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Abstract: Consider the second kind Volterra integral equations system of the form:

U(x) = F(x) +

∫ x

a

K(x, t)U(t)dt ≡ KU, (a ≤ x ≤ b, U ∈ X), (1)

where

U(x) =[u1(x), u2(x), . . . , um(x)]T ,

F(x) =[f1(x), f2(x), . . . , fm(x)]T ,

K(x, t) = [kij(x, t)], i, j = 1, 2, . . . , m.

which K be integral operator on complete metric space (X, d := ‖.‖∞), X := C([a, b],Rm), m ≥ 1.
The vector function F and the matrix function K are given, and U is the vector function of the
solution of system (1) that will be determined. We assume that F and K are continuous on the
interval [a, b] and triangular D := {(x, t) : x ∈ [a, b] , t ∈ [a, x]} respectively.

First, we show that there exist a positive constant such that M which the following inequality
is satisfied for every U, V ∈ X :

d(KnU,KnV) ≤ Mn(b− a)n

n!
d(U,V),

So, the mapping Kn is contractive when n is sufficiently large.

Second, by fixed point theorem we show that the contraction mapping T : X → X has a unique
fixed point U∗ and {T n(U)}∞1 converges to U∗ for each U ∈ X.

And finally, we determine number of iteration for obtaining the desired approximation and give
some numerical examples.
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