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a b s t r a c t

In this work, we consider the nonparametric estimators of the Lorenz curve and Gini
index based on a sample from the corresponding length-biased distribution. We show
that this estimators are strongly consistent for the associated Lorenz curve and Gini
index. Strong Gaussian approximations for the associated Lorenz process are established
under appropriate assumptions. We apply the strong Gaussian approximation technique
to obtain a functional law for the iterated logarithm for the Lorenz curve. Also, we obtain
an asymptotic normality for the corresponding Gini index.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Pietra (1915) and Gastwirth (1971) independently introduced the Lorenz curve corresponding to a non-negative random
variable (r.v.) X with a distribution function (d.f.) F , quantile function Q (p) and finite mean EX = µ as

LF (p) := µ−1
 p

0
Q (s)ds, 0 ≤ p ≤ 1.

In econometrics, with X representing income, L(p) gives the fraction of total income that the holders of the lowest pth
fraction of income possess. Most of the measures of income inequality are derived from the Lorenz curve. An important
example is the Gini index associated with F defined by

GF :=

 1
0 [u − LF (u)]du 1

0 udu
= 1 − 2(CL)F ,

where (CL)F =
 1
0 LF (u)du is the average Lorenz index corresponding to F . The Gini index is a ratio of the area between the

Lorenz curve and the 45° line to the area under the 45° line. The numerator is usually called the area of concentration. Kendall
and Stuart (1963) showed that this is equivalent to a ratio of a measure of dispersion to the mean. In general, these notions
are useful for measuring concentration and inequality in distributions of resources, and in size distributions. For a list of
applications in different areas, we refer the readers to Csörgő and Zitikis (1996a).

To estimate the Lorenz curve and Gini index, one can use the Lorenz statistic Ln(p) and Gini statistic Gn defined by

Ln(p) := µ−1
n

 p

0
Qn(u)du, 0 ≤ p ≤ 1,
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and

Gn :=

 1
0 [u − Ln(u)]du 1

0 udu
= 1 − 2(CL)n = 1 − 2

 1

0
Ln(u)du,

where µn is the sample mean and Qn(y) is the empirical quantile function constructed from an independent and identically
distributed (i.i.d.) sample taken from F .

Goldie (1977) proved the uniform consistency of Ln with LF and derived the weak convergence of the Lorenz process
ln(t) :=

√
n[Ln(t) − L(t)], 0 ≤ t ≤ 1, to a Gaussian process under suitable conditions. Csörgő et al. (1986) gave a unified

treatment of strong and weak approximations of the Lorenz and other related processes. In particular, they established a
strong invariance principle for the Lorenz process, by which Rao and Zhao (1995) derived one of their two versions of the
law of the iterated logarithm (LIL) for the Lorenz process. Different versions of the LIL under weaker assumptions are also
obtained by Csörgő and Zitikis (1996a, 1997). In Csörgő and Zitikis (1996b), confidence bands for the Lorenz curve that are
based onweighted approximations of the Lorenz process are constructed. Csörgő et al. (1987) obtainedweak approximations
for Lorenz curves under random right censorship. Strong Gaussian approximations for the Lorenz process when data are
subject to random right censorship and left truncation are established by Tse (2006), who also derived a functional LIL for
the Lorenz process.

Csörgő andYu (1999) obtainedweak approximations for Lorenz curves and their inverses under the assumption ofmixing
dependence. Glivenko–Cantelli-type asymptotic behavior of the empirical generalized Lorenz curves based on random
variables forming a stationary ergodic sequence with deterministic noise were considered by Davydov and Zitikis (2002).
Davydov and Zitikis (2003) established a large sample asymptotic theory for the empirical generalized Lorenz curves for
when observations are stationary and either short-range or long-range dependent. Strong laws for the generalized absolute
Lorenz curves when data are stationary and ergodic sequences were established by Helmers and Zitikis (2005). On the basis
of the generalized Lorenz curves, Davydov et al. (2007) proposed a statistical index for measuring the fluctuations of a
stochastic process. They developed some of the asymptotic theory of the statistical index for the case where the stochastic
process is a Gaussian process with stationary increments and a nicely behaved correlation function. The uniform strong
convergence rate of the Lorenz curve estimator under the strong mixing hypothesis is obtained by Fakoor and Nakhaei
Rad (in press). They also established a strong Gaussian approximation for the Lorenz process, from which they derived
a functional LIL for the Lorenz process, under the assumption of strong mixing. The counterpart of these results for the
censored dependent model and truncated dependent model was established by Bolbolian Ghalibaf et al. (2010, 2011).

In this article, we discuss the nonparametric estimator of a Lorenz curve and Gini index from length-biased data; to be
precise, let Y1, Y2, . . . , Yn be n i.i.d. non-negative random variables from a distribution F∗, defined on R+

= [0, ∞). F∗ is
called a length-biased distribution corresponding to a distribution F (also defined on R+) if

F∗(t) = µ−1
 t

0
xdF(x), t ≥ 0,

where µ :=


∞

0 xdF(x) is assumed to be finite, and hence the density of Y is

f ∗(t) = µ−1tf (t), t ≥ 0. (1.1)

The phenomenonof length biaswas first tackled in the context of anatomybyWicksell (1925) aswhat he called the corpuscle
problem. Length bias was later systematically studied by McFadden (1962) and Blumenthal (1967), then by Cox (1969), in
the context of estimation of the distribution of fiber lengths in a fabric.

Length-biased data arise in many practical situations, including econometrics, survival analysis, renewal processes,
biomedicine and physics. For instance, if X represents the length of an item and the probability of this item being selected
in the sample is proportional to its length, then the distribution of the observed length is length biased. In cross-sectional
studies in survival analysis, for example, often the probability of being selected, for a particular subject, is proportional to
his/her survival time. Interesting applications of length-biased data can be found in Cox (1969), Patil and Rao (1977, 1978),
Colman (1979) and Vardi (1982b). The distribution function, F∗, is, from a slightly different perspective, the distribution of
the randomly left truncated r.v.’s Y , in the stationary assumption. If the incidence rate of the event has not changed over time,
a stationary form might reasonably describe the incidence of the event; this is equivalent to assuming that the randomly
left truncation induced by the sampling is uniform (Wang, 1991).

Throughout this work we assume that F∗ is continuous on R+, from which it follows that F is also continuous. An
elementary calculation shows that F is determined uniquely by F∗, namely

F(t) = ν−1
 t

0
y−1dF∗(y), t ≥ 0,

where

ν = EY−1
=


∞

0
y−1dF∗(y).
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Cox (1969) and Vardi (1982a) considered the problem of finding a nonparametricmaximum likelihood estimate (NPMLE)
of F on the basis of a sample Y1, Y2, . . . , Yn from F∗. The empirical estimator of F can be written in the form

Fn(t) = ν−1
n

 t

0
y−1dF∗

n (y),

where

νn =


∞

0
y−1dF∗

n (y),

and F∗
n , the empirical estimator of F∗, is given by

F∗

n (t) =
1
n

n
i=1

I(Yi ≤ t),

where I(A) denotes the indicator of the event A.
Suppose that the empirical process is given by

αn(t) = n1/2
[Fn(t) − F(t)], t ≥ 0.

Vardi (1982a) studied the weak convergence of the process αm+n assuming that limm,n→∞ m(m + n)−1 > 0, where Fm+n is
based on two independent samples, one a sample of size n from F∗ and the other a sample of sizem from F . Sen (1984) proved
the weak convergence of the process αn to a Gaussian process assuming that EY−2 < ∞. Actually, under the more stringent
regularity condition that EY−2−δ < ∞, for some δ > 0, he obtained the Bahadur representation of sample quantiles in
length-biased sampling. Horváth (1985) established theweak and the strong approximation of the processαn from a length-
biased distribution.

We assume that the underlying d.f. F admits a unique pth quantile Q (p) defined by

Q (p) = inf{t ∈ R; F(t) ≥ p}, 0 < p < 1.

Let Yn:1 ≤ · · · ≤ Yn:n be the order statistics corresponding to Y1, . . . , Yn. Then, the sample estimator corresponding to Q (p)
is defined by Qn(p) (=Yn:k) where k (=kn) is a suitably chosen (random) integer, depending on all the order statistics and
defined by

kn = max


k;

k
i=1

Y−1
n:i ≤ p


n

i=1

Y−1
n:i


, 0 < p < 1.

The main aim of this work is to derive a strong Gaussian approximation of the Lorenz process for a sample from the
corresponding length-biased distribution. As a result, we obtain the law of the iterated logarithm for the Lorenz curve. We
show that estimators of the Lorenz curve and Gini index are strongly consistent. Also, we obtain asymptotic normality for
the corresponding Gini index.

Now we introduce some assumptions that are used to state our results gathered below for easy reference.
Assumptions:

(1) The d.f. F has a continuous probability density function (p.d.f.) f in some neighbourhood of Q (p) and f (Q (p)) is strictly
positive and finite for all 0 < p < 1.

(2) Suppose that ϑ2+δ = E(Y−2−δ) = y−2−δdF∗(y) =
1
µ


∞

0 y−1−δdF(y) < ∞, for some δ > 0, and sup{|f ′(x)|; x ∈ R+
} <

∞.
(3) ϑ(r) =


∞

0 (F∗(y))1/ry−2dy < ∞, for some r > 2.

Remark 1. According to (1.1), and noting that 0 < Q (p) < ∞, we have

0 < µf ∗(Q (p)) = Q (p)f (Q (p)) < ∞, 0 < p < 1. (1.2)

Remark 2. Suppose that r = 2 + δ; then Assumption (3) is slightly stronger than Assumption (2), i.e., ϑ2+δ < ∞, for some
δ > 0.

The layout of the work is as follows. In Section 2, we obtain the strong uniform consistency of Qn(.) and the strong
Gaussian approximation for the normed quantile process ρn(p) :=

√
nf (Q (p))[Q (p) − Qn(p)]. This preliminary discussion

is necessary for achieving the establishment of the main results. Section 3 contains asymptotic behaviors of the estimator of
the Lorenz curve. Strong uniform consistency and the strong Gaussian approximation of the estimator of the Lorenz curve
provided and a law of the iterated logarithm for the Lorenz curve are derived. Asymptotic behaviors of the estimator of
the Gini index are presented in Section 4. In this section we establish strong consistency and asymptotic normality of the
estimator of the Gini index. Some proofs of the main results are deferred to the Appendix.
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2. Preliminaries

In the following we need the uniform strong consistency of the estimator Qn; in the next lemma we show the uniform
strong consistency with the rate of the estimator Qn.

Lemma 1. Under Assumptions (1) and (2), we have

sup
0<p<1

|Qn(p) − Q (p)| = O


log log n

n


a.s.

Proof. It follows from the discussion after (4.12) in Sen (1984). �

Strong approximations for αn will be derived from the well-known approximations of the empirical process

βn(t) = n1/2
[F∗

n (t) − F∗(t)], t ≥ 0.

Without loss of generality we can assume that our probability space (Ω, A, P) is so rich that the approximations of Komlós
et al. (1975) hold, and we have

sup
t≥0

|βn(t) − K(t, n)| = O

n−

1
2 (log n)2


a.s.,

and

sup
t≥0

|βn(t) − Bn(t)| = O

n−

1
2 log n


a.s.,

where K(t, n) is a two-parameter Gaussian process with zero mean and covariance

E[K(x, n)K(y,m)] = (mn)−1/2(m ∧ n)[F∗(x ∧ y) − F∗(x)F∗(y)], (a ∧ b = min{a, b}),

and {Bn(t), t ≥ 0} for n = 1, 2, . . . is a sequence of mean zero Gaussian process with covariance

E[Bn(x)Bn(y)] = F∗(x ∧ y) − F∗(x)F∗(y).

Using K(t, n), Horváth (1985) defined the process Γ (t, n) for approximation αn such that

Γ (t, n) = ν−1
 t

0
y−1dK(y, n) − ν−1F(t)


∞

0
y−1dK(y, n).

It is easy to check that {Γ (t, n), t ≥ 0} is a Gaussian process with zero mean and covariance

E[Γ (x, n)Γ (y,m)] = (mn)−1/2(m ∧ n)[σ(x ∧ y) − F(x)σ (y) − F(y)σ (x) + F(x)F(y)σ ], (2.1)

where

σ(t) = ν−2
 t

0
y−2dF∗(y),

and

σ = lim
t→∞

σ(t) = ν−2


∞

0
y−2dF∗(y).

Theorem 1 (Theorem4.2. fromHorváth, 1985). Suppose that Assumption (3) is satisfied. On a suitably enlarged probability space,
there exist two-parameter mean zero Gaussian processes {Γ (t, n), t ≥ 0} with covariance (2.1) such that

sup
t≥0

|αn(t) − Γ (t, n)| = O(n−λ) a.s.,

for any 0 < λ < 1/2 − 1/r, for some r > 2. �

Also, by using {Bn(t), t ≥ 0} we can define the process Γn(t) for approximation αn such that

Γn(t) = ν−1
 t

0
y−1dBn(y) − ν−1F(t)


∞

0
y−1dBn(y).

It is easy to check that {Γn(t), t ≥ 0} is a sequence of Gaussian processes with zero mean and covariance

E[Γn(x)Γn(y)] = σ(x ∧ y) − F(x)σ (y) − F(y)σ (x) + F(x)F(y)σ . (2.2)

The next theorem is an adaptation of Theorem 1 that would suit our purpose better.
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Theorem 2. Suppose that Assumption (3) is satisfied. On a suitably enlarged probability space, there exist a sequence of mean
zero Gaussian processes {Γn(t), t ≥ 0} with covariance (2.2) such that

sup
t≥0

|αn(t) − Γn(t)| = O(n−λ) a.s.,

for any 0 < λ < 1/2 − 1/r, for some r > 2. �

We now construct twomean zero Gaussian processes that strongly uniformly approximate the normed quantile process
ρn(p).

Theorem 3. Suppose that Assumptions (1)–(3) are satisfied. On a suitably enlarged probability space, there exist two-parameter
mean zero Gaussian processes {Γ (t, n), t ≥ 0} with covariance (2.1) such that

sup
0≤p≤1

|ρn(p) − Γ (Q (p), n)| = O


n−
1
4 log n


∨ (n−λ)


a.s., (2.3)

for any 0 < λ < 1/2 − 1/r, for some r > 2, where a ∨ b = max{a, b}. Moreover, there exist a sequence of mean zero Gaussian
processes {Γn(t), t ≥ 0} with covariance (2.2) such that

sup
0≤p≤1

|ρn(p) − Γn(Q (p))| = O


n−
1
4 log n


∨ (n−λ)


a.s.,

for any 0 < λ < 1/2 − 1/r, for some r > 2.

Proof. See the Appendix. �

3. Asymptotic behaviors of the Lorenz statistic

In this section, we obtain strong uniform consistency and the strong Gaussian approximation for Ln(p), and making use
of the strong approximation, we shall derive the functional LIL of Ln(p).

3.1. Strong uniform consistency

Theorem 4 proves the strong uniform consistency of Ln. It tells us how fast Ln converges to LF .

Theorem 4. Suppose that the conditions of Lemma 1 are satisfied. Then, we have

sup
0<p<1

|Ln(p) − LF (p)| = O


log log n

n


a.s. (3.1)

Proof. An elementary computation shows that

Ln(p) − LF (p) =
1
µn

 p

0
[Qn(y) − Q (y)]dy −

µn − µ

µn
LF (p), p ∈ (0, 1).

Further, it follows from law of the iterated logarithm that

µn − µ = O


log log n

n


a.s. (3.2)

Now, by using Lemma 1 and (3.2), we obtain the result. �

3.2. Strong Gaussian approximation

Theorem 5 gives two strong Gaussian approximations for the Lorenz process over interval [0, 1].

Theorem 5. Suppose that the conditions of Theorem 3 are satisfied. On a suitably enlarged probability space, there exist two-
parameter mean zero Gaussian processes {Γ (t, n), t ≥ 0} with covariance (2.1) such that

sup
0≤p≤1

ln(p) −
1
µ

 p

0

Γ (Q (y), n)
f (Q (y))

dy − LF (p)
 1

0

Γ (Q (y), n)
f (Q (y))

dy
 = O


n−

1
4 log n


∨ (n−λ)


a.s., (3.3)
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for any 0 < λ < 1/2 − 1/r, for some r > 2. Moreover, there exist a sequence of mean zero Gaussian processes {Γn(t), t ≥ 0}
with covariance (2.2) such that

sup
0≤p≤1

ln(p) −
1
µ

 p

0

Γn(Q (y))
f (Q (y))

dy − LF (p)
 1

0

Γn(Q (y))
f (Q (y))

dy
 = O


n−

1
4 log n


∨ (n−λ)


a.s.,

for any 0 < λ < 1/2 − 1/r, for some r > 2.

Proof. See the Appendix. �

3.3. The functional LIL

The next theoremgives a functional LIL for the Lorenz process.Wework on the probability space of Theorem5. Let C(0, 1)
be the space of continuous functions on [0, 1] and B be Starassen’s set of absolutely continuous functions:

B =


g|g : [0, 1] → R, g(0) = 0,

 1

0
(g ′(x))2dx ≤ 1


.

Theorem 6. Suppose that conditions of Theorem 5 are satisfied. On a rich enough probability space, ln(.)/
√
2 log log n is almost

surely relatively compact in C(0, 1) with respect to the supremum norm and its set of limit points is

G =


gh : gh(p) =

1
µ

 p

0

h(y)
f (Q (y))

dy − LF (p)
 1

0

h(y)
f (Q (y))

dy


, 0 ≤ p ≤ 1, h ∈ H


,

where

H =

h : [0, 1] → R, h(u) = g(σ (Q (u))) − F(Q (u))

√
σ : g ∈ B


.

Proof. Observe that process A(.) = Γ (Q (.), u) over [0, 1] for u ≥ 0 is equal in distribution to the process
u−

1
2 [W (σ (Q (.)), u) − F(Q (.))W (σ , u)], u ≥ 0


,

over [0, 1], where W (t, u) is a standard two-parameter Wiener process. Hence, for u = n where n are natural numbers,
A(y)/

√
2 log log n is relatively compact in C(0, 1) and set of limit points is H from the standard functional LIL for a two-

parameter Wiener process (Theorem 1.14.1 in Csörgő and Révész, 1981). (3.3) then gives the desired result. �

4. Asymptotic behaviors of the Gini statistic

In this section, we shall give the strong consistency for the Gini statistic Gn. Also, we obtain asymptotic normality of Gn.

4.1. Strong consistency

In the following theorem, we prove the strong consistency of the Gini statistic Gn. It tells us how fast Gn converges to the
Gini index GF .

Theorem 7. Suppose the conditions of Lemma 1 are satisfied. Then, we have

|Gn − GF | = O


log log n

n


a.s. (4.1)

Proof. We can write

|Gn − GF | = 2
 1

0
|LF (u) − Ln(u)|du,

and by using (3.1), we obtain the result. �

4.2. Asymptotic normality

In the next theorem we obtain asymptotic normality for the normed Gini sequence
√
n[Gn − GF ].
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Theorem 8. Suppose that the conditions of Theorem 3 are satisfied. Then, we have

√
n[Gn − GF ]

D
→

1
µ


2(CL)F

 1

0

Γ (Q (y))
f (Q (y))

dy −

 1

0

 p

0

Γ (Q (y))
f (Q (y))

dydp −

 1

0

(1 − p)Γ (Q (p))
f (Q (p))

dp


,

where Γ (t) is a Gaussian process distributed as Γn(t) in Theorem 2.

Proof. See the Appendix. �

Remark 3. As a consequence of the preceding theorem we can compute the confidence interval for GF :
Gn − zα/2

σ
√
n
Gn + zα/2

σ
√
n


,

where zα/2 is the (1 − α/2)-quantile of a standard normal distribution andσ 2 is a convergent estimator of variance

1
µ


2(CL)F

 1

0

Γ (Q (y))
f (Q (y))

dy −

 1

0

 p

0

Γ (Q (y))
f (Q (y))

dydp −

 1

0

(1 − p)Γ (Q (p))
f (Q (p))

dp


.
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Appendix

In establishing Theorem 3, we need the following lemma.

Lemma 2. Suppose that Assumptions (2), (3) and (1.2) are satisfied. Then,

sup
t,s∈Jn

|αn(t) − αn(s)| = O

n−

1
4 log n


a.s.,

where Jn =


t : Qn(p) − Cn−

1
2 ≤ t ≤ Qn(p) + Cn−

1
2


, and C is a positive number.

Proof. Assuming that s ≤ t , an elementary computation shows that

Fn(t) − F(t) − Fn(s) + F(s) = ν−1
n

 t

s
y−1d[F∗

n (y) − F∗(y)] + (ν−1
n − ν−1)

 t

s
y−1dF∗(y)

= ν−1
n


t−1

[F∗

n (t) − F∗(t)] − s−1
[F∗

n (s) − F∗(s)]


+ ν−1
n

 t

s
y−2

[F∗

n (y) − F∗(y)]dy + (ν−1
n − ν−1)

 t

s
y−1dF∗(y)

where, by (3.2), (1.2) and the definition of Jn,

sup
(ν−1

n − ν−1)

 t

s
y−1dF∗(y)

 ; x, y ∈ Jn


= O(n−1),

along with (1.2) and the Bahadur (1966) representation, we have

sup
t,s∈Jn

|F∗

n (t) − F∗(t) − F∗

n (s) + F∗(s)| = O

n−

3
4 log n


a.s.

Therefore, we conclude that

sup
t,s∈Jn

|αn(t) − αn(s)| = O

n−

1
4 log n


a.s. �

Proof of Theorem 3. Suppose that s = Qn(p) and t = Q (p); Lemma 1 yields s, t ∈ Jn. Applying Lemma 2 gives

Fn(Qn(p)) − Fn(Q (p)) = F(Qn(p)) − F(Q (p)) + O

n−

3
4 log n


a.s. (A.1)
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It is easy to see that Fn(Qn(p)) can be replaced by p up to O(n−1). For the right hand side, a Taylor expansion of the first term
about Q(p) up to the second-order term gives

f (Q (p))[Qn(p) − Q (p)] + O([Qn(p) − Q (p)]2) + O

n−

3
4 log n


a.s.

Invoking Lemma 1 and rearranging terms in (A.1), we have
√
nf (Q (p))[Qn(p) − Q (p)] =

√
n[p − Fn(Q (p))] + O


n−

1
4 log n


a.s.

Since F is continuous, F(Q (p)) = p. Recalling the definitions of the process αn and quantile process ρn, we have

ρn(p) − αn(Q (p)) = O

n−

1
4 log n


a.s. (A.2)

Finally, by using Theorem 2 and (A.2) we obtain (2.3). Similarly, on replacing Γn(Q (p)) with Γ (Q (p), n), this completes the
proof of the theorem. �

Langberg et al. (1980) define the total time on test transform curve corresponding to a continuous distribution F on
R+,H−1

F (p) for p ∈ [0, 1] as

H−1
F (p) =

 p

0
(1 − y)dQ (y) = (1 − p)Q (p) +

 p

0
Q (y)dy, Q (0) = 0. (A.3)

Obviously, H−1
F (p) ≤ H−1

F (1) := limp↑1 H−1
F (p) = µ. A natural estimator for H−1

F (p) is

H−1
n (p) = (1 − p)Qn(p) +

 p

0
Qn(y)dy, p ∈ [0, 1]. (A.4)

Lemma 3 proves that this estimator is strongly uniformly consistent for H−1
F .

Lemma 3. Suppose that the conditions of Lemma 1 are satisfied. Then, we have

sup
0≤p≤1

|H−1
n (p) − H−1

F (p)| = O


log log n

n


a.s.

Proof. By Lemma 1, we have

sup
0≤p≤1

|H−1
n (p) − H−1

F (p)| ≤ sup
0≤p≤1

[(1 − p)|Qn(p) − Q (p)|] + sup
0≤p≤1

 p

0
|Qn(y) − Q (y)|dy

= O


log log n

n


a.s. �

Next, define the normed total time on test empirical process tn(p) by

tn(p) :=
√
n[H−1

n (p) − H−1
F (p)], p ∈ [0, 1].

Lemma 4 characterizes the asymptotic limit of tn(p).

Lemma 4. Suppose that the conditions of Theorem 3 are satisfied. Then, we have

sup
0≤p≤1

tn(p) −

 p

0

Γn(Q (y))
f (Q (y))

dy +
(1 − p)Γn(Q (p))

f (Q (p))

 = O


n−
1
4 log n


∨ (n−λ)


a.s.,

for any 0 < λ < 1/2 − 1/r, for some r > 2.

Proof. By (A.3), (A.4), Theorem 3 and the definition of the PL-quantile process,

tn(p) =
√
n
 p

0
|Qn(y) − Q (y)|dy +

√
n(1 − p)[Qn(p) − Q (p)]

=

 p

0

Γn(Q (y))
f (Q (y))

dy +
(1 − p)Γn(Q (p))

f (Q (p))
+ O


n−

1
4 log n


∨ (n−λ)


a.s.

The lemma is proved. �
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Next, we define the scaled total time on test transform, its statistic and the associated empirical process corresponding to
F . We have

WF (p) :=
H−1

F (p)
µ

, Wn(p) :=
H−1

n (p)
µn

(A.5)

and

wn(p) :=
√
n[Wn(p) − WF (p)],

for p ∈ [0, 1]. Also, the cumulative total time on test transform and its empirical counterpart are defined by

VF :=

 1

0
WF (y)dy =

1
µn

 1

0
H−1

F (y)dy, (A.6)

Vn :=

 1

0
Wn(y)dy. (A.7)

The following two lemmas give the uniform consistency ofWn(p) and the strong approximation of the scaled total time
on test empirical process respectively. Lemma 7 is a central limit theorem for the normed cumulative total time on test
sequence vn :=

√
n[Vn − VF ] that follows directly from Lemma 6.

Lemma 5. Suppose that the conditions of Lemma 1 are satisfied. Then, we have

sup
0≤p≤1

|Wn(p) − WF (p)| = O


log log n

n


a.s.

Proof. By (A.5) and the triangular inequality, the left hand side is bounded by

sup
0≤p≤1

H−1
n (p)
µn

−
H−1

n (p)
µ

+ sup
0≤p≤1

H−1
n (p)
µ

−
H−1

F (p)
µ

 = sup
0≤p≤1

H−1
n (p)

µ − µn

µnµ

+ sup
0≤p≤1

 1µ 
H−1

F (p) − H−1
n (p)


= O


log log n

n


,

almost surely by Lemma 3 and (3.2). �

The proof of the following lemma can be given along the lines of Lemma 3.5 of Tse (2006).

Lemma 6. Suppose that the conditions of Theorem 3 are satisfied. Then, almost surely,

sup
0≤p≤1

wn(p) −
1
µ

 p

0

Γn(Q (y))
f (Q (y))

dy +
(1 − p)Γn(Q (p))

f (Q (p))


+

H−1
F (p)
µ2

 1

0

Γn(Q (y))
f (Q (y))

dy


= O


n−

1
4 log n


∨ (n−λ)


,

for any 0 < λ < 1/2 − 1/r, for some r > 2. �

Lemma 7. Suppose that the conditions of Theorem 3 are satisfied. Then, we have

vn
D
→

1
µ

 1

0

 p

0

Γ (Q (y))
f (Q (y))

dydp +

 1

0

(1 − p)Γ (Q (p))
f (Q (p))

dp − VF

 1

0

Γ (Q (y))
f (Q (y))

dy


,

where Γ (t) is a Gaussian process distributed as Γn(t) in Theorem 2.

Corollary 1. It is easy to show that VF = 2(CL)F , i.e., the cumulative total time on test transform VF is twice the cumulative
Lorenz curve (CL)F . Hence, Lemma 7 is a central limit theorem that can also be interpreted as

1
2
vn =

√
n

1
2
Vn − (CL)F


,

and 1
2Vn is a consistent estimator for (CL)F .
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Proof of Theorem 5. By the definition of the Lorenz curve corresponding to F in our model and by using (A.3) and (A.4) we
have

WF (p) =
(1 − p)Q (p) 1

0 Q (u)du
+ LF (p). (A.8)

We have also

Wn(p) =
(1 − p)Qn(p) 1

0 Qn(u)du
+ Ln(p), p ∈ [0, 1]. (A.9)

Substituting (A.8) and (A.9) in Lemma 6 we obtain the result. �

Corollary 2. Suppose the conditions of Theorem 3 are satisfied. Then, almost surely,

sup
0≤p≤1

√n[µnLn(p) − µLF (p)] −

 p

0

Γn(Q (y))
f (Q (y))

dy
 = O


n−

1
4 log n


∨ (n−λ)


,

for any 0 < λ < 1/2 − 1/r, for some r > 2.

Proof of Theorem 8. By definition, we can write

GF :=

 1
0 [u − LF (u)]du 1

0 udu
= 1 − 2(CL)F = 1 − VF ,

and hence we have

Vn − VF = Vn − 2(CL)F = Vn − (1 − GF ),

and the central limit theorem for vn holds also for
√
n[Vn − 2(CL)F ] and

√
n[Vn − (1 − GF )]. In particular, the cumulative

total time on test statistic Vn is a consistent estimator of 1 − GF . Thus, an estimator for the Gini index is the Gini statistic
defined by

Gn := 1 − Vn.

Therefore the theorem is proved. �
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