundaries, which are rotating with time-dependent
angular velocities. Results for some example functions including
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Fig. 1 Geometry of eccentric rotating spheres

exponential and sinusoidal angular velocities and various
blowing/suction Reynolds numbers Re,, are presented when the
outer sphere initially starts rotating with a constant angular veloc-
ity and the inner sphere starts rotating with a prescribed time-
dependent function. Results for the special case of concentric
spheres are obtained by letting eccentricity tend to zero.

2 Problem Formulation

The geometry of the spherical annulus considered is indicated
in Fig. 1. The vertical eccentricity of the outer sphere is measured
by the distance e. If the outer sphere is placed above the central
position, e has a positive value; otherwise it is negative. The ori-
gin of the spherical coordinate system is the inner sphere center
and the characteristic radius of the outer sphere R is a function of
6. A Newtonian, viscous, incompressible fluid fills the gap be-
tween the inner and outer spheres, which are of radii R; and R,
and with constant surface temperatures 7; and 7, and rotate about
a common axis with angular velocities (); and (), respectively.
The components of velocity in r, 6, and ¢ directions are v, vy,
and v 4, respectively. These velocity components for incompress-
ible flow and in the meridian plane satisty the continuity equation
and are related to the stream function ¢ and angular momentum
function €} in the following manner:

‘ﬁa _ _wr Q

= s =", V4= 1
7 sin 0 rsin 0 *” ysin 6 M

The blowing/suction Reynolds number is defined as

Re, = —* (2
v

in which v, and r, are radial velocity and radius reference values,
respectively. The blowing/suction Reynolds number Re,, is posi-
tive for blowing at the inner sphere and negative for suction. Since
the flow is assumed to be independent of the longitude ¢, the
nondimensional Navier—Stokes equations and energy equation can
be written in terms of the stream function and the angular velocity
function as follows:
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in which the nondimensional quantities Reynolds number (Re),
Prandtl number (Pr), Peclet number (Pe), and Eckert number (Ek)
are defined as
2
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Pr=v/a, Pe=Re Pr=——

o 120)
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The following nondimensional parameters have been used in the
above equations and then the asterisks have been omitted:

r QO T-T;
f* — l(,l)(,, r* =—, l//* — ;p , Q* — > , - i
T, o, o, T,-T;

(7

in which w, is reference value. The nondimensional boundary and
initial conditions for the above governing equations are
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These governing equations along with the related boundary and
initial conditions are solved numerically in Sec. 3.

Transactions of the ASME

Downloaded 02 Apr 2011 to 217.219.244.217. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



a b

Fig. 2 Contours of i for Re=20, Re,=0.5, (2,,=0, and e=0

3 Computational Procedure

The two equations governing the fluid motion show that each is
describing the behavior of one of the dependent variables () and
¢. On the other hand, these two equations are coupled only
through nonlinear terms. To solve the problem, the momentum
equations were discretized by the finite-difference method and
implicit scheme. Because of the known velocity field, the energy
equation is linear and is solved keeping all its terms. In each time
step (n+1), the value of the dependent variables are guessed from
their values at previous time steps (n), (n—1), and (n—2) and after
using them in difference equations and repeating it until the de-
sired convergence will lead to the corrected values at this time
step. This procedure is applied for the next time step.

The flow field considered is covered with a regular mesh. To
solve the system of linear difference equations, a tridiagonal
method algorithm is used in both directions r and € [19]. Direct
substitution of previous values of dependent variables by new
calculated values can cause calculation unstability in general. To
overcome this problem, a weighting procedure is used in which
the optimum weighting factor depends on Reynolds number. The
mesh size used in the numerical solution for the equator of the
circle is a uniform 40X20, 60X30, 80X40, and 100X 50
(6-direction Xr-direction, respectively) with the ratio of Ry, /R,
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Fig. 3
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=2, which all of them show that the problem is independent of
mesh size, but on one hand by noting the calculation time and on
the other hand since a finer mesh size is better we choose the
80X 40 mesh size. In this work, the sphere angular velocity has
been considered a function of time and to apply this time function
to the program, an average value at the beginning of each time
step has been calculated and used for the sphere angular velocity
function. Therefore, for each considered time step, the sphere ve-
locity is defined and sectionally continues. To verify the validity
of the numerical procedure used in this work, a comparison with
Ref. [18] has been done, which shows very good agreement, as is
shown in Fig. 2. Also comparison with Ref. [15] is conducted to
examine the effects of transpiration on flow and heat transfer for
various values of blowing/suction Reynolds number Re,,.

4 Presentation of Results

The flow pattern in the meridian plane for Re=20 and Re,,
=0.5 is shown in Fig. 2(a). Comparison between the present work
and Ref. [18], Fig. 2(b), shows very good agreement. In this case,
the outer sphere is stationary and the inner sphere rotates with
constant angular velocity (Q,,=0Q,/Q,;=0). Here, therefore, the
characteristics of the inner sphere including v R» Q;, and R; are
considered as reference values. Since the blowing/suction Rey-
nolds number Re,, is low in comparison with the rotational Rey-
nolds number Re then as can be seen in Fig. 2 the eddies created
by the centrifugal effect generated by the rotation of the inner
sphere are confined within regions near the poles and cause two
stagnation points on the streamlines at the poles (#=0 deg and
=180 deg). As will be mentioned in section 5, these eddies are
preventive means for the heat transfer.

The contours of ¢ and T for Re=1000, Re,=5, Pr=1, Q;,=
—exp(1-1), e=0.1, and Ek=0 are shown in Figs. 3 and 4, respec-
tively. As can be seen from Fig. 3(a), at the beginning the eddies
are created in the upper hemisphere and near the pole (6
=0 deg), so that two stagnation points exist on the pole. Note that
due to eccentricity the flow field is asymmetric with respect to the
equator plane and on the other hand because of more Coriolis
forces in the lower hemisphere the eddies are eliminated near the
pole (=180 deg). Also it is seen from this figure that by decreas-
ing the eccentricity, the size of the eddies in the upper hemisphere
decreases while as the eccentricity tends to zero, the eddies will be
formed in the lower sphere, too. Then in the concentric case, four
stagnation points exist on the poles. Also, the effects of blowing
on vortices can be obtained in comparison with Ref. [15]. It is
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Fig. 4 Contours of T for Re=1000, Re,, =5, Pr=1, Q;,=—exp(1-1), and e=0.1

observed that the blowing removes all of the vortices in the fourth
quadrant and also the vortices near the outer sphere in the first
quadrant. As time advances, the streamlines in the vicinity of the
equator become irregular while in the vicinity of the poles, the
streamlines are smoother, Fig. 3(b). At this time, there is no eddy
in the vicinity of the poles. Now, considering the contours of (),
the distribution of temperature (7) can be described better. From
Fig. 4(a), it is observed that at the beginning, the distribution of
temperature in the annulus space is nearly uniform and the eddies
in the upper hemisphere do not affect the temperature field. As
time passes, the blowing effect covers the entire temperature field
so that it grows less than the case Re,=0; but, because of
smoother streamlines in the vicinity of the poles, the cold flow
from the inner sphere toward the outer sphere transfers more heat
than the regions far from the poles.

Figures 5-12 present the ¢ and T contours for various blowing/
suction Reynolds numbers Re,, for the same conditions as in Figs.
3 and 4. By comparing Figs. 5 and 3 , it can be seen that an
increase in blowing at the beginning, the eddies in the upper hemi-
sphere are eliminated and the streamlines in the initial and final
times are smoother. Also, because of more blowing, the vortices
do not penetrate from the first quadrant into the fourth quadrant by
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the final time. Figure 6(b) in comparison with Fig. 4(b) shows less
penetration of the temperature field in the final time due to an
increase in blowing rate.

Figure 7 shows the effect of increase in blowing on contours of
¢ in which increasing Re,, (approximately larger than Re,,~25)
induces fully straight streamlines or, in other words, the blowing
overcomes rotational motion in the annulus space completely.
Contours of 7 for Re,=20 are shown in Fig. 8. Note that at the
beginning the effect of blowing on temperature field is not much
visible in various Re,,.

Figure 9 shows the streamlines for suction case with Re,=-5.
As is shown, in this case contrary to the case Re, =5, eddies are
created near the outer sphere in the upper hemisphere. The dis-
tance between the stagnation points in the first quadrant increases
with time and also eddies are created in the fourth quadrant but
with a lesser size. Effects of eddies, which can be seen in Fig.
9(b), on the diffusion of heat from the outer sphere into the field
can be seen also in Fig. 10(b). As can be seen in this case, in
regions near the poles the heat diffusion is less than the regions far
from the poles. In these regions the eddies are preventing the heat
convection, then near the poles, conduction is the dominant
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Fig. 5 Contours of i for Re=1000, Re, =10, Q;,=—exp(1-1{), and e=0.1
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Fig. 6 Contours of T for Re=1000, Re,, =10, Pr=1, Q;,=-exp(1-1), and e=0.1

mechanism of heat diffusion. Also note that the diffusion of heat
is more visible in the lower hemisphere.

With an increase in suction, it is observed that at the beginning,
eddies are eliminated, as is seen in Fig. 11(a) compared with Fig.
9(a). Also Fig. 11(b) shows that the streamlines penetrate with
time from the first quadrant into the fourth quadrant. As can be
seen in Fig. 12(b), the effect of suction on the diffusion of heat
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from the outer sphere into the field is considerable. Note that the
factors such as Prandtl number (Pr) and blowing/suction Reynolds
number have important roles in the diffusion of heat, so that an
increase in Prandtl number or blowing/suction Reynolds number
decreases the heat diffusion of the outer sphere into the field.
Figures 13 and 14 have been presented for inner angular veloc-
ity Q;,=2 sin(7t/2) for Re=1000, Re,,=5, Pr=10, ¢=0.1, and
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Ek=0 and in two consecutive periods (second and third) for the in the lower hemisphere are smaller. Figure 13(b) shows that the
sinusoidal function. As can be seen in Fig. 13(a) eddies are cre-  sizes of eddies in the vicinity of the poles have been increased,
ated in the vicinity of the poles as well as the equator in both  especially at the upper pole. But change in the size and position of
quadrants and because of larger Coriolis forces, the sizes of eddies  the eddies in the vicinity of the equator is not considerable. Also
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Fig. 15 Contours of ¢ for Re=1000, Re =10, 2;,=2 sin(=/2), and e=0.1

in this case, it is seen that the eddies near the outer sphere (in the
vicinity of the equator) have more effects on the temperature field
as these eddies prevent heat convection.

In the case Re,,=10 and r=4.01 (Fig. 15(a)), the eddies are
nearly eliminated in the entire flow field. In this case, blowing
helps the Coriolis forces to remove the eddies in the flow field. On
the contrary, at r=11.01, Fig. 15(b), because the inner sphere ro-
tates counter to the outer sphere (the inner sphere angular velocity
is Q,;,=-1.998) the effects of Coriolis forces are against the blow-
ing effects. In comparison with Fig. 15(a) the eddies have not
been eliminated, although compared with Fig. 13(b), eddies are
smaller (because of larger the values of Re,,). As a result, a change
in the value and direction of rotation of the spheres and or the rate
of blowing/suction can be used to regulate the flow field and
therefore the rate of the heat transfer. The contours of 7" are shown
in Fig. 16.

In Figs. 17-20 the contours of ¢ and T are presented for the
sinusoidal angular velocities and suction cases. Looking at their
streamlines shows that eddies are created only in the vicinity of
the poles. It is obvious that the size of the eddies and the distances
between the stagnation points decrease with increasing suction
rate.

Figures 21 and 22 present the flow field and heat transfer results
for sinusoidal and exponential inner angular velocities for the case

t=4.01

15 049F
14 0883
132 0819
12 0754
11 0680
10 0.625
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0.4902
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0.305
024
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0.112
0.043

=N WAED~ OO

of concentric spheres (¢=0). As it is observed from Fig. 21(a), in
this case (Re, =5) two stagnation points exist on the streamlines
at the poles and also two stagnation points are at the equator.
Streamlines for Re,, =10 have been drawn in Fig. 22(a) and it can
be seen that there are no eddies in the flow field in this case.

The dimensionless viscous torque at any radius r for the case of
eccentric spheres in general is

3 ko
T,= Zf Trg" P - sin® 6d6 9)
0

where the dimensionless shear stress 7,4 is

J U(/,>
Tep=—T——
¢ z?r( r

Using the above definitions, variations of the viscous torques at
the inner sphere 7, ; and at the outer sphere T, , with respect to
time are presented in Figs. 23 and 24.

Tables 1 and 2 compare the results of the presented work with
the analytical and numerical results of Ref. [18]. From these
tables, suction decreases the thickness of the boundary layer of the
inner sphere and, corresponding to this change, the coefficient of
friction and therefore viscous torques on this sphere are increased.

(10)

t=11.01
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Fig. 16 Contours of T for Re=1000, Re,=10, Pr=10, Q;,=2 sin(wt/2), and e

=0.1
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Fig. 17 Contours of ¢ for Re=1000, Re ,=-5, Q;,=2 sin(«t/2), and e=0.1
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Fig. 18 Contours of T for Re=1000, Re,=-5, Pr=10, Q;,=2 sin(=«t/2), and e
=0.1
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Fig. 19 Contours of ¢ for Re=1000, Re ,=-10, Q2;,=2 sin(#/2), and e=0.1
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Fig. 20 Contours of T for Re=1000, Re,=-10, Pr=10, Q;,=2 sin(=«t/2), and e

=0.1

The effect of suction on the outer sphere is that the boundary-layer ~ Re=1000, ),;,=2 sin(7t/2), and e=0.1; it is seen that because the

thickness is increased and therefore the coefficient of friction and  angular velocities of the inner sphere are sinusoidal the viscous

viscous torques are decreased. torque is sinusoidal, too. Also it is observed that an increase in
Figure 23 shows the variation of T, ; with respect to time for  value of blowing decreases the average viscous torque.
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Fig. 21 Flow and heat transfer for Re=1000, Pr=10, Re =5, Q;,=2 sin(=«t/2), and e=0
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Fig. 22 Flow and heat transfer for Re=1000, Re =10, Pr=1, Q;,=—exp(1-1), and e=0
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Fig. 23 Viscous torques at the inner sphere for Re=1000, Q;,
=2 sin(wt/2), and e=0.1
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Table 3 shows that the effect of eccentricity is not considerable
on viscous torque on the outer sphere and its effect on inner
sphere is nearly zero.

Finally, the effect of Eckert number on heat transfer has been
presented in Figs. 25 and 26. As can be seen from Fig. 25(b) the
temperature field is over a wider area than Case (a) because of
viscous dissipation, which plays the role of a source of heat. The
effects of viscous dissipations are more visible in the vicinity of
the equator because in this region the velocity gradients are
longer. Also, the effect of Prandtl number on temperature field can
be seen by comparing Figs. 18(b) and 25(a). A lower Prandtl
number leads to more diffusions of heat.

Figure 26 is presented for the same conditions as in Fig. 20
except for Re,,=5. As can be seen in this case as well, the heat
diffusion caused by viscous dissipation effects is more visible in
the vicinity of the equator.

5 Conclusions

In this paper, the effects of transpiration on flow and heat trans-
fer in an annulus between two rotating spheres (concentric and

100
15
Too_ | Rew=-10
40 R e (i R Rew=0
Rew=10
Rew =1
5
i 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I
b 10 1] ]

time

Fig. 24 Viscous torques at the inner and outer spheres for Re=1000, Q;,=-exp(1-1), and e=0.05

Table 1 Viscous torques for Re=50, 2 ,;=0 for different values of blowing and its comparison
with Ref. [18]
Ty T,
Presented Ref. 18 Ref. 18 Presented Ref. 18 Ref. 18

Case (T, Re) analytical numerical (T, Re) analytical numerical
Re,, =0 199.21 198.114 204.411 204.640 198.114 205.474
Re,=1 186.794 187.102 192.929 243.826 237.102 243.177
Re,,=3 166.311 173.848 173.815 324.892 323.848 323.146
Re,=5 150.987 169.739 158.578 409.619 419.739 407.537

Table 2 Viscous torques for Re=50, Q,;=0 for different values of suction and its comparison

with Ref. [18]

T,U-,i T,U«.o
Presented Ref. 18 Ref. 18 Presented Ref. 18 Ref. 18
Case (7; Re) analytical numerical (TL Re) analytical numerical
Re, =0 199.21 198.114 204.411 204.640 198.114 205.474
Re,=-1 214.885 212.558 217.593 169.269 162.558 169.805
Re,=-3 254.80 253.275 251.177 106.164 103.275 107.252
Re,=-5 310.688 312.311 298.178 59.896 62.311 60.168
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Table 3 Re=1000, Re,=-10, and Q;,=-exp(1-t) are studied. It is seen that the effects of the eccentricity on viscous
— torque are not substantial while blowing or suction has consider-
Eccentricity e=0 e=0.1 able effects on viscous torques.

T, 53.293 53.020

0

Nomenclature

Cp = specific heat at constant pressure
D = substantial derivative
E = nondimensional eccentricity
Ek = Eckert number=[vw,/c,(T,~T;)]
k = fluid conductivity
Pe = Peclet number=v/ «

r,0,¢ = spherical coordinates

eccentric) have been studied when the spheres have time-
dependent prescribed values of angular velocities. The results
have been presented for various values of blowing or suction Rey-
nolds number, which indicates the strength of transpiration. Re-
sults show that increasing values of blowing or suction can be

used to remove the eddies created in the flow field. Eliminating To = reference. vz}lue ff’r radius

these eddies result in more heat to transfer. Eddies created in the R, = characteristic radius of the outer sphere
upper and lower poles in eccentric case become smaller and R; = inner sphere radius

larger, respectively, with decreasing the value of eccentricity and R, = outer sphere radius

therefore the distance between two stagnation points on the upper Ri, = =R;/R,

pole decreases while in the lower pole the effect is opposite and Re = Reynolds number:(wurz/ v)

these eddies obviously have equal sizes in the concentric case. Re,, = blowing/suction Reynolds number:(v,ioro/ V)

With increasing blowing or suction the eddies are removed faster

in the lower hemisphere due to more Coriolis forces.
Temperature field results show how the blowing and §ucti0n outer sphere surface temperature

can be used to regulate the rate of heat transfer. In eccentric case, time

the dlffL}swn of heat is more wher.e the dllstgnce. between two U,,04,04 = velocity components

spheres is less. Results show that viscous dissipation effects ap-

pear near the equator because of higher velocities gradients caus-  Greek

ing more heat diffusions in this region. Finally, the effects of a = thermal diffusivity

blowing and suction and also the eccentricity on viscous torques v = kinematic viscosity

temperature
inner sphere surface temperature
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Fig. 25 Effect of viscous dissipation on temperature field for Re=1000, Re =
-5, Pr=1, Q;,=2 sin(#=t/2), and e=0.1: (a) Ek=0 and (b) Ek=0.001
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Fig. 26 Effect of viscous dissipation on temperature field for Re=1000, Re,,
=5, Pr=10, Q;,=2 sin(wt/2), e=0.1: (a) Ek=0 and (b) Ek=0.001
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¢y = stream function

) = momentum function

(); = inner sphere angular velocity
), = outer sphere angular velocity
Q,; = Q,;/Q,(in this case v &> R, €Y, are reference)
Q,; = =Q,/€; (in this case vg ,R;,€); are reference)
w, = reference value for angular velocity
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