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We address the Open Vehicle Routing Problem (OVRP), a variant of the ‘‘classical’’ (capacitated and

distance constrained) Vehicle Routing Problem (VRP) in which the vehicles are not required to return to

the depot after completing their service. We present a heuristic improvement procedure for OVRP based

on Integer Linear Programming (ILP) techniques. Given an initial feasible solution to be possibly

improved, the method follows a destruct-and-repair paradigm, where the given solution is randomly

destroyed (i.e., customers are removed in a random way) and repaired by solving an ILP model, in the

attempt of finding a new improved feasible solution. The overall procedure can be considered as a

general framework which could be extended to cover other variants of Vehicle Routing Problems. We

report computational results on benchmark instances from the literature. In several cases, the proposed

algorithm is able to find the new best known solution for the considered instances.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

We address the Open Vehicle Routing Problem (OVRP), a
variant of the ‘‘classical’’ (capacitated and distance constrained)
Vehicle Routing Problem (VRP) in which the vehicles are not
required to return to the depot after completing their service.
OVRP can be formally stated as follows. We are given a central
depot and a set of n customers, which are associated with the
nodes of a complete undirected graph G¼(V,E) (where
V¼{0,1,y,n}, node 0 represents the depot and V\f0g is the set of
customers). Each edge eAE has an associated finite cost ceZ0 and
each customer vAV\f0g has a demand qv40 (with q0¼0). A fleet
of m identical vehicles is located at the depot, each one with a fixed

cost F, a capacity Q and a total distance-traveled (duration) limit D.
The customers must be served by at most m Hamiltonian paths
(open routes), each path associated with one vehicle, starting at
the depot and ending at one of the customers. Each route must
have a duration (computed as the sum of the edge costs in the
route) not exceeding the given limit D of the vehicles, and can
visit a subset S of customers whose total demand

P
vA Sqv does not

exceed the given capacity Q. The problem consists of finding a
feasible solution covering (i.e., visiting) exactly once all the
customers and having a minimum overall cost, computed as the
sum of the traveled edge costs plus the fixed costs associated with
the vehicles used to serve the customers. OVRP is known to be
ll rights reserved.
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NP-hard in the strong sense, as it generalizes the Bin Packing
Problem and the Hamiltonian Path Problem.

In this paper we present a heuristic improvement procedure
for OVRP based on Integer Linear Programming (ILP) techniques.
Given an initial feasible solution to be possibly improved, the
procedure iteratively performs the following steps: (a) randomly
select several customers from the current solution, and build the
restricted solution obtained from the current one by extracting
(i.e., short-cutting) the selected customers; (b) reallocate the
extracted customers to the restricted solution by solving an ILP
problem, in the attempt of finding a new improved feasible
solution. This method has been proposed by De Franceschi et al.
[7] and deeply investigated by Toth and Tramontani [27] in the
context of the classical VRP. Here, we consider a simpler version
of this approach, which exploits no particular feature of the
addressed problem. The method follows a destruct-and-repair
paradigm, where the current solution is randomly destroyed (i.e.,
customers are removed in a random way) and repaired by
following ILP techniques. Hence, the overall procedure can be
considered as a general framework which could be extended to
cover other variants of Vehicle Routing Problems.

The notion of using ILP techniques to improve a feasible
solution of a combinatorial optimization problem has emerged in
several papers in the last few years. Addressing the split delivery
VRP, Archetti et al. [2] developed a heuristic algorithm that
integrates tabu search with ILP by solving integer programs to
explore promising parts of the solution space identified by a tabu
search heuristic. A similar approach has been presented by
Archetti et al. [1] for an inventory routing problem. Hewitt et al.
[15] proposed to solve the capacitated fixed charge network flow
problem by combining exact and heuristic approaches. In this
cedure for the Open Vehicle Routing Problem. Computers and
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case as well a key ingredient of the method is to use ILP to
improve feasible solutions found during the search. Finally, the
idea of exploiting ILP to explore promising neighborhoods of
feasible solutions has been also investigated in the context of
general purpose integer programs; see, e.g., Fischetti and Lodi [10]
and Danna et al. [6]. The methods presented in [6,10] are
currently embedded in the commercial mixed integer program-
ming solver Cplex [16].

The paper is organized as follows. Section 2 recalls the main
works proposed in the literature for OVRP. In Section 3 we
describe a neighborhood for OVRP and the ILP model which
allows to implicitly define and explore the presented neighbor-
hood. The implementation of the heuristic improvement proce-
dure is given in Section 4, while Section 5 reports the
computational experiments on benchmark capacitated OVRP
instances from the literature (with/without distance constraints),
comparing the presented method with the most effective
metaheuristic techniques proposed for OVRP. Some conclusions
are finally drawn in Section 6.
2. Literature review

The classical VRP is a fundamental combinatorial optimization
problem which has been widely studied in the literature (see, e.g.,
Toth and Vigo [28] and Cordeau et al. [5]). At first glance, having
open routes instead of closed ones looks like a minor change, and in
fact OVRP can be also formulated as a VRP on a directed graph, by
fixing to 0 the cost of each arc entering the depot. However, if the
undirected case is considered, the open version turns out to be
more general than the closed one. Indeed, as shown by Letchford
et al. [17], any closed VRP on n customers in a complete undirected
graph can be transformed into an OVRP on n customers, but there
is no transformation in the reverse direction. Further, there are
many practical applications in which OVRP naturally arises. This
happens, of course, when a company does not own a vehicle fleet,
and hence customers are served by hired vehicles which are not
required to come back to the depot (see, e.g., Tarantilis et al. [26]).
But the open model also arises in pick-up and delivery applications,
where each vehicle starts at the depot, delivers to a set of
customers and then it is required to visit the same customers in
reverse order, picking up items that have to be backhauled to the
depot. An application of this type is described in Schrage [23].
Further areas of application, involving the planning of train services
and of school bus routes, are reported by Fu et al. [13].

OVRP has recently received an increasing attention in the
literature. Exact branch-and-cut and branch-cut-and-price
approaches have been proposed, respectively, by Letchford et al.
[17] and Pessoa et al. [19], addressing the capacitated problem
with no distance constraints and no empty routes allowed (i.e.,
D¼1 and exactly m vehicles must be used). Heuristic and
metaheuristic algorithms usually take into account both capacity
and distance constraints, and consider the number of routes as a
decision variable. In particular, an unlimited number of vehicles is
supposed to be available (i.e., m¼1) and the objective function is
generally to minimize the number of used vehicles first and the
traveling cost second, assuming that the fixed cost of an
additional vehicle always exceeds any traveling cost that could
be saved by its use (i.e., considering F ¼1). However, several
authors address as well the variant in which there are no fixed
costs associated with the vehicles (i.e., F¼0) and hence the
objective function is to minimize the total traveling cost with no
attention to the number of used vehicles (see, e.g., Tarantilis et al.
[26]). Considering capacity constraints only (i.e., taking D¼1),
Sariklis and Powell [22] propose a two-phase heuristic which first
assigns customers to clusters and then builds a Hamiltonian path
Please cite this article as: Salari M, et al. An ILP improvement pro
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for each cluster, Tarantilis et al. [24] describe a population-based
heuristic, while Tarantilis et al. [25,26] present threshold accept-
ing metaheuristics. Taking into account both capacity and
distance constraints, Brand~ao [3], Fu et al. [13,14] and Derigs
and Reuter [8] propose tabu search heuristics, Li et al. [18]
describe a record-to-record travel heuristic, Pisinger and Ropke
[20] present an adaptive large neighborhood search heuristic
which follows a destruct-and-repair paradigm, while Fleszar et al.
[12] propose a variable neighborhood search heuristic.

3. Reallocation model

Let z be a feasible solution of the OVRP defined on G. For any
given node subset F � V\f0g, we define zðF Þ as the restricted solution

obtained from z by extracting (i.e., by short-cutting) all the nodes
vAF . LetR be the set of routes in the restricted solution, I ¼ I ðz,F Þ
the set of all the edges in zðF Þ, and S ¼ SðF Þ the set of all the
sequences which can be obtained through the recombination of
nodes in F (i.e., the set of all the elementary paths in F ). Each edge
iAI is viewed as a potential insertion point which can allocate one or
more nodes in F through at most one sequence sAS. We say that
the insertion point i¼ ða,bÞAI allocates the nodes fvjAF :

j¼ 1, . . . ,hg through the sequence s¼ ðv1,v2, . . . ,vhÞAS, if the edge
(a,b) in the restricted solution is replaced by the edges
(a,v1),(v1,v2),y,(vh,b) in the new feasible solution. Since the res-
tricted routes, as well as the final ones, are open paths starting at the
depot, in addition to the edges of the restricted solution we also
consider the insertion points (called appending insertion points in the
following) i¼(pr,0), where pr denotes the last customer visited by
route rAR, which allow to append any sequence to the last
customer of any restricted route. Further, empty routes in the
restricted solution are associated with insertion points (0,0).

For each sequence sAS, c(s) and q(s) denote, respectively, the cost
of the elementary path corresponding to s and the sum of the
demands of the nodes in s. For each insertion point i¼ ða,bÞAI and
for each sequence s¼ ðv1,v2, . . . ,vhÞAS, gsi denotes the extra-cost (i.e.,
the extra-distance) for assigning sequence s to insertion point i in its
best possible orientation (i.e., gsi :¼ cðsÞ�cabþminfcav1

þcvhb,cavh
þ

cv1bg). Note that, for the appending insertion points i¼(pr,0), gsi is
computed as cðsÞþminfcpr v1

,cpr vh
g. The extra-cost for assigning the

sequence s to the insertion point i¼(0,0) associated with an empty
route is simply cðsÞþminfc0v1

,c0vh
g. For each route rAR, I ðrÞ denotes

the set of insertion points associated with r, while ~qðrÞ and ~cðrÞ

denote, respectively, the total demand and the total distance
computed for route r, still in the restricted solution.

For each iAI , SiDS denotes a sequence subset containing the
sequences which can be allocated to the specific insertion point i.
The definition of Si will be discussed later in this section. Then, a
neighborhood of the given solution z can be formulated (and
explored) by solving an ILP problem (denoted as the Reallocation

Model) based on the decision variables

xsi ¼
1 if sequence sASi is allocated to insertion point iAI ,

0 otherwise,

(

ð1Þ

which reads as follows:X
rAR

~cðrÞþmin
X
iAI

X
sASi

gsixsi ð2Þ

subject toX
iAI

X
sASiðvÞ

xsi ¼ 1, vAF , ð3Þ

X
sASi

xsir1, iAI , ð4Þ
cedure for the Open Vehicle Routing Problem. Computers and
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X
iAI ðrÞ

X
sASi

qðsÞxsirQ� ~qðrÞ, rAR, ð5Þ

X
iAI ðrÞ

X
sASi

gsixsirD�~cðrÞ, rAR, ð6Þ

xsiAf0,1g, iAI , sASi, ð7Þ

where, for any iAI and vAF , SiðvÞDSi denotes the set of
sequences covering customer v which can be allocated to
insertion point i. The objective function (2), to be minimized,
gives the traveling cost of the final OVRP solution. Constraints (3)
impose that each extracted node belongs to exactly one of the
selected sequences, i.e., that it is covered exactly once in the final
solution. Constraints (4) avoid to allocate two or more sequences
to the same insertion point. Finally, constraints (5) and (6) impose
that each route in the final solution fulfills the capacity and
distance restrictions, respectively. Note that, if there is a non-null
fixed cost F associated with the vehicles, it can be taken into
account by simply adding F to the cost of the edges incident at the
depot node.

The Reallocation Model (2)–(7) defines a neighborhood of a
given solution z which depends on the extracted nodes F and on
the subsets Si ðiAI Þ. In particular, for any given F , the choice of Si

is a key factor in order to allow an effective exploration of the
solution space in the neighborhood of the given solution. The
subsets Si are built by following a column generation approach:
we initialize the Linear Programming (LP) relaxation of the
Reallocation Model (LP-RM) with a subsets of variables with
small insertion cost, and afterwards we iteratively solve the
column generation problem associated with LP-RM, adding other
variables with small reduced cost. The overall procedure for
building the subsets Si can be described as follows.
1.
P
O

(Initialization) For each insertion point i¼ ðai,biÞAI , initialize
subset Si with the basic sequence extracted from i (i.e., the,
possibly empty, sequence of nodes connecting node ai and bi in
the given solution z) plus the feasible singleton sequence with
the minimum insertion cost (i.e., the sequence (v), with vAF ,
with the minimum extra-cost among all the singleton
sequences which can be allocated to i without violating the
capacity and distance restrictions for the restricted route
containing i). Initialize LP-RM with the initial set of variables
corresponding to the current subsets Si, and solve LP-RM.
2.
 (Column generation) For each insertion point iAI , solve the
column generation problem associated with i, adding to Si all
the sequences s corresponding to elementary paths in F ,
whose associated variables xsi have a reduced cost rcsi under a
given threshold RCmax (i.e., variables xsi such that rcsirRCmax).
If at least one sequence/variable has been added, solve the new
LP-RM and repeat step 2. Otherwise terminate.
For any fixed insertion point iAI , the column generation
problem associated with i in LP-RM is a Resource Constrained
Elementary Shortest Path Problem (RCESPP), which usually arises
in the Set Partitioning formulation of the classical VRP (see, e.g.,
Feillet et al. [9] and Righini and Salani [21]). Here, for each
insertion point iAI , we solve the corresponding RCESPP through
a simple greedy heuristic, with the aim of finding as many
variables with small reduced cost as possible. Hashing techniques
are used to avoid the generation of duplicated variables.

Note that each subset Si contains the basic sequence extracted
from insertion point i, and hence the current solution can always
be obtained as a new feasible solution of the Reallocation Model.
lease cite this article as: Salari M, et al. An ILP improvement pro
perations Research (2010), doi:10.1016/j.cor.2010.02.010
3.1. Column generation for the Reallocation Model

Let p1
v , p2

i , p3
r and p4

r be the dual variables associated, respectively,
with constraints (3)–(6) in LP-RM, where vAF , iAI and rAR, and
denote with ~p ¼ ð ~p1

v , ~p2
i , ~p3

r , ~p4
r Þ the optimal dual solution of LP-RM.

For any fixed i¼ ðai,biÞAI , consider the directed graph ~Gði, ~pÞ ¼
ðVi,AiÞ, with Vi :¼ fai,big [ F and Ai :¼ fðv,wÞ : vAVi,wAVig\fðai,biÞ,
ðbi,aiÞg.Associate with each arc a¼ ðv,wÞAAi,wa0, a weight ya equal
to the cost of the corresponding edge e¼(v,w) in the graph G, while
set ya :¼ 0 for each arc a¼ ðv,0ÞAAi, if 0AVi. Associate with each arc
aAAi a cost c0a ¼ yað1� ~p4

ri
Þ, and associate with each node vAF a

weight qv and a cost q0v ¼�ð ~p
1
vþqv ~p3

ri
Þ. Then, let P¼(VP,AP) be an

elementary path (ai,v1,y,vh,bi) connecting nodes ai and bi in ~Gði, ~pÞ,
where VP :¼ fv1, . . . ,vhgDVi and AP :¼ fðai,v1Þ, . . . ,ðvh,biÞgDAi. We
say that P is a feasible path ifX
vAVP

qvrQ� ~dðriÞ,
X

aAAP

yarD�~cðriÞþci,

where ci denotes the cost of insertion point i¼(ai,bi), while the cost of
the path is

c0ðPÞ ¼
X

aAAP

c0aþ
X

vAVP

q0v:

Any sequence s¼ ðv1, . . . ,vhÞAS is clearly associated with the
elementary path (ai,v1,y,vh,bi) in ~Gði, ~pÞ. The reduced cost rcsi of
variable xsi in LP-RM is defined by

rcsi :¼ gsi�
X

vAVP

~p1
v� ~p

2
i �qðsÞ ~p3

ri
�gsi ~p

4
ri

and can easily be rewritten as

rcsi :¼ � ~p2
i �cið1� ~p4

ri
Þþ
X

aAAP

c0aþ
X

vAVP

q0v:

Hence, the following proposition holds:

Proposition 1. For any i¼ ðai,biÞAI , the column generation

problem associated with i in LP-RM is the problem of finding an

elementary feasible path P from ai to bi in ~Gði, ~pÞ, with cost

c0ðPÞo ~p2
i þcið1� ~p4

ri
Þ.

As described above, the column generation problem for LP-RM
associated with any insertion point iAI is a Resource Constrained
Elementary Shortest Path Problem (RCESPP) defined on graph
~Gði, ~pÞ, whose size strictly depends on jF j. The orientation of ~Gði, ~pÞ
is required only when the considered i¼ ðai,biÞAI is an appending
insertion point (i.e., bi is the depot node). Even in this case, the
column generation problem could be addressed on a mixed graph,
where only the edges incident at the depot are replaced by
directed arcs (of different cost and weight) entering and leaving
the depot. In the general case, ~Gði, ~pÞ contains negative cycles (i.e.,
cycles in which the sum of the costs c0a associated with the arcs
and the costs q0v associated with the nodes is negative): indeed,
while dual variables p2

i ,p3
r ,p4

r are non-positive, dual variables p1
v

are free and usually assume positive values. Positive values of
variables p1

v can lead to negative node costs q0v and to negative
cycles in graph ~Gði, ~pÞ. Therefore, the column generation problem
in LP-RM is strongly NP-hard.

In order to find a promising set of variables for the Reallocation
Model in a short computing time, we solve the RCESPP associated
with each insertion point through a simple heuristic. We say that
a node vAF is feasible for iAI if the singleton sequence (v) can be
allocated to i without violating the capacity and distance
restrictions on the restricted route ri. For any given insertion
point i¼ ðai,biÞAI , we first build a reduced graph ~Gði, ~pÞ, obtained
by considering only nodes ai, bi and the nf feasible nodes of F with
smallest insertion cost (i.e., the nf feasible nodes vkAF , k¼1,y,nf,
whose associated singleton sequences (vk) have the smallest
cedure for the Open Vehicle Routing Problem. Computers and
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extra-cost for i). At each iteration of the column generation step
described in Section 3, nf is uniformly randomly generated in
[nfmin,nfmax]. Then, on the reduced graph ~Gði, ~pÞ, we apply the
following simple heuristic:
1.
P
O

Find an initial feasible path P¼(ai,v,bi), in ~Gði, ~pÞ.

2.
 Evaluate all the 1–1 feasible exchanges between each node

wAVi\VP and each node vAVP , and select the best one (with
respect to the cost of the corresponding path); if this exchange
leads to an improvement, perform it and repeat step 2.
3.
 Evaluate all the feasible insertions of each node wAVi\VP in
each arc ðv1,v2ÞAAP and select the best one; if no feasible
insertion exists, terminate; otherwise, force such an insertion
even if it leads to a worse path and repeat step 2.

Whenever a new path in ~Gði, ~pÞ is generated, the corresponding
sequence is added to Si if the reduced cost of xsi is smaller than a
given threshold RCmax.
4. Heuristic improvement procedure

The Reallocation Model described in the previous section
allows for exploring a neighborhood of a given feasible solution,
depending on the choice of the extracted customers in F . We
propose a heuristic improvement procedure for OVRP, based on
model (2)–(7), which iteratively explores different neighborhoods
of the current solution. Given an initial feasible solution z0 for
OVRP (taken from the literature or found by any heuristic
method), the procedure works as follows.
1.
 (Initialization) Set kt :¼ 0 and kp :¼ 0. Take z0 as the incumbent
solution and initialize the current solution zc as zc :¼ z0.
2.
 (Node selection) Build set F by selecting each customer with a
probability p.
3.
 (Node extraction) Extract the nodes selected in the previous
step from the current solution zc and construct the
corresponding restricted OVRP solution zcðF Þ, obtained by
short-cutting the extracted nodes.
4.
 (Reallocation) Define the subsets Si (iAI ðzc ,F Þ) as described in
Section 3. Build the corresponding Reallocation Model (2)–(7)
and solve the model by using a general-purpose ILP solver.
Once an optimal ILP solution has been found, construct
the corresponding new OVRP solution and possibly update zc

and z0.

5.
 (Termination) Set kt :¼ ktþ1. If kt¼KTmax, terminate.

6.
 (Perturbation) If zc has been improved in the last iteration, set

kp :¼ 0; otherwise set kp :¼ kpþ1. If kp¼KPmax, ‘‘perturb’’ the
current solution zc and set kp :¼ 0. In any case, repeat step 2.

The procedure performs KTmax iterations and at each iteration
explores a randomly generated neighborhood of the current
solution zc. However, if zc is not improved for KPmax consecutive
iterations, we introduce a random perturbation (see Step 6) in
order to move to a different area of the solution space, so as to
enforce the diversification of the search. In particular, when
performing a Perturbation Step, we randomly extract np custo-
mers from zc (with np uniformly randomly chosen in [npmin,npmax]
and with each customer having the same probability to be
extracted), and reinsert each extracted customer, in turn, in its
best feasible position. If a customer cannot be inserted in any
currently non-empty route (due to the capacity and/or distance
restrictions), a new route is created to allocate the customer. In
general, when performing the Perturbation Step, several
customers cannot be inserted in the non-empty routes of the
lease cite this article as: Salari M, et al. An ILP improvement pro
perations Research (2010), doi:10.1016/j.cor.2010.02.010
current solution, and hence the new perturbed solution can use
more vehicles than the current one.
5. Computational results

The performance of the Heuristic Improvement Procedure
(HIP) described in the previous sections was evaluated on the 16
benchmark instances usually addressed in the literature, taken
from Christofides et al. [4] (instances C1–C14) and from Fisher
[11] (instances F11–F12), and on the 8 large scale benchmark
instances proposed by Li et al. [18], and also addressed by Derigs
and Reuter [8] (instances O1–O8). The number of customers of
C1–C14 and F11–F12 ranges from 50 to 199. C1–C5, C11–C12
and F11–F12 have only capacity constraints, while C6–C10 and
C13–C14 are the same instances as C1–C5 and C11–C12,
respectively, but with both capacity and distance constraints.
Instances O1–O8 have no distance restrictions and a number of
customers varying from 200 to 480. As usual, for the problems
with distance constraints, the route duration limit D is taken as
the original value for the classical VRP multiplied by 0.9.

HIP needs an initial solution to be given, which in principle
could be computed through any available constructive heuristic
algorithm. We decided to run HIP starting from an extremely good
feasible solution available from the literature (in several cases, the
best known solution reported in the literature), with the aim of
attempting to improve it (this is of course impossible if the initial
solution is provably optimal, as it is the case for some of them). In
particular, we considered as initial solutions the ones obtained by
Fu et al. [13,14], Pisinger and Ropke [20], Derigs and Reuter [8]
and Fleszar et al. [12].

HIP has been tested on a Pentium IV 3.4 GHz with 1 GByte RAM,
running under Microsoft Windows XP Operative System, and has
been coded in C++ with Microsoft Visual C++ 6.0 compiler. The ILP
solver used in the experiments is ILOG Cplex 10.0 [16]. HIP setting
depends on the parameters RCmax, p, nfmin, nfmax, npmin, npmax, and
on the number of iterations KPmax and KTmax. Although these
parameters could be tuned considering the edge costs and the
particular characteristics of each tested instance, we preferred to
run all the experiments with a fixed set of parameters: RCmax¼1,
p¼0.5 (i.e., 50% of the customers are selected on average),
nfmin¼15, nfmax¼25, npmin¼15, npmax¼25, KPmax¼50 and
KTmax¼5000 (i.e., we perform globally 5000 iterations, and the
current solution is perturbed if it cannot be improved for 50
consecutive iterations). Further, since several authors address the
problem considering as objective function the minimization of the
number of vehicles first and of the traveling cost second (i.e.,
assuming F ¼1), while other authors considered as objective
function the minimization of the traveling cost (i.e., F¼0), we
decided to run HIP without allowing to change the number of
vehicles used in the initial solution. However, as stated in Section
4, the Perturbation Step often requires additional routes to be
created (to preserve the feasibility of the solution). In such cases,
we add a small penalty y to the cost of the edges incident at the
depot, in order to force HIP to ‘‘recover’’ the solution in the
following iterations. After some preliminary tests, we decided to
fix y¼ 12 for the considered instances. Finally, HIP is a randomized
algorithm and hence the computational results may depend on the
randomization. For each tested instance (and each initial solution),
we considered five runs of the algorithm corresponding to five
different seeds for generating the random numbers.

The computational results are reported in Tables 1–3. All the
CPU times are expressed in seconds, and all the solution costs
have been computed in double precision.

Table 1 reports the computational results on the 16 instances
C1–C14 and F11–F12 obtained by starting from the solutions
cedure for the Open Vehicle Routing Problem. Computers and
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Table 1
Computational results on the ‘‘classical’’ 16 benchmark instances starting from the solutions by Fu et al. [13,14].

Pb m P.best Initial Run 1 Run 2 Run 3 Run 4 Run 5 Best Worst Average

Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev

C2 10 567.14 567:14 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 567:14 0.00 567:14 0.00 567:14 0.00

C3 8 n639.74 641.88 0.33 �639:74 0.00 640.42 0.11 640.42 0.11 640.42 0.11 640.42 0.11 �639:74 0.00 640.42 0.11 640.28 0.08

C4 12 733.13 738.94 0.79 733:13 0.00 733:13 0.00 733:13 0.00 733:13 0.00 733:13 0.00 733:13 0.00 733:13 0.00 733:13 0.00

C5 17 869.25 878.95 1.12 868.81 �0.05 868.81 �0.05 868.81 �0.05 868.81 �0.05 868.81 �0.05 868.81 �0.05 868.81 �0.05 868.81 �0.05

C6 6 412.96 412:96 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 412:96 0.00 412:96 0.00 412:96 0.00

C7 11 568.49 568:49 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 568:49 0.00 568:49 0.00 568:49 0.00

C8 9 644.63 646.31 0.26 644:63 0.00 644:63 0.00 644:63 0.00 644:63 0.00 644:63 0.00 644:63 0.00 644:63 0.00 644:63 0.00

C9 14 756.14 761.28 0.68 756:14 0.00 756:14 0.00 756.38 0.03 756.38 0.03 756:14 0.00 756:14 0.00 756.38 0.03 756.24 0.01

C10 17 875.07 903.10 3.20 878.54 0.40 879.13 0.46 877.47 0.27 880.25 0.59 879.68 0.53 877.47 0.27 880.25 0.59 879.01 0.45

C11 7 682.12 717.15 5.14 683.64 0.22 685.20 0.45 685.20 0.45 682.83 0.10 682.83 0.10 682.83 0.10 685.20 0.45 683.94 0.27

C12 10 n534.24 534.71 0.09 �534:24 0.00 �534:24 0.00 �534:24 0.00 �534:24 0.00 �534:24 0.00 �534:24 0.00 �534:24 0.00 �534:24 0.00

C13 12 896.50 917.90 2.39 894.19 �0.26 897.37 0.10 896.66 0.02 897.37 0.10 896.14 �0.04 894.19 �0.26 897.37 0.10 896.35 �0.02

C14 11 591.87 600.66 1.49 591:87 0.00 591:87 0.00 591:87 0.00 591:87 0.00 591:87 0.00 591:87 0.00 591:87 0.00 591:87 0.00

F12 7 769.66 777.07 0.96 769.55 �0.01 770.38 0.09 769.55 �0.01 770.38 0.09 770.38 0.09 769.55 �0.01 770.38 0.09 770.05 0.05

Avg. 1.18 0.02 0.08 0.06 0.07 0.05 0.00 0.09 0.06

Pb t.time t.time b.time t.time b.time t.time b.time t.time b.time t.time b.time t.time b.time

C2 7.8 84.2 84.2 86.5 86.5 80.2 80.2 81.9 81.9 89.6 89.6 84.5 84.5

C3 23.2 119.9 106.0 110.9 74.7 117.9 56.8 139.9 132.0 118.8 88.3 121.5 91.6

C4 6.8 156.6 21.2 157.8 0.6 154.7 0.4 198.1 0.8 164.1 0.7 166.3 4.7

C5 61.9 220.3 10.3 220.0 11.6 228.5 32.7 277.8 12.9 225.5 12.5 234.4 16.0

C6 0.6 45.1 45.1 43.2 43.2 49.0 49.0 44.7 44.7 42.2 42.2 44.8 44.8

C7 6.0 83.1 83.1 87.7 87.7 83.2 83.2 79.8 79.8 79.5 79.5 82.7 82.7

C8 136.2 0.1 135.9 0.1 144.9 3.2 177.7 2.6 144.7 0.1 147.9 1.2

C9 46.6 255.5 102.7 265.5 7.9 247.7 195.7 312.1 299.6 259.2 18.3 268.0 124.8

C10 51.9 460.2 323.9 477.7 35.9 513.0 453.1 505.9 474.5 497.8 366.5 490.9 330.8

C11 23.1 198.8 165.8 199.8 40.4 229.8 225.7 329.6 204.2 201.4 200.0 231.9 167.2

C12 4.2 94.0 1.6 98.2 73.2 99.1 89.5 106.2 16.6 107.8 92.1 101.1 54.6

C13 82.1 1165.3 475.0 1004.9 201.4 1180.5 685.0 1146.5 725.2 1396.5 1230.9 1178.7 663.5

C14 2.5 354.7 293.8 339.2 88.6 321.3 33.7 366.6 337.3 453.9 435.8 367.1 237.8

F12 28.4 148.2 77.8 158.0 74.9 154.8 70.7 169.3 30.9 168.2 67.5 159.7 64.4

Avg. 24.7 251.6 127.9 241.8 59.1 257.5 147.1 281.2 174.5 282.1 194.6 262.8 140.6

CPU times are expressed in seconds.
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Table 2
Computational results on the ‘‘classical’’ 16 benchmark instances starting from the best available solutions.

Pb m P.best Initial Run 1 Run 2 Run 3 Run 4 Run 5 Best Worst Average

Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev

C2 10 567.14 567:14 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 567:14 0.00 567:14 0.00 567:14 0.00

C4 12 733.13 733:13 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 733:13 0.00 733:13 0.00 733:13 0.00

C5 16 879.37 896.08 1.90 892.37 1.48 892.37 1.48 892.37 1.48 892.37 1.48 892.37 1.48 892.37 1.48 892.37 1.48 892.37 1.48

C5 17 869.24 869:24 0.00 868.93 �0.04 868.93 �0.04 869.00 �0.03 868.93 �0.04 868.93 �0.04 868.93 �0.04 869.00 �0.03 868.94 �0.03

C6 6 412.96 412:96 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 412:96 0.00 412:96 0.00 412:96 0.00

C7 10 583.19 583:19 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 583:19 0.00 583:19 0.00 583:19 0.00

C7 11 568.49 568:49 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 568:49 0.00 568:49 0.00 568:49 0.00

C8 9 644.63 644:63 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 644:63 0.00 644:63 0.00 644:63 0.00

C9 13 757.84 757:84 0.00 757.73 �0.01 757.69 �0.02 757.70 �0.02 757.73 �0.01 757.73 �0.01 757.69 �0.02 757.73 �0.01 757.72 �0.02

C9 14 756.14 756:14 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 756:14 0.00 756:14 0.00 756:14 0.00

C10 17 875.07 875:07 0.00 874.71 �0.04 874.71 �0.04 874.71 �0.04 874.71 �0.04 874.71 �0.04 874.71 �0.04 874.71 �0.04 874.71 �0.04

C11 7 682.12 682:12 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 682:12 0.00 682:12 0.00 682:12 0.00

C13 11 904.04 904:04 0.00 899.16 �0.54 899.16 �0.54 899.16 �0.54 899.16 �0.54 899.16 �0.54 899.16 �0.54 899.16 �0.54 899.16 �0.54

C13 12 896.50 917.90 2.39 894.19 �0.26 897.37 0.10 896.66 0.02 897.37 0.10 896.14 �0.04 894.19 �0.26 897.37 0.10 896.35 �0.02

C14 11 591.87 591:87 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 591:87 0.00 591:87 0.00 591:87 0.00

C14 12 581.81 581:81 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 581:81 0.00 581:81 0.00 581:81 0.00

F12 7 769.66 769:66 0.00 769.55 �0.01 769.55 �0.01 – 0.00 769.55 �0.01 – 0.00 769.55 �0.01 769:66 0.00 769.59 �0.01

Avg. 0.25 0.03 0.05 0.05 0.06 0.05 0.03 0.06 0.05

Pb Source t.time b.time t.time b.time t.time b.time t.time b.time t.time b.time t.time b.time

C2 [12,14,20] 84.2 84.2 86.5 86.5 80.2 80.2 81.9 81.9 89.6 89.6 84.5 84.5

C4 [12,20] 151.2 151.2 137.5 137.5 123.2 123.2 164.5 164.5 153.5 153.5 146.0 146.0

C5 [20] 450.2 276.5 480.4 237.5 463.4 237.5 434.0 237.5 518.3 237.5 469.3 245.3

C5 [8] 275.2 130.2 247.5 195.4 278.1 21.4 260.5 205.0 255.8 166.9 263.4 143.8

C6 [12,14,20] 45.1 45.1 43.2 43.2 49.0 49.0 44.7 44.7 42.2 42.2 44.8 44.8

C7 [20] 80.6 80.6 86.1 86.1 73.1 73.1 81.2 81.2 85.2 85.2 81.2 81.2

C7 [14] 83.1 83.1 87.7 87.7 83.2 83.2 79.8 79.8 79.5 79.5 82.7 82.7

C8 [12] 136.8 136.8 142.2 142.2 137.2 137.2 130.0 130.0 143.9 143.9 138.0 138.0

C9 [20] 412.5 33.9 404.6 330.6 372.9 0.2 355.4 11.0 413.0 6.9 391.7 76.5

C9 [8] 243.4 243.4 213.9 213.9 221.9 221.9 227.6 227.6 267.1 267.1 234.8 234.8

C10 [8] 454.7 2.6 390.1 2.4 344.0 1.7 395.6 4.2 387.6 0.7 394.4 2.3

C11 [12,20] 178.3 178.3 183.4 183.4 181.0 181.0 183.4 183.4 165.3 165.3 178.3 178.3

C13 [12] 959.3 6.3 1022.0 133.3 1030.3 6.6 1027.2 4.6 980.5 78.6 1003.9 45.9

C13 [14] 1165.3 475.0 1004.9 201.4 1180.5 685.0 1146.5 725.2 1396.5 1230.9 1178.7 663.5

C14 [12,20] 276.3 276.3 293.8 293.8 263.6 263.6 294.4 294.4 301.1 301.1 285.8 285.8

C14 [8] 364.2 364.2 304.0 304.0 310.5 310.5 290.4 290.4 354.1 354.1 324.6 324.6

F12 [12] 142.2 56.6 157.2 103.4 143.9 143.9 137.2 64.2 129.7 129.7 142.0 99.6

Avg. 323.7 154.4 310.9 163.7 313.9 154.1 313.8 166.4 339.0 207.8 320.2 169.3

CPU times are expressed in seconds.
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Table 3
Computational results on the eight large scale benchmark instances starting from the solutions by Derigs and Reuter [8].

Pb m P.best Initial Run 1 Run 2 Run 3 Run 4 Run 5 Best Worst Average

Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev

O1 5 6018.52 6018:52 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 6018:52 0.00 6018:52 0.00 6018:52 0.00

O2 9 4584.55 4584.69 0.00 4573.53 �0.24 4573.53 �0.24 4573.53 �0.24 4573.53 �0.24 4573.53 �0.24 4573.53 �0.24 4573.53 �0.24 4573.53 �0.24

O3 7 7731.46 7731:46 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 7731:46 0.00 7731:46 0.00 7731:46 0.00

O4 10 7260.59 7260:59 0.00 7259.81 �0.01 7253.91 �0.09 7253.91 �0.09 7253.20 �0.10 7251.74 �0.12 7251.74 �0.12 7259.81 �0.01 7254.51 �0.08

O5 9 9167.19 9167:19 0.00 9165.40 �0.02 9156.74 �0.11 9157.42 �0.11 9159.22 �0.09 9159.22 �0.09 9156.74 �0.11 9165.40 �0.02 9159.6 �0.08

O6 9 9803.80 9805.45 0.02 – 0.02 – 0.02 – 0.02 – 0.02 9804.25 0.00 9804.25 0.00 9805.45 0.02 9805.21 0.01

O7 10 10348.57 10348:57 0.00 10344.37 �0.04 10344.37 �0.04 10344.37 �0.04 10344.37 �0.04 10344.37 �0.04 10344.37 �0.04 10344.37 �0.04 10344.37 �0.04

O8 10 12420.16 12420:16 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 12420:16 0.00 12420:16 0.00 12420:16 0.00

Avg. 0.00 �0.04 �0.06 �0.06 �0.06 �0.06 �0.06 �0.04 �0.05

Pb t.time t.time b.time t.time b.time t.time b.time t.time b.time t.time b.time t.time b.time

O1 467.0 182.2 182.2 191.5 191.5 174.0 174.0 168.5 168.5 175.9 175.9 178.4 178.4

O2 467.0 284.0 34.6 298.6 233.0 302.8 89.2 313.0 63.3 395.5 360.6 318.8 156.1

O3 4047.0 304.6 304.6 279.6 279.6 300.6 300.6 295.5 295.5 296.8 296.8 295.4 295.4

O4 927.0 438.9 34.4 405.5 387.5 437.6 72.6 421.7 219.9 406.3 385.4 422.0 220.0

O5 1186.0 499.6 41.4 479.1 270.8 513.9 496.5 550.3 173.6 479.5 210.5 504.5 238.6

O6 1231.0 581.3 581.3 590.4 590.4 637.4 637.4 620.1 620.1 590.8 361.1 604.0 558.1

O7 3190.0 653.0 8.6 631.8 23.8 661.6 420.9 743.5 306.6 619.7 387.2 661.9 229.4

O8 1969.0 623.6 623.6 635.2 635.2 668.9 668.9 653.7 653.7 647.9 647.9 645.9 645.9

Avg. 1685.5 445.9 226.3 438.9 326.5 462.1 357.5 470.8 312.7 451.6 353.2 453.9 315.2

CPU times are expressed in seconds.
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provided by Fu, Eglese and Li and obtained through the algorithm
proposed in [13]. In some cases, several solutions are provided for
the same instance, obtained by using slightly different versions of
their algorithm, with the same number of routes and different
traveling cost. Among the different solutions for the same
instance, we considered as initial solution for HIP the best one
provided. For instances C1 and F11, all the solutions available
from [13,14] are provably optimal (see, e.g., Letchford et al. [17])
and cannot be further improved. Thus, these instances were not
considered in this set of experiments. The upper part of the table
reports the solutions found by HIP. The first column gives the
instance name (Pb). Columns 2 and 3 report the number of
vehicles used in the initial solution (m) and the cost of the best
known solution using the same number of vehicles (P.best).
Columns 4 and 5 report the cost of the initial solution (cost) and
the corresponding percentage deviation w.r.t. the best known
value (%dev), computed as 100�ðcost�P:bestÞ=P:best. Then, for
each of the 5 runs of the algorithm, we report the final solution
cost provided by HIP and the corresponding percentage deviation
(again computed w.r.t. the best known value). When HIP was not
able to improve on the initial solution, we mark with a ‘‘—’’ the
final solution cost. Finally, we report the best, the worst and the
average result out of the five different runs. Final solution costs
equal to the previously best known ones are underlined, new best
solutions are in bold face, while provably optimal solutions, taken
from Letchford et al. [17], are marked with an n. The lower part of
the table gives the computing times. First, we report the overall
CPU time of the algorithm corresponding to the initial solution,
obtained on a Pentium IV 3 GHz. These times have been taken
from [14]. However, the cost of the initial solution for instance C8
is better than the ones reported in [14], and hence for this initial
solution we did not report the corresponding computing time.
Then, for each run of the algorithm, we report the overall
computing time required to perform all the 5000 iterations
(t.time) and the CPU time required to reach the final solution
(b.time). For a ‘‘fair’’ calculation of the average values, when HIP
was not able to improve on the initial solution we considered
b.time equal to the overall computing time. Finally, the last two
columns give the average CPU times (i.e., average t.time and
average b.time) out of the five different runs.

Table 2 reports the computational results on the same
instances by starting from the best available solutions among
the ones obtained by Fu et al. [13,14], Pisinger and Ropke [20],
Derigs and Reuter [8] and Fleszar et al. [12]. The table has the
same structure as Table 1, but column 2 in the lower part of the
table reports the source of the initial solution used in the
experiments. For instances C5, C7, C9, C13 and C14, the best
available solutions for the case F ¼1 and the case F¼0 are
different. In such cases, we considered both the solutions as initial
solutions for HIP. For instances C1, C3, C12 and F11, all the
solutions available from [8,12,20] are provably optimal and hence
these instances were not considered in this set of experiments.

Finally, Table 3 reports the computational results on the 8
large scale instances O1–O8 by starting from the solutions
provided by Derigs and Reuter [8]. The table has the same
structure as Table 1, but the CPU time related to the initial
solution (column 2 in the lower part of the table) was obtained on
a Pentium IV 2.8 GHz.

The tables show that HIP is able to improve even extremely
good quality solutions, obtained by some of the most effective
metaheuristic techniques proposed for OVRP. It is worth noting
that the solutions and the CPU times provided by Fu et al. [13,14]
and reported in Table 1 are the best ones from among 20 runs of
the corresponding randomized algorithm with different seeds.
Hence, taking into account the different performance of the
processors used for testing the different algorithms, the overall
Please cite this article as: Salari M, et al. An ILP improvement pro
Operations Research (2010), doi:10.1016/j.cor.2010.02.010
computing time required by HIP is comparable with the others
reported in the tables, and in several cases the final improved
solution is found very quickly. Our test-bed concerns in practice
35 different, non-provably optimal, initial solutions which could
be possibly improved, corresponding to 22 different instances. By
considering the best result from among the five different runs
executed for each of these 35 initial solutions, HIP improves on
the initial solution in 22 cases. For these cases, HIP reaches 6
times the previously best known solution (provably optimal in
two cases), while finds 12 times a new best solution. Considering
the 13 initial solutions which HIP does not improve, it is worth
noting that all these solutions are the best known ones in the
literature (for the case F ¼1 or F¼0). Looking at the different
runs executed for each initial solution, we can note that in some
cases the results depend on the seed used for the random
generator. However, the method is overall quite consistent since,
by considering all the tested initial solutions, the average
computing time and the average final percentage deviation are
only slightly affected by the choice of the seed.

In order to look for possible better solutions, we performed
some additional experiments. In particular, after the first 5000
iterations, we ran HIP for 2000 more iterations with a slightly
different parameter setting. Starting from the solutions provided by
Fu et al. [14], for instance C5 with 17 vehicles, after 5220 iterations
and 237.4 s HIP found a solution of cost 868.44 that corresponds to
a further improvement on the previous best known solution.
Finally, still starting from the solutions by Fu et al. [14], we ran HIP
with a different tuning of parameter p, to investigate how the
neighborhood size affects the overall performance of the method,
both in terms of quality of the solutions found and of CPU time. Let
zavgðpÞ be the average final solution cost obtained on the 14
instances C2–C14 and F12 with p¼ p, and let ttimeavgðpÞ be the
corresponding average CPU time in seconds. With p¼0.3, 0.5 and
0.7 we obtained the following results: zavg(0.3)¼684.55 and
ttimeavg(0.3)¼71.9, zavg(0.5)¼681.94 and ttimeavg(0.5)¼262.8,
zavg(0.7)¼683.32 and ttimeavg(0.7)¼460.0. As expected, the aver-
age CPU time consistently increases with the number of extracted
customers, while the best solution costs are obtained with the
default setting of p (i.e., p¼0.5), thus indicating that extracting too
many customers leads in general to worse solutions (i.e.,
zavgð0:7Þ4zavgð0:5Þ). This is not completely surprising, and it is
essentially due to the column generation heuristic, which falls in
troubles in finding good variables for the Reallocation Model when
the current solution has been almost completely ‘‘destroyed’’ by
the removal of too many customers.

As previously seen, the proposed algorithm is able to improve
on high-quality initial solutions. However, a natural question
concerns the effectiveness of the method if the initial solution is
instead a ‘‘bad-quality’’ solution. To answer this question, we
implemented a modified version of the tabu search algorithm
proposed by Fu et al. [13] (we refer the reader to [13] for a
detailed description of this algorithm). More precisely, we first
computed an initial random (and typically infeasible) solution,
and then we applied only 200 iterations of the tabu search
algorithm, with the aim of quickly finding a feasible solution,
possibly ‘‘far’’ from the good ones. The computational results
provided by HIP on the 16 instances C1–C14 and F11–F12 when
starting from such initial solutions are reported in Table 4.

The table has the same structure as Table 1 and shows that HIP
is quite effective even when the initial solution is not a good-
quality solution. First, we can note that all the solutions are
improved by all the five different runs. Further, even in this
case the method is quite consistent, as all the five different runs
provide on average very similar results, both in terms of quality of
the solutions found and of CPU time. Finally, considering all the
instances and all the different runs, the average behavior of the
cedure for the Open Vehicle Routing Problem. Computers and
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Table 4
Computational results on the ‘‘classical’’ 16 benchmark instances starting from ‘‘bad initial solutions’’.

Pb m P.best Initial Run 1 Run 2 Run 3 Run 4 Run 5 Best Worst Average

Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev Cost %dev

C1 5 n416.06 467.80 12.44 417.37 0.31 417.36 0.31 �416:06 0.00 �416:06 0.00 417.37 0.31 �416:06 0.00 417.37 0.31 416.84 0.19

C2 11 564.06 657.07 16.49 564:06 0.00 564:06 0.00 564:06 0.00 564:06 0.00 564:06 0.00 564:06 0.00 564:06 0.00 564:06 0.00

C3 8 n639.74 768.93 20.19 642.14 0.38 642.14 0.38 642.98 0.51 642.14 0.38 643.75 0.63 642.14 0.38 643.75 0.63 642.63 0.45

C4 12 733.13 1069.38 45.86 738.05 0.67 741.75 1.18 748.63 2.11 742.11 1.22 744.15 1.50 738.05 0.67 748.63 2.11 742.94 1.34

C5 17 869.24 1449.20 66.72 887.40 2.09 879.89 1.23 882.12 1.48 887.48 2.10 887.85 2.14 879.89 1.23 887.85 2.14 884.95 1.81

C6 6 412.96 444.98 7.75 416.84 0.94 412:96 0.00 416.85 0.94 416.84 0.94 412:96 0.00 412:96 0.00 416.85 0.94 415.29 0.56

C7 11 568.49 654.27 15.09 568:49 0.00 568:49 0.00 568:49 0.00 568:49 0.00 569.51 0.18 568:49 0.00 569.51 0.18 568.69 0.04

C8 9 644.63 752.98 16.81 647.56 0.45 645.16 0.08 645.16 0.08 645.16 0.08 645.16 0.08 645.16 0.08 647.56 0.45 645.64 0.16

C9 14 756.14 896.61 18.58 756.81 0.09 756.81 0.09 757.78 0.22 756.38 0.03 759.60 0.46 756.38 0.03 759.60 0.46 757.48 0.18

C10 17 875.07 983.97 12.44 901.18 2.98 898.16 2.64 897.99 2.62 886.75 1.33 887.69 1.44 886.75 1.33 901.18 2.98 894.35 2.20

C11 7 682.12 835.93 22.55 690.83 1.28 689.24 1.04 691.10 1.32 692.63 1.54 691.36 1.35 689.24 1.04 692.63 1.54 691.03 1.31

C12 10 n534.24 545.25 2.06 �534:24 0.00 �534:24 0.00 �534:24 0.00 �534:24 0.00 �534:24 0.00 �534:24 0.00 �534:24 0.00 �534:24 0.00

C13 12 896.50 1025.11 14.35 902.87 0.71 912.53 1.79 904.17 0.86 905.14 0.96 905.79 1.04 902.87 0.71 912.53 1.79 906.10 1.07

C14 12 581.81 641.66 10.29 581.92 0.02 581.92 0.02 581.92 0.02 581.92 0.02 581.92 0.02 581.92 0.02 581.92 0.02 581.92 0.02

F11 4 n177.00 201.27 13.71 �177:00 0.00 �177:00 0.00 �177:00 0.00 �177:00 0.00 �177:00 0.00 �177:00 0.00 �177:00 0.00 �177:00 0.00

F12 7 769.66 919.22 19.43 783.41 1.79 784.12 1.88 782.66 1.69 785.35 2.04 784.12 1.88 782.66 1.69 785.35 2.04 783.93 1.85

Avg. 19.67 0.73 0.66 0.74 0.67 0.69 0.45 0.98 0.70

Pb t.time t.time b.time t.time b.time t.time b.time t.time b.time t.time b.time t.time b.time

C1 0.0 70.2 20.6 72.3 14.9 65.8 33.6 61.9 14.8 61.4 25.0 66.3 21.8

C2 0.1 86.2 62.2 78.2 28.7 94.3 32.0 83.0 58.5 77.2 52.1 83.8 46.7

C3 0.1 136.4 69.1 110.7 98.4 110.3 37.6 119.8 68.3 112.0 36.0 117.8 61.9

C4 0.2 177.8 127.5 159.2 88.3 188.9 148.5 186.4 64.3 177.5 79.1 178.0 101.5

C5 0.4 271.1 269.7 269.1 224.8 291.6 173.5 262.1 152.7 268.2 238.2 272.4 211.8

C6 0.0 48.5 0.6 44.0 26.8 51.1 0.6 50.6 0.5 45.9 10.7 48.0 7.8

C7 0.1 85.0 68.3 75.6 15.5 81.3 13.7 75.3 43.2 75.7 23.0 78.6 32.7

C8 0.1 153.1 87.3 160.8 123.6 169.6 29.2 153.3 51.3 151.7 110.5 157.7 80.4

C9 0.2 295.2 138.5 298.2 200.5 317.3 250.9 281.9 258.4 304.3 260.2 299.4 221.7

C10 0.4 705.2 665.0 721.8 524.1 729.1 719.1 828.4 678.8 584.2 556.8 713.7 628.8

C11 0.1 219.8 145.9 176.5 45.1 248.5 217.7 227.1 145.8 227.3 194.7 219.8 149.8

C12 0.1 99.6 23.0 89.8 61.3 96.2 12.5 102.2 74.2 96.6 27.9 96.9 39.8

C13 0.1 1113.8 393.4 1359.0 1270.8 1105.3 787.1 845.0 603.9 1244.1 562.0 1133.4 723.4

C14 0.1 363.1 213.6 327.1 124.8 486.7 421.3 305.6 159.2 452.1 325.2 386.9 248.8

F11 0.1 97.9 59.1 79.8 74.7 88.9 25.7 91.1 53.0 88.2 31.6 89.2 48.8

F12 0.2 190.9 36.4 176.7 80.3 152.2 43.5 178.8 140.4 181.7 43.9 176.1 68.9

Avg. 0.1 257.1 148.8 262.4 187.7 267.3 184.2 240.8 160.5 259.3 161.1 257.4 168.4

CPU times are expressed in seconds.
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Table 5
Current best known solution costs for the tested OVRP benchmark instances.

Inst. n D Best known solution

F ¼1 F¼0

m LB Cost Best heuristics m Cost Best heuristics

C1 50 5 416.1 n416.06 [3,8,12–14,18,20] 6 412.96 [24–26]

C2 75 10 559.62 567.14 [8,12–14,18,20] 11 564.06 [24–26]

C3 100 8 639.7 �639:74 [8,12,18] 9 639.57 [26]

C4 150 12 730.2 733:13 [8,12,18,20]

C5 199 16 848.5 879.37 [25] 17 868.44
C6 50 180 6 412.96 [3,8,12–14,18,20]

C7 75 144 10 583.19 [20] 11 568.49 [8,13,14,18]

C8 100 207 9 644:63 [3,8,12,18]

C9 150 180 13 757.69 14 756:14 [8]

C10 199 180 17 874.71
C11 120 7 657.1 682.12 [8,12,20] 10 678.54 [26]

C12 100 10 534.2 �534:24 [8,12,18,20,24–26]

C13 120 648 11 899.16 12 894.19
C14 100 936 11 591:87 [8,12,18,20] 12 581.81 [8]

F11 71 4 177.0 �177:00 [8,13,14,18,20]

F12 134 7 762.9 769.55

O1 200 5 6018.52 [8,18]

O2 240 9 4573.53
O3 280 7 7731.46 [8]

O4 320 10 7251.74
O5 360 8 9197.61 [18] 9 9156.74
O6 400 9 9803.80 [18]

O7 440 10 10344.37
O8 480 10 12420.16 [8]

M. Salari et al. / Computers & Operations Research ] (]]]]) ]]]–]]]10
algorithm is satisfactory: starting from a set of initial solutions with
an average percentage deviation (w.r.t. the best known value) of
19.67, HIP finds a set of final solutions with an average percentage
deviation of 0.70 in an average overall computing time of 257.4 s.

The current best known solution costs for the tested instances
are given in summary in Table 5, where we also report the
number of customers n and the route duration limit D associated
with the vehicles. Solution costs are given both for the case F ¼1

(i.e., when the objective is to minimize the number of used
vehicles first and the traveling cost second) and the case F¼0 (i.e.,
when the objective is to minimize the traveling cost). As usual, the
best known solution cost for the case F¼0 is reported only if the
traveling cost is smaller than the corresponding one for the case
F ¼1. For each instance whose best known solution was not
improved by HIP we report the algorithms providing the
corresponding best known costs. Previously best known solution
costs reached also by HIP (starting from a worse solution) are
underlined, while new best solution costs found by HIP are in bold
face. For the capacitated instances, in the case F ¼1, we also
report the best known lower bound LB taken from [17,19].
6. Conclusions and future directions

We addressed the Open Vehicle Routing Problem (OVRP), a
variant of the ‘‘classical’’ Vehicle Routing Problem (VRP) in which the
vehicles are not required to return to the depot after completing
their service. OVRP has recently received an increasing attention in
the literature, and several heuristic and metaheuristic algorithms
have been proposed for this problem, as well as exact approaches.

We presented a heuristic improvement procedure for OVRP based
on Integer Linear Programming (ILP) techniques. Given an initial
solution to be possibly improved, the method follows a destruct-and-
repair paradigm, where the given solution is randomly destroyed (i.e.,
Please cite this article as: Salari M, et al. An ILP improvement pro
Operations Research (2010), doi:10.1016/j.cor.2010.02.010
customers are removed in a random way) and repaired by solving an
ILP model, in the attempt of finding a new improved solution.

Computational results on 24 benchmark instances from the
literature showed that the proposed improvement method can be
used as a profitable tool for finding good-quality OVRP solutions,
and that even extremely good quality solutions found by the most
effective metaheuristic techniques proposed for OVRP can be
improved. Out of 30 best known solutions which are not provably
optimal, in 10 cases the proposed method was able to improve on
the best known solution reported in the literature.

Future directions of work could involve more sophisticated
criteria for removing customers from the current solution, as well
as more sophisticated algorithms for solving the column genera-
tion problem related to the ILP model. On the other side, the
overall procedure can be considered as a general framework and it
could be extended to cover other variants of Vehicle Routing
Problems, as, for example, Vehicle Routing Problems with
heterogenous vehicles and multi-depot Vehicle Routing Problems.
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Table A1

Problem C5. m: 17

cost: 868.44

Solution:

1: 0 105 26 149 195 179 54 130 165 55 25 170 67

2: 0 112 183 6 96 99 104 59 93 85 61

3: 0 53 40 21 73 171 74 72 197 75 133 22 41 145

4: 0 28 184 76 196 116 77 3 158 79 129 169 121 29

5: 0 58 152 137 2 115 178 144 57 15 43

6: 0 166 83 199 114 8 174 46 124 168 47 36 143 49 64

7: 0 27 132 69 162 101 70 30 160 128 20 188 66

8: 0 111 50 102 157 33 185 81 120 164 34 78

9: 0 154 138 12 109 177 150 80 68 134 163 24

10: 0 180 198 110 4 155 139 187 39 56 186 23

11: 0 146 52 153 106 194 7 182 88 148 62 159

12: 0 13 117 151 92 37 98 100 193 91 191 141 16 86

13: 0 156 147 60 118 5 84 173 113 17 45 125

14: 0 167 127 190 31 189 10 108 90 32 131

15: 0 89 18 82 48 123 19 107 175 11 126 63 181

16: 0 94 95 97 87 172 42 142 14 192 119 44 140 38

17: 0 176 1 122 51 9 103 161 71 135 35 136 65

Problem C9. m: 13

cost: 757.69

Solution:

1: 0 108 37 52 15 107 44 137 92 42 93 65

2: 0 139 18 110 133 25 95 67 13 136 40 88

3: 0 46 102 6 57 132 98 23 69 7 61 114

4: 0 100 2 83 131 20 59 101 3 121 36 115

5: 0 56 144 146 109 148 87 150 141 66 41 94 19 64

6: 0 27 81 138 48 112 60 8 26 113 140 82 31

7: 0 38 62 9 130 50 118 21 79 74 34 104 30

8: 0 90 71 123 122 124 45 91 72 33 125 106 73

9: 0 12 47 68 14 58 96 24 97 86 43 99

10: 0 63 17 145 147 142 4 149 143 135 111 55 134

11: 0 77 32 119 51 1 120 22 80 70 28 116

12: 0 103 5 76 49 10 54 105 75 39 89 117

13: 0 78 11 126 16 127 53 129 29 128 84 35 85

Problem C10. m: 17

cost: 874.71

Solution:

1: 0 28 184 116 68 150 80 134 163 24 29 121

2: 0 69 162 101 70 30 20 188 128 160 131 32 181

3: 0 111 50 102 157 33 81 120 135 35 136 65

4: 0 105 26 149 195 179 110 155 4 139 187 39

5: 0 146 153 82 48 124 168 47 36 143 49 64

6: 0 6 96 104 99 93 85 193 91 191 141 44 140 38

7: 0 147 60 118 5 84 173 61 16 86 113 17

8: 0 152 58 137 2 178 115 145 41 22 133 74 171

9: 0 27 132 176 1 122 51 9 103 161 71 66

10: 0 112 13 117 97 87 144 57 172 42 142 43 15

11: 0 154 138 12 109 177 54 130 165 55 25 170 67

12: 0 183 94 95 59 151 92 37 98 100 192 119 14

13: 0 167 127 190 31 88 148 123 19 107 175 11

14: 0 156 89 166 18 83 199 114 8 125 45 174 46

15: 0 76 196 77 3 158 185 79 129 169 78 34 164
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Table A1. (continued )

16: 0 52 106 194 7 182 62 159 10 189 108 90 126 63

17: 0 53 40 180 198 21 73 72 197 75 56 186 23

Problem C13. m: 11

cost: 899.16

Solution:

1: 0 87 92 37 38 39 42 41 44 47 46 49

2: 0 112 84 7 9 10 11 15 14 13 12 8

3: 0 98 68 79 80 53 55 58 56 60 63

4: 0 119 81 117 113 83 6 5 4 3 2 1

5: 0 67 69 70 71 74 72 75 78 77 76 73

6: 0 110 52 54 57 59 65 61 62 64 66

7: 0 21 20 23 26 28 32 35 34 36 29

8: 0 95 93 94 97 115 40 43 45 48 51 50

9: 0 88 82 111 86 85 89 91 90 114 18 118 108

10: 0 109 17 16 19 25 22 24 27 31 30 33

11: 0 120 105 106 107 104 103 116 100 99 101 102 96

Problem C13. m: 12

cost: 894.19

Solution:

1: 0 109 17 16 19 25 22 24 27 31 30 33

2: 0 82 111 86 85 89 92 91 90 114 18 118 108

3: 0 88 87 95 102 105 106 107 104 101 99 100 116

4: 0 21 20 23 26 28 32 35 34 36 29

5: 0 67 69 70 71 74 75 72 78 77 76 73

6: 0 112 84 7 9 10 11 15 14 13 12 8

7: 0 119 81 117 113 83 6 5 4 3 2 1

8: 0 103 68 79 80 53 55 58 56 60 63

9: 0 98 52 54 57 59 65 61 62 64 66

10: 0 93 94 97 110 40 43 45 48 51 50

11: 0 96 115 37 38 39 42 41 44 47 46 49

12: 0 120

Problem F12. m: 7

cost: 769.55

Solution:

1: 0 73 74 77 64 76 134 32 34 48 49 62 50 51 52 53 102

56 57 105 93 94 45 39 44 43 40 3 41 42 2 4 5

6 7 8 9 10 12 11 14 88 15 13 16

2: 0 20 82 19 65 130 119 117 116 131 115 114

3: 0 91 21 25 26 27 28 30 29 92 90 89 87 86 85 84 83

4: 0 17 18 132 125 111 110 122 123 124 128 129 113

5: 0 81 112 126 127 121 120 109 108 107 106

6: 0 22 24 23 72 47 75 1 61 60 59 31 58 54 55 103 104

101 35 36 99 100 98 97 96 38 37 95

7: 0 46 118 71 66 78 63 79 67 133 33 80 68 69 70

Problem O2. m: 9

cost: 4573.53

Solution:

1: 0 16 56 55 95 135 134 133 132 131 130 170 171 172 173 174 175

176 177 178 179 180 181 182 183 184 185

2: 0 42 43 44 84 83 82 122 121 161 162 202 201 240 239 238 237

236 235 234 233 232 231 230 229 228 227

3: 0 18 17 57 97 96 136 137 138 139 140 141 142 143 144 145 146

147 148 149 150 151 152 153 154 155 156 157 158 159

4: 0 13 53 52 51 50 49 48 47 46 45 85 86 87 127 126 125
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124 123 163 164 165 166 206 205 204 203

5: 0 15 14 54 94 93 92 91 90 89 88 128 129 169 168 167 207

208 209 210 211 212 213 214 215 216 217 218

6: 0 25 24 23 22 21 20 60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79 80

7: 0 1 41 81 120 160 200 199 198 197 196 195 194 193 192 191 190

189 188 187 186 226 225 224 223 222 221 220 219

8: 0 19 59 58 98 99 100 101 102 103 104 105 106 107 108 109 110

111 112 113 114 115 116 117 118 119

9: 0 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 2

3 4 5 6 7 8 9 10 11 12

Problem O4. m: 10

cost: 7251.74

Solution:

1: 0 39 79 78 77 76 75 74 114 115 116 117 118 119 159 160 121

122 162 161 201 241 281 282 242 202 203 243 283 284 244 204 205

245 285

2: 0 28 68 69 70 71 72 73 113 112 111 110 109 108 148 149 150

151 152 153 154 155 156 157 158 198 199 200 240 280 320 319 279

239 238 278 318

3: 0 24 64 65 105 104 103 102 142 143 144 145 146 186 226 266 306

307 267 227 228 268 308 309 269 229 230 270 310 311 271 231 232

272 312

4: 0 15 16 17 18 19 20 60 59 58 57 56 55 54 94 95 96

97 98 99 100

5: 0 14 13 53 93 133 134 135 136 176 175 174 173 213 253 293 294

254 214 215 255 295 296 256 216 217 257 297 298 258 218 219 220

260 300 299 259

6: 0 25 26 27 67 66 106 107 147 187 188 189 190 191 192 193 194

195 196 197 237 277 317 316 276 236 235 275 315 314 274 234 233

273 313

7: 0 11 51 50 49 48 47 46 45 44 43 42 41 80 120 81 82

83 84 124 123 163 164 165 166 167 207 206 246 286 287 247

8: 0 21 22 23 63 62 61 101 141 140 139 138 137 177 178 179 180

181 182 183 184 185 225 265 305 304 264 224 223 263 303 302 262

222 221 261 301

9: 0 10 9 8 7 6 5 4 3 2 1 40 38 37 36 35 34

33 32 31 30 29

10: 0 12 52 92 91 90 89 88 87 86 85 125 126 127 128 129 130

131 132 172 171 170 169 168 208 248 288 289 249 209 210 250 290

291 251 211 212 252 292

Problem O5. m: 9

cost: 9156.74

Solution:

1: 0 3 39 38 37 73 108 107 106 105 104 103 102 138 139 140 141

142 143 144 109 145 180 179 215 251 287 323 359 360 324 288 252

216 181 217 253 289 325

2: 0 19 56 57 58 59 60 96 95 94 93 92 91 127 128 129 130

131 132 168 167 166 165 164 200 236 272 308 344 345 309 273 237

201 202 238 274 310 346 347 311 275 239 203 204 240 276 312 348

3: 0 9 10 11 12 13 49 48 47 46 45 44 43 42 78 79 80

81 82 83 84 85 121 120 119 118 117 116 115 114 150 151 152

153 189 225 261 297 333 332 296 260 224 188 187 223 259 295 331

4: 0 18 55 54 53 52 88 89 90 126 125 124 123 159 160 161 162

163 199 235 271 307 343 342 306 270 234 198 197 233 269 305 341

340 304 268 232 196 195 231 267 303 339

5: 0 8 7 6 5 4 40 41 77 76 75 74 110 111 112 113 149

148 147 146 182 218 254 290 326 327 291 255 219 183 184 220 256
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Table A1. (continued )

292 328 329 293 257 221 185 186 222 258 294 330

6: 0 17 16 15 14 50 51 87 86 122 158 194 230 266 302 338 337

301 265 229 193 157 156 155 154 190 226 262 298 334 335 299 263

227 191 192 228 264 300 336

7: 0 20 21 22 23 24 25 61 62 63 64 100 99 98 97 133 134

135 136 172 171 170 169 205 241 277 313 349 350 314 278 242 206

207 243 279 315 351 352 316 280 244 208 209 245 281 317 353

8: 0 34 35 33 32 31 30 29 28 28 26

9: 0 2 1 36 72 71 70 69 68 67 66 65 101 137 173 174 175

176 177 178 214 250 286 322 358 357 321 285 249 213 212 248 284

320 356 355 319 283 247 211 210 246 282 318 354

Problem O7. m: 10

cost: 10344.37

Solution:

1: 0 19 18 17 61 105 104 148 149 150 151 152 153 197 196 195 194

193 192 191 190 189 233 234 235 236 237 238 239 240 241 285 329

373 417 416 372 328 284 283 327 371 415 414 370 326 282 281 325

369 413

2: 0 39 83 127 171 172 216 215 214 213 212 211 210 209 208 207 251

252 253 254 298 342 386 430 429 385 341 297 296 340 384 428 427

383 339 295 294 338 382 426

3: 0 37 38 82 81 125 126 170 169 168 167 166 165 164 163 162 161

160 159 158 157 156 155 199 200 201 202 203 204 205 206 250 249

248 247 291 335 379 423 424 380 336 292 293 337 381 425

4: 0 23 24 25 26 27 28 29 30 31 32 33 34 35 36 80 79

78 77 76 75 74 73 72 71 70 69 68 67 111 112 113 114

115 116 117 118 119 120 121 122 123 124

5: 0 20 21 22 66 65 64 63 62 106 107 108 109 110 154 198 242

243 244 245 246 290 334 378 422 421 377 333 289 288 332 376 420

419 375 331 287 286 330 374 418

6: 0 11 10 9 8 7 6 5 49 50 51 52 53 97 96 140 141

142 186 185 184 228 229 230 231 275 319 363 407 406 362 318 274

273 317 361 405 404 360 316 272 271 315 359 403

7: 0 4 3 2 46 47 48 92 93 94 95 139 138 137 136 180 181

182 183 227 226 225 224 268 267 266 310 354 398 399 355 311 312

356 400 401 357 313 269 270 314 358 402

8: 0 42 43 44 1 45 88 87 86 130 131 132 89 90 91 135 134

133 176 175 219 220 177 178 179 223 222 221 264 263 262 306 307

351 395 439 440 396 352 308 265 309 353 397

9: 0 12 13 14 15 16 60 59 58 57 56 55 54 98 99 100 101

102 103 147 146 145 144 143 187 188 232 276 320 364 408 409 365

321 277 278 322 366 410 411 367 323 279 280 324 368 412

10: 0 40 41 85 84 128 129 173 174 218 217 261 260 259 258 257 256

255 299 343 387 431 432 388 344 300 301 345 389 433 434 390 346

302 303 347 391 435 436 392 348 304 305 349 393 437 438 394 350

M
.

Sa
la

ri
et

a
l.

/
C

o
m

p
u

ters
&

O
p

era
tio

n
s

R
esea

rch
]

(]]]])
]]]–

]]]
1

4P
le

a
se

cite
th

is
a

rticle
a

s:
S

a
la

ri
M

,
e

t
a

l.
A

n
ILP

im
p

ro
v

e
m

e
n

t
p

ro
ce

d
u

re
fo

r
th

e
O

p
e

n
V

e
h

icle
R

o
u

tin
g

P
ro

b
le

m
.

C
o

m
p

u
te

rs
a

n
d

O
p

e
ra

tio
n

s
R

e
se

a
rch

(2
0

1
0

),
d

o
i:1

0
.1

0
1

6
/j.co

r.2
0

1
0

.0
2

.0
1

0

dx.doi.org/10.1016/j.cor.2010.02.010


ARTICLE IN PRESS

M. Salari et al. / Computers & Operations Research ] (]]]]) ]]]–]]] 15
References

[1] Archetti C, Bertazzi L, Hertz A, Speranza MG. A hybrid heuristic for an
inventory-routing problem. Technical Report no. 317, University of Brescia,
Brescia, Italy, 2009.

[2] Archetti C, Speranza MG, Savelsbergh MWP. An optimization-based heuristic
for the split delivery vehicle routing problem. Transportation Science
2008;42:22–31.

[3] Brand~ao J. A tabu search algorithm for the open vehicle routing problem.
European Journal of Operational Research 2004;157:552–64.

[4] Christofides N, Mingozzi A, Toth P. The vehicle routing problem. In:
Christofides N, Mingozzi A, Toth P, Sandi C, editors. Combinatorial optimiza-
tion. Chichester: Wiley; 1979. p. 313–38.

[5] Cordeau J-F, Laporte G, Savelsbergh MWP, Vigo D. Vehicle routing. In: Barnhart
C, Laporte G, editors. Transportation. Handbooks in operations research and
management science, vol. 14. Amsterdam: Elsevier; 2007. p. 367–428.

[6] Danna E, Rothberg E, Le Pape C. Exploring relaxation induced neighborhoods to
improve MIP solutions. Mathematical Programming 2005;102(Ser. A):71–90.

[7] De Franceschi R, Fischetti M, Toth P. A new ILP-based refinement heuristic for
vehicle routing problems. Mathematical Programming 2006;105:471–99.

[8] Derigs U, Reuter K. A simple and efficient tabu search heuristic for solving the
open vehicle routing problem. Journal of the Operational Research Society
2009; 60:1658–69.

[9] Feillet D, Dejax P, Gendreau M, Gueguen C. An exact algorithm for the
elementary shortest path problem with resource constraints: application to
some vehicle routing problems. Networks 2004;44:216–29.

[10] Fischetti M, Lodi A. Local branching. Mathematical Programming 2003;98(Ser.
B):23–47.

[11] Fisher M. Optimal solutions of vehicle routing problems using minimum
k-trees. Operations Research 1994;42:626–42.

[12] Fleszar K, Osman IH, Hindi KS. A variable neighbourhood search for the open
vehicle routing problem. European Journal of Operational Research
2009;195:803–9.

[13] Fu Z, Eglese R, Li LYO. A new tabu search heuristic for the open vehicle routing
problem. Journal of the Operational Research Society 2005;56:267–74.

[14] Fu Z, Eglese R, Li LYO. Corrigendum: a new tabu search heuristic for the open
vehicle routing problem. Journal of the Operational Research Society
2006;57:1018.
Please cite this article as: Salari M, et al. An ILP improvement pro
Operations Research (2010), doi:10.1016/j.cor.2010.02.010
[15] Hewitt M, Nemhauser GL, Savelsbergh MWP. Combining exact and heuristic
approaches for the capacitated fixed charge network flow problem. INFORMS
Journal on Computing 2009, 1-12, doi: 10.1287/ijoc.1090.0348.

[16] IBM ILOG Cplex /http://www.ilog.comS.
[17] Letchford AN, Lysgaard J, Eglese RW. A branch-and-cut algorithm for the

capacitated open vehicle routing problem. Journal of the Operational
Research Society 2007;58:1642–51.

[18] Li F, Golden B, Wasil E. The open vehicle routing problem: algorithms, large-
scale test problems, and computational results. Computers & Operations
Research 2007;34:2918–30.

[19] Pessoa A, Poggi de Arag~ao M, Uchoa E. Robust branch-cut-and-price
algorithms for vehicle routing problems. In: Golden B, Raghavan S, Wasil E,
editors. The vehicle routing problem: latest advances and new challenges.
New York: Springer; 2008. p. 297–325.

[20] Pisinger D, Ropke S. A general heuristic for vehicle routing problems.
Computers & Operations Research 2007;34:2403–35.

[21] Righini G, Salani M. New dynamic programming algorithms for the
resource constrained elementary shortest path problem. Networks 2008
155–70.

[22] Sariklis D, Powell S. A heuristic method for the open vehicle routing problem.
Journal of the Operational Research Society 2000;51:564–73.

[23] Schrage L. Formulation and structure of more complex/realistic routing and
scheduling problems. Networks 1981;11:229–32.

[24] Tarantilis CD, Diakoulaki D, Kiranoudis CT. Combination of geographical
information system and efficient routing algorithms for real life distribution
operations. European Journal of the Operational Research 2004;152:437–53.

[25] Tarantilis CD, Ioannou G, Kiranoudis CT, Prastacos GP. A threshold accepting
approach to the open vehicle routing problem. RAIRO Operations Research
2004;38:345–60.

[26] Tarantilis CD, Ioannou G, Kiranoudis CT, Prastacos GP. Solving the open
vehicle routing problem via a single parameter metaheuristic algorithm.
Journal of the Operational Research Society 2005;56:588–96.

[27] Toth P, Tramontani A. An integer linear programming local search for
capacitated vehicle routing problems. In: Golden B, Raghavan S, Wasil E,
editors. The vehicle routing problem: latest advances and new challenges.
New York: Springer; 2008. p. 275–95.

[28] Toth P, Vigo D. The vehicle routing problem. SIAM Monographs on Discrete
Mathematics and Applications. Philadelphia: SIAM; 2002.
cedure for the Open Vehicle Routing Problem. Computers and

http://www.ilog.com
dx.doi.org/10.1016/j.cor.2010.02.010

	An ILP improvement procedure for the Open Vehicle Routing Problem
	Introduction
	Literature review
	Reallocation model
	Column generation for the Reallocation Model

	Heuristic improvement procedure
	Computational results
	Conclusions and future directions
	Acknowledgments
	Appendix
	References




