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Abstract. The aim of this paper is to determine the non-abelian tensor square and

Schur multiplier of groups of square free order and of groups of orders p2q, pq2 and p2qr,

where p, q and r are primes and p < q < r.

1. Introduction

The notion of non-abelian tensor product G⊗H of groups G and H, which was introduced

by R. Brown and J.-L. Loday [2, 3], is a generalization of the usual tensor product of the

abelian groups. Let there be actions

G×H −→ G, (g, h) 7−→h g ; H ×G −→ H, (h, g) 7−→g h

in such a way that for all g, g1 ∈ G and h, h1 ∈ H,

g1
hg = g−1

1 (h(g1g)) and
h1

gh = h−1
1 (g(h1h)), (?)

where G acts on itself by conjugation (g, g1) 7−→g g1 = gg1g
−1, and H acts on itself similarly.

Then the non-abelian tensor product G⊗H is defined to be the group generated by symbols

g ⊗ h, for all g ∈ G, h ∈ H, subject to the relations

g1g ⊗ h = (g1g ⊗ g1h)(g1 ⊗ h) , g ⊗ h1h = (g ⊗ h1) (h1g ⊗ h1h)

for all g, g1 ∈ G, h, h1 ∈ H. In the case G = H and G acts on itself by conjugation, G⊗G

is called the non-abelian tensor square of G.

Following the publications of Brown and Loday’s work, a number of purely group theoretic

papers have appeared on this topic. Some of them investigate structural properties of the

Key words and phrases. Non-abelian tensor square, Schur multiplier.

Mathematics Subject Classification 2010. 20G40, 20J06, 19C09.

1



2 S. H. JAFARI, P. NIROOMAND, AND A. ERFANIAN

tensor square, while the others are devoted to explicit descriptions for particular groups, for

instance dihedral, quaternionic, symmetric and all groups of order at most 30 in [1].

Later, Hannebauer [7] determined the structure of tensor square of the linear groups

SL(2, q), PSL(2, q), GL(2, q) and PGL(2, q) for all q > 5 and q 6= 9.

Ellis and Leonard [4] devised a computer algorithm for the computation of tensor square

of finite groups which can handle much larger groups than those given in [1]. Using the

CAYLEY-program, they compute the tensor square of B(2, 4), the 2-generator Burnside

group of exponent 4, where |B(2, 4)| = 212. Recently, Hannebauer’s result is improved for

the linear groups SL(n, q), PSL(n, q), GL(n, q) and PGL(n, q) for all n, q ≥ 2 in [5]. These

results extremely depend on knowing the order of M(G), the Schur multiplier of a group G.

Also, some computations of G⊗G for polycyclic groups have been done in [9].

In the present paper, we determine the non-abelian tensor square of the groups of square

free order and groups of orders p2q, pq2 and p2qr, where p, q and r are primes and p < q < r.

Here we give some notations which will be used throughout the paper.

Gab Abelianisation of G,

e(G) exponent of G,

Q2 quaternion group of order 8,

A4 alternating goup of order 12,

(Zpt)k direct product of k copies of the cyclic group of order pt.

Theorem A. Let G be a group of order n, where n is a square free number. Then

G⊗G ∼= Zn.

Theorem B. Let G be a group of order p2q, where p and q are prime numbers and

p < q. The structure of G⊗G is one of the following

(i) If Gab = Zp2 , then G⊗G ∼= Zp2q.

(ii) If Gab = (Zp)2, then G⊗G ∼= (Zp)4 × Zq.

(iii) If Gab = Z3, then G⊗G ∼= Z3 ×Q2.

Theorem C. Let G be a group of order pq2, where p and q are prime numbers and p < q.
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The structure of G⊗G is one of the following

(i) If G′ = Zq2 , then G⊗G ∼= Zpq2 .

(ii) If G′ = (Zq)2 and M(G) = 0 or if G′ = Zq, then G⊗G ∼= Zp × (Zq)2.

(iii) If G′ = (Zq)2 and M(G) = Zq, then G ⊗ G ∼= Zp × H, where H is an extra-special

q-group of order q3.

Theorem D. Let G be a group of order p2qr, where p, q and r are prime numbers

p < q < r, pq 6= 6. The structure of G⊗G is one of the following

(i) If |G′| = q, r or qr where q 6≡ 1 (mod r), then G ⊗ G ∼= Zp2qr when Gab is cyclic,

otherwise G⊗G ∼= (Zp)4 × Zqr.

(ii) If |G′| = qr where q ≡ 1 (mod r), then G⊗G ∼= Zp2 ×G′ when Gab is cyclic, otherwise

G⊗G ∼= (Zp)4 ×G′.

2. Basic Results

In this section we recall some definitions and basic results on the tensor square which are
necessary for our main theorems.

Let G be a group and G ⊗ G be the tensor square of G. The exterior square G ∧ G is
obtained by imposing the additional relation g ⊗ g = 1⊗ (g ∈ G) on G ⊗ G. Moreover, we
denote by ∇(G) the subgroup of G⊗G generated by all elements g ⊗ g for all g ∈ G. The
commutator map induces homomorphisms κ : G⊗G → G and κ′ : G∧G → G sending g⊗h

and g ∧ h to [g, h] = ghg−1h−1. The kernel of κ is denoted by J2(G).
Results in [2, 3] give the following commutative diagram with exact rows and central

extensions as columns

(2.1)

0 0y y
Γ(Gab) −−−−−−→ J2(G) −−−−−−→ M(G) −−−−−−→ 0∥∥∥ y y
Γ(Gab) −−−−−−→ G⊗G −−−−−−→ G ∧G −−−−−−→ 1

κ

y κ′
y

G′ G′y y
1 1

where Γ is the Whitehead’s quadratic functor (see Whitehead [10]).

For the sake of convenience of the reader we state some known results which are used in the

proof of the main theorems.



4 S. H. JAFARI, P. NIROOMAND, AND A. ERFANIAN

Theorem 2.1. [1, Proposition 8]. If G is a group in which G′ has a cyclic complement C,

then G⊗G ∼= (G ∧G)×Gab and hence |G⊗G| = |G||M(G)|.

Theorem 2.2. [6, Theorem A]. Let G be a group such that Gab =
n∏

i=1

ki∏
j=1

Z
p

eij
i

where

1 ≤ ei1 ≤ ei2 ≤ ... ≤ eiki
for all 1 ≤ i ≤ n, ki ∈ N and pi 6= 2. Then

|G⊗G| =
n∏

i=1

pdi
i |G||M(G)|

in which di =
ki∑

j=1

(ki − j)eij .

3. Proof of Main Theorems

In this section we prove the main theorem as we mentioned earlier in section one.

Lemma 3.1. Let G be a finite non-abelian group.

(i) If G is a square free order group, then G′ is cyclic.

(ii) If G is a group of order p2q, then G′ = Zq or G′ = (Z2)2.

(iii) If G is a group of order pq2, then G′ = Zq, G′ = Zq2 or G′ = (Zq)2.

(iv) If G is a group of order p2qr and pq 6= 6, then |G′| = q, r or qr.

(v) If G is a group of order p2qr and pq = 6, then |G′| = 3, r, 3r, 4 or 4r.

Proof. One may use Sylow theorems for examples in case (ii) to show the number of Sylow

p-subgroups of G is 1 or q and the number of Sylow q-subgroups of G is 1 or p2. If G has

one Sylow q-subgroup Q, then G/Q is abelian and so G′ = Zq. Otherwise p = 2 and q = 3,

hence |G| = 12 and we should have G ∼= A4.

The proof of other cases is similar and we omit it. �

Lemma 3.2. Let G be a finite non-abelian group.

(i) If G is a square free order group, then M(G) = 0 .

(ii) If G is a group of order p2q, then

M(G) =



0 if G′ = Zq and Gab = Zp2

Zp if G′ = Zq and Gab = (Zp)2

Z2 if G′ = (Z2)2
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(iii) If G is a group of order pq2, then

M(G) =



0 if G′ = Zq

0 if G′ = Zq2

0 or Zq if G′ = (Zq)2

(iv) If G is a group of order p2qr and pq 6= 6, then

M(G) =

 0 if Gab is cyclic

Zp otherwise

(v) If G is a group of order p2qr and pq = 6, then M(G) is as the same as part (iv).

Moreover if |G′| = 4 or 4r, then M(G) = Z2.

Proof. (i) Since all Sylow subgroups of G are cyclic, so M(G) = 0. For (ii), if G′ =

Zq and Gab = Zp2 , then again all Sylow subgroups of G are cyclic and therefore M(G) = 0.

In the case G′ = Zq and Gab = (Zp)2, we can see that |G′| and |Gab| are coprime, so by

Schur-Zassenhaus lemma, G′ has a complement. The result follows from [8, Corollary 2.2.6].

The proof of the other parts is similar. �

Lemma 3.3. Let G be a finite non-abelian group.

(i) If G is a square free order group of order n, then |G⊗G| = n .

(ii) If G is a group of order p2q, then

|G⊗G| =



p2q if Gab = Zp2

p4q if Gab = (Zp)2

24 if Gab = Z3

(iii) If G is a group of order pq2, then

|G⊗G| =



pq2 if G′ = Zq2

pq2 if G′ = Zq or G′ = (Zq)2 and M(G) = 0

pq3 if G′ = (Zq)2 and M(G) = Zq
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(iv) If G is a group of order p2qr and pq 6= 6, then

|G⊗G| =

 p2qr if Gab is cyclic

p4qr otherwise

(v) If G is a group of order p2qr and pq = 6, then the order of G⊗G is similar to the part

(iv). Moreover if |G′| = 4 or 4r, then |G⊗G| = 24r.

Proof. (i) Since |G′| and |Gab| are coprime, G′ has a cyclic complement and |G⊗G| = |G|

by Schur-Zassenhaus lemma, Theorem 2.1 and Lemma 3.2.

(ii) Suppose that Gab = Zp2 . In this case |G′| and |Gab| are coprime and |G⊗G| = |G| = p2q

by Lemma 3.2.

Now assume that Gab = (Zp)2, if p 6= 2, then |G⊗G| = p4q by Theorem 2.2 and Lemma

3.2. Otherwise e(∇(G)) divides e(G) = 2q and e(Γ(Gab)) = 4. Hence e(∇(G)) = 2 and

∇(G) = (Z2)3 and it implies that |G⊗G| = 24q.

We note that if Gab = Z3, then G = A4 and this case is computed in [1].

(iii) Suppose that G′ is cyclic of order q2, so we have |G ⊗ G| = pq2 by Theorem 2.1 and

Lemma 3.2. The case that G′ = (Zq)2 and M(G) = 0 holds similarly.

Now if |G′| = q and p 6= 2, then |G ⊗ G| = pq2 by Theorem 2.2 and Lemma 3.2. Also if

p = 2, then it is easy to see that |G⊗G| = 2q2.

(iv) Suppose that Gab is cyclic, so |G⊗G| = |G| by Theorems 2.1 and Lemma 3.2.

The other case is similar to the case (ii).

(v) It is straight forward. �

We are ready to prove main theorems. Notice that if G′ is cyclic, then G⊗G is abelian.

Proof of Theorem A. Since G is a group of square free order, then G⊗G is abelian of

order n by Lemmas 3.1 and 3.3.

Proof of Theorem B. (i) It is clear that G⊗G is an abelian group of order p2q by Lemma

3.3. On the other hand, e(G⊗G) divides |G⊗G| and the epimorphism π : G⊗G −→ Gab⊗Gab

implies that e(G⊗G) = p2q. Hence G⊗G ∼= Zp2q, as required.

(ii) It is as same as the case (i).
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(iii) If G′ = (Z2)2, then G = A4 and one may refer to the Table 1 given in [1].

Proof of Theorem C. (i) The exponent of G⊗G is equal to pq2, so the proof follows by

Lemma 3.3.

(ii) Since G ⊗G/J2(G) = G′ is abelian, we have (G ⊗G)′ ⊆ J2(G), where |J2(G)| = p. In

addition the epimorphism π implies that (G ⊗ G)′ is in it’s kernel which is of order q2, so

(G⊗G)′ = 1. The result holds by Lemma 3.3 and the fact that e(G⊗G) = pq.

(iii) It is clear that ∇(G) and the Sylow q-subgroup of G⊗G, say H, are normal. Thus by

Lemma 3.3,

G⊗G ∼= ∇(G)×H,

in which ∇(G) = Zp and H is of order q3.

Proof of Theorem D. (i) If Gab is cyclic, then the epimorphism π implies that e(G⊗

G) = p2qr, so the result follows by Lemma 3.3.

If Gab is not cyclic, the proof is similar.

(ii) Assume that Gab = Zp2 , then |∇(G)| = |J2(G)| = p2 and it can be easily seen that

Ker π is isomorphic to G′ and of order qr. Moreover since e(G ⊗ G) = p2qr, Lemma 3.3

implies that

G⊗G ∼= ∇(G)×Ker π ∼= ∇(G)×G′ ∼= Zp2 ×G′.

If Gab = (Zp)2, then e(G ⊗ G) = pqr, |J2(G)| = p4 and Ker π ∼= G′. Therefore it follows

from Lemma 3.3 that

G⊗G ∼= J2(G)×Ker π ∼= (Zp)4 ×G′.

Finally, we note that in Theorem D, if pq = 6, i.e. |G| = 12r, then |G′| = 3, r, 3r, 4 or 4r.

In the cases that |G′| = 3, r or 3r, the structure of G⊗G is similar to Theorem D. In other

cases one may show that G⊗G ∼= Z3r ×Q2.
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