A stopping rule for an iterative algorithm in systems of linear integral equations

Mortaza Gachpazan, Omid Baghani

Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran. gachpazan@math.um.ac.ir

General area of research: Analysis and Numerical Analysis

Abstract: Consider the second kind Volterra integral equations system of the form:

$$\mathbf{U}(x) = \mathbf{F}(x) + \int_{a}^{x} \mathbf{K}(x, t)\mathbf{U}(t)dt \equiv \mathcal{K}\mathbf{U}, \qquad (a \le x \le b, \ \mathbf{U} \in X),$$
 (1)

where

$$\mathbf{U}(x) = [u_1(x), u_2(x), \dots, u_m(x)]^T,$$

$$\mathbf{F}(x) = [f_1(x), f_2(x), \dots, f_m(x)]^T,$$

$$\mathbf{K}(x, t) = [k_{ij}(x, t)], \quad i, j = 1, 2, \dots, m.$$

which \mathcal{K} be integral operator on complete metric space $(X, d := \|.\|_{\infty})$, $X := C([a, b], \mathbb{R}^m)$, $m \ge 1$. The vector function \mathbf{F} and the matrix function \mathbf{K} are given, and \mathbf{U} is the vector function of the solution of system (1) that will be determined. We assume that \mathbf{F} and \mathbf{K} are continuous on the interval [a, b] and triangular $D := \{(x, t) : x \in [a, b], t \in [a, x]\}$ respectively.

First, we show that there exist a positive constant such that M which the following inequality is satisfied for every $U, V \in X$:

$$d(\mathcal{K}^n\mathbf{U}, \mathcal{K}^n\mathbf{V}) \le \frac{M^n(b-a)^n}{n!}d(\mathbf{U}, \mathbf{V}),$$

So, the mapping \mathcal{K}^n is contractive when n is sufficiently large.

Second, by fixed point theorem we show that the contraction mapping $T: X \to X$ has a unique fixed point \mathbf{U}^* and $\{T^n(\mathbf{U})\}_1^\infty$ converges to \mathbf{U}^* for each $\mathbf{U} \in X$.

And finally, we determine number of iteration for obtaining the desired approximation and give some numerical examples.

Keywords: Integral operator, Successive approximation method, Fixed point theorem.