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Abstract. We address the Open Vehicle Routing Problem (OVRP),
a variant of the “classical” Vehicle Routing Problem (VRP) in which
the vehicles are not required to return to the depot after completing
their service. We present a heuristic improvement procedure for OVRP
based on Integer Linear Programming (ILP) techniques. Given an initial
solution to be possibly improved, the method follows a destruct-and-
repair paradigm, where the given solution is randomly destroyed (i.e.,
customers are removed in a random way) and repaired by solving an ILP
model, in the attempt of finding a new improved solution. The overall
procedure can be considered as a general framework which could be
extended to cover other variants of Vehicle Routing Problems. We report
computational results on benchmark instances from the literature. In
several cases, the proposed algorithm is able to find the new best-known
solution for the considered problem.

Key words: integer linear programming, local search, heuristics, open
vehicle routing problem.

1 Introduction

We address the Open Vehicle Routing Problem (OVRP), a variant of the “clas-
sical” Vehicle Routing Problem (VRP) in which the vehicles are not required
to return to the depot after completing their service. OVRP can be formally
stated as follows. We are given a central depot and a set of n customers, which
are associated with the nodes of a complete undirected graph G = (V,E) (where
V = {0, 1, . . . , n}, node 0 represents the depot and V \ {0} is the set of custo-
mers). Each edge e ∈ E has an associated finite cost ce ≥ 0 and each customer
v ∈ V \ {0} has a demand qv > 0 (with q0 = 0). A fleet of m identical vehi-
cles is located at the depot, each one with a fixed cost F , a capacity Q and a
total distance-travelled (duration) limit D. The customers must be served by at
most m Hamiltonian paths (open routes), each path associated with one vehicle,
starting at the depot and ending at one of the customers. Each route must have
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a total duration (computed as the sum of the edge costs in the route) not ex-
ceeding the given limit D of the vehicles, and can visit a subset S of customers
whose total demand

∑
v∈S qv does not exceed the given capacity Q. The pro-

blem consists of finding a feasible solution covering (i.e., visiting) exactly once
all the customers and having a minimum overall cost, computed as the sum of
the traveling cost plus the fixed cost associated with the vehicles used to serve
the customers.

In this paper we present a heuristic improvement procedure for OVRP based
on Integer Linear Programming (ILP) techniques. Given an initial solution to
be possibly improved, the procedure iteratively performs the following steps: (a)
select several customers from the current solution, and build the restricted solu-
tion obtained from the current one by extracting (i.e., short-cutting) the selected
customers; (b) reallocate the extracted customers to the restricted solution by
solving an ILP problem, in the attempt of finding a new improved solution. This
method has been proposed by De Franceschi et al. [4] and deeply investigated by
Toth and Tramontani [22] in the context of the classical VRP. Here, we consider
a simpler version of this procedure, which does not exploit any particular feature
of the addressed problem. The method follows a destruct-and-repair paradigm,
where the current solution is randomly destroyed (i.e., customers are removed
in a random way) and repaired by following ILP techniques. Hence, the overall
procedure can be considered as a general framework which could be extended to
cover other variants of Vehicle Routing Problems.

The paper is organized as follows. Section 2 recalls the main works proposed
in the literature for OVRP. In Section 3 we describe a neighborhood for OVRP
and the ILP model which allows to implicitly define and explore the presen-
ted neighborhood. The implementation of the heuristic improvement procedure
is given in Section 4, while Section 5 reports the computational experiments
on benchmark capacitated OVRP instances from the literature (with/without
distance constraints), comparing the presented method with the most effective
metaheuristic techniques proposed for OVRP. Some conclusions are finally drawn
in Section 6.

2 Literature review

The classical VRP is a fundamental combinatorial optimization problem which
has been widely studied in the literature (see, e.g., Toth and Vigo [23] and
Cordeau et al. [3]). At first glance, having open routes instead of closed ones
looks like a minor change, and in fact OVRP can be also formulated as a VRP
on a directed graph, by fixing to 0 the costs of the arcs entering the depot.
However, if the undirected case is considered, the open version turns out to be
more general than the closed one. Indeed, as shown by Letchford et al. [12], any
closed VRP on n customers can be transformed into an OVRP on n customers,
but there is no transformation in the reverse direction. Further, there are many
practical applications in which OVRP naturally arises. This happens, of course,
when a company does not own a vehicle fleet, and hence customers are served



An ILP Improvement Procedure for OVRP 3

by hired vehicles which are not required to come back to the depot (see, e.g.,
Tarantilis et al. [21]). But the open model also arises in pick-up and delivery
applications, where each vehicle starts at the depot, delivers to a set of customers
and then it is required to visit the same customers in reverse order, picking up
items that have to be backhauled to the depot. An application of this type is
described in Schrage [18]. Further areas of application, involving the planning of
train services and the planning of a set of school bus routes, are reported by Fu
et al. [9].

OVRP is NP-hard in the strong sense, and has recently received an increa-
sing attention in the literature. Exact branch-and-cut and branch-cut-and-price
approaches have been proposed, respectively, by Letchford et al. [12] and Pessoa
et al. [14], addressing the capacitated problem with no distance constraints and
no empty routes allowed (i.e., D = ∞ and customers must be served by exac-
tly m routes). Heuristic and metaheuristic algorithms usually take into account
both capacity and distance constraints, and consider the number of routes as a
decision variable. In particular, an unlimited number of vehicles is supposed to
be available (i.e., m = ∞) and the objective function is generally to minimize
the number of used vehicles first and the traveling cost second, assuming that
the fixed cost of an additional vehicle always exceeds any traveling cost that
could be saved by its use (i.e., considering F = ∞). However, several authors
address also the variant in which there are no fixed costs associated with the
vehicles (i.e., F = 0) and hence the objective function is to minimize the total
traveling cost with no attention on the number of used vehicles (see, e.g., Ta-
rantilis et al. [21]). Considering capacity constraints only (i.e., taking D = ∞),
Sariklis and Powell [17] propose a two-phase heuristic which first assigns custo-
mers to clusters and then builds a Hamiltonian path for each cluster, Tarantilis
et al. [19] describe a population-based heuristic, while Tarantilis et al. [20, 21]
present threshold accepting metaheuristics. Taking into account both capacity
and distance constraints, Brandão [1], Fu et al. [9, 10] and Derigs and Reuter [5]
propose tabu search heuristics, Li et al. [13] describe a record-to-record travel
heuristic, Pisinger and Ropke [15] present an adaptive large neighborhood search
heuristic which follows a destruct-and-repair paradigm, while Fleszar et al. [8]
propose a variable neighborhood search heuristic.

3 Reallocation Model

Let z be a feasible solution of the OVRP defined on G. For any given node
subset F ⊂ V \ {0}, we define z(F) as the restricted solution obtained from z
by extracting (i.e., by short-cutting) all the nodes v ∈ F . Let R be the set of
routes in the restricted solution, I = I(z,F) the set of all the edges in z(F),
and S = S(F) the set of all the sequences which can be obtained through the
recombination of nodes in F (i.e., the set of all the elementary paths in F). Each
edge i ∈ I is viewed as a potential insertion point which can allocate one or more
nodes in F through at most one sequence s ∈ S. We say that the insertion point
i = (a, b) ∈ I allocates the nodes {vj ∈ F : j = 1, . . . , h} through the sequence
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s = (v1, v2, . . . , vh) ∈ S, if the edge (a, b) in the restricted solution is replaced
by the edges (a, v1), (v1, v2), . . . , (vh, b) in the new feasible solution. Since the
restricted routes, as well as the final ones, are open paths starting at the depot,
in addition to the edges of the restricted solution we also consider the insertion
points i = (pr, 0), where pr denotes the last customer visited by the route r ∈ R,
which allow to append any sequence to the last customer of any restricted route.
Further, empty routes in the restricted solution are associated with insertion
points (0, 0).

For each sequence s ∈ S, let c(s) and q(s) denote, respectively, the sum of the
costs of the edges in s and the sum of the demands of the nodes in s. For each
insertion point i = (a, b) ∈ I and for each sequence s = (v1, v2, . . . , vh) ∈ S, we
define γsi as the extra-cost (i.e., the extra-distance) for assigning sequence s to
insertion point i in its best possible orientation (i.e., γsi := c(s)−cab+min{cav1 +
cvhb, cavh

+ cv1b}). Note that the insertion points involving the depot must be
treated as directed arcs (the orientation being given by the corresponding restric-
ted routes); i.e., if i = (pr, 0), then γsi is computed as c(s) + min{cprv1 , cprvh

}.
The extra-cost for assigning the sequence s to the insertion point i = (0, 0) as-
sociated with an empty route is simply c(s) + min{c0v1 , c0vh

}. For each route
r ∈ R, let I(r) denote the set of insertion points associated with r, while letting
q̃(r) and c̃(r) denote, respectively, the total demand and distance computed for
route r, still in the restricted solution.

For each i ∈ I, suppose Si ⊆ S is a sequence subset, containing all the
sequences which can be allocated to the specific insertion point i. The definition
of Si will be discussed later in this section. Then, a neighborhood of the given
solution z can be formulated (and explored) by solving an ILP problem (denoted
as the Reallocation Model) based on the decision variables

xsi =
{

1 if sequence s ∈ Si is allocated to insertion point i ∈ I ,
0 otherwise (1)

which reads as follows:
∑

r∈R
c̃(r) + min

∑

i∈I

∑

s∈Si

γsixsi (2)

subject to:
∑

i∈I

∑

s∈Si(v)

xsi = 1 v ∈ F , (3)

∑

s∈Si

xsi ≤ 1 i ∈ I , (4)

∑

i∈I(r)

∑

s∈Si

q(s)xsi ≤ Q− q̃(r) r ∈ R , (5)

∑

i∈I(r)

∑

s∈Si

γsixsi ≤ D − c̃(r) r ∈ R , (6)

xsi ∈ {0, 1} i ∈ I, s ∈ Si , (7)



An ILP Improvement Procedure for OVRP 5

where, for any i ∈ I and v ∈ F , Si(v) denotes the set of sequences covering
the customer v which can be allocated to the insertion point i. The objective
function (2), to be minimized, gives the traveling cost of the final OVRP solution.
Constraints (3) impose that each extracted node belongs to exactly one of the
selected sequences, i.e., that it is covered exactly once in the final solution.
Constraints (4) avoid to allocate two or more sequences to the same insertion
point. Finally, constraints (5) and (6) impose that each route in the final solution
fulfills the capacity and distance restrictions, respectively. Note that, if there is
a non-null fixed cost F associated with the vehicles, it can be taken into account
by simply adding F to the cost of the edges incident at the depot node.

The Reallocation Model (2)–(7) defines a neighborhood of a given solution
which depends on the extracted nodes F and on the subsets Si. In particular,
for any given F , the choice of Si is a key factor in order to allow an effective
exploration of the solution space in the neighborhood of the given solution. The
subsets Si are built by following a column generation approach: we initialize
the Linear Programming relaxation of the Reallocation Model (LRM) with a
subsets of variables with small insertion cost and afterwards we iteratively solve
the column generation problem associated with LRM, adding other variables
with small reduced cost. The overall procedure for building the subsets Si can
be described as follows.

1. (Initialization) For each insertion point i ∈ I, initialize each subset Si with
the basic sequence extracted from i plus the feasible singleton sequence with
the minimum insertion cost (i.e., the sequence (v), with v ∈ F , with the
minimum extra-cost among all the singleton sequences which can be allo-
cated to i without violating the capacity and distance restrictions for the
restricted route containing i). Initialize LRM with the initial set of variables
corresponding to the current subsets Si, and solve LRM.

2. (Column generation) For each insertion point i ∈ I, solve the column ge-
neration problem associated with i, adding to Si all the sequences s corre-
sponding to elementary paths in F , whose associated variables xsi have a
reduced cost rcsi under a given threshold RCmax (i.e., variables xsi such
that rcsi ≤ RCmax). If at least one sequence/variable has been added, solve
the new LRM and repeat from step 2. Otherwise terminate.

For any fixed insertion point i ∈ I, the column generation problem associated
with i in LRM is in practice a Resource Constrained Elementary Shortest Path
Problem (RCESPP), which usually arises in the Set Partitioning formulation of
the classical VRP (see, e.g., Feillet et al. [6] and Righini and Salani [16]). Here,
for each insertion point i ∈ I, we solve the corresponding RCESPP through a
simple greedy heuristic, with the aim of finding as many variables with small
reduced cost as possible. Hashing techniques are used to avoid the generation of
duplicated variables.

Note that each subset Si contains the basic sequence extracted from the
insertion point i, and hence the current solution can always be obtained as a
new feasible solution of the Reallocation Model.
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4 Heuristic Improvement Procedure

The Reallocation Model described in the previous section allows for exploring a
neighborhood of a given feasible solution, depending on the choice of the extrac-
ted customers in F . We propose a heuristic improvement procedure for OVRP,
based on the model (2)–(7), which iteratively explores different neighborhoods
of the current solution. Given an initial feasible solution z0 for OVRP (taken
from the literature or found by any heuristic method), the procedure works as
follows.

1. (Initialization) Set kt := 0 and kp := 0. Take z0 as the incumbent solution
and initialize the current solution zc as zc := z0.

2. (Node selection) Build the set F by selecting each customer with a proba-
bility p.

3. (Node extraction) Extract the nodes selected in the previous step from the
current solution zc and construct the corresponding restricted OVRP solu-
tion zc(F), obtained by short-cutting the extracted nodes.

4. (Reallocation) Define the subsets Si (i ∈ I(zc,F)) as described in Section 3.
Build the corresponding Reallocation Model (2)–(7) and solve the model by
using a general-purpose ILP solver. Once an optimal ILP solution has been
found, construct the corresponding new OVRP solution and possibly update
zc and z0.

5. (Termination) Set kt := kt + 1. If kt = KTmax, terminate.
6. (Perturbation) If zc has been improved in the last iteration, set kp := 0;

otherwise set kp := kp + 1. If kp = KPmax, “perturb” the current solution
zc and set kp := 0. In any case, repeat from step 2.

The procedure performs KTmax iterations and at each iteration explores a
randomly generated neighborhood of the current solution zc. However, if zc is
not improved for KPmax consecutive iterations, we introduce a random per-
turbation in order to move to a different area of the solution space, so as to
enforce the diversification of the search. In particular, when creating a pertur-
bation, we randomly extract np customers from zc (with np randomly chosen
in [npmin, npmax]), and we reinsert each extracted customer, in turn, in its best
feasible position. If a customer cannot be inserted in any currently non-empty
route (due to the capacity and/or distance restrictions), a new route is created
to allocate the customer. In general, when creating the perturbation, several
customers cannot be inserted in the non-empty routes of the current solution,
and hence the new perturbed solution uses more vehicles than the minimum
required.

5 Computational Results

The performance of the Heuristic Improvement Procedure (HIP) described in the
previous sections was evaluated on the 16 benchmark instances usually addressed
in the literature, taken from Christofides et al. [2] (instances C1–C14) and from
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Fisher [7] (instances F11–F12). The number of customers ranges from 50 to 199.
C1–C5, C11–C12 and F11–F12 have only capacity constraints, while C6–C10 and
C13–C14 are the same instances as C1–C5 and C11–C12, respectively, but with
both capacity and distance constraints. As usual, for the problems with distance
constraints, D is taken as the original value for the classical VRP multiplied by
0.9.

HIP needs an initial solution to be given, which in principle could be com-
puted through any available constructive heuristic algorithm. We decided to run
HIP starting from an extremely-good feasible solution (in several cases, the best-
known solution reported in the literature), with the aim of attempting to further
improve it (this is of course possible only if the initial solution is not optimal, as
it is the case for some of them). In particular, we considered as initial solutions
the ones obtained by Fu et al. [9, 10], by Fleszar et al. [8] and by Pisinger and
Ropke [15]. Since in several cases the same authors report different solutions
for the same instance, obtained by using slightly different versions of their al-
gorithm, among the solutions provided for the same instance, we considered as
initial solutions for HIP the best ones provided by [10], [8] and [15], respectively.

HIP has been tested on a Pentium IV 3.4 GHz with 1 GByte RAM, running
under Microsoft Windows XP Operative System, and has been coded in C++
with Microsoft Visual C++ 6.0 compiler. The ILP solver used in the experiments
is ILOG Cplex 10.0 [11]. HIP setting depends on the parameters RCmax, p,
npmin, npmax, and on the number of iterations KPmax and KTmax. Although
these parameters could be tuned considering the edge costs and the particular
characteristics of the tested instances, we preferred to run all the experiments
with a fixed tuning: RCmax = 1, p = 0.5 (i.e., the 50% of the customers are
selected on average), npmin = 15, npmax = 25, KPmax = 50 and KTmax = 5, 000
(i.e., we perform globally 5,000 iterations, and the current solution is perturbed
if it cannot be improved for 50 consecutive iterations). Finally, since most of the
authors address the problem considering as objective function to minimize the
number of vehicles first and the traveling cost second, we decided to run HIP
without allowing to increase the number of vehicles used by the initial solution
(i.e., we keep as maximum number of available vehicles the one used by the initial
solution). However, as stated in Section 4, the Perturbation Step often requires
an additional route to be created (to preserve the feasibility of the solution). In
such cases, we add a small penalty θ to the cost of the edges incident at the depot,
in order to force HIP to “recover” the solution in the following iterations. After
some preliminary tests, we decided to fix θ = 12 for the considered instances.

Computational results are reported in Tables 1–3. All the tables have the
same structure, and the computing times are given in seconds. The first column
gives the instance name, while columns 2–4 report the number of used vehicles
and the traveling cost of the best known solution, considering both the OVRP
variants in which F = ∞ (i.e., the objective is to minimize the number of used
vehicles first and the traveling cost second) and F = 0 (i.e., the objective is to
minimize the traveling cost). The best known solution cost for the case F = 0 is
reported only if smaller than the corresponding one for the case F = ∞. Note
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that, for all the solutions but those corresponding to F = ∞, we report the num-
ber of used vehicles and the cost as (m)/cost, where m is given only if greater
than the one obtained in the best known solution for the case F = ∞. Columns
5–6 report the cost of the initial solution given to HIP and the CPU time of the
corresponding algorithm from the literature (the solution cost has been recom-
puted, while the CPU time is taken from [8]). The last three columns report the
computational results provided by HIP. For each instance, we report the final
solution cost, the CPU time required to reach the final solution (b.time) and
the overall computing time required to perform all the 5,000 iterations (t.time).
When HIP was not able to improve on the initial solution, we mark with a “—”
the final solution cost and the corresponding b.time. Final solution costs equal
to the previously best known ones are underlined, new best solutions are in bold
face, while provably optimal solutions, taken from Letchford et al. [12], are mar-
ked with an ∗ (HIP was not run when the initial solution is provably optimal).
As also reported in the last row of the tables, the CPU times related to the
algorithms by Fu et al. [9, 10] and by Pisinger and Ropke [15] were obtained on
a Pentium IV 3 GHz, while the CPU times related to the algorithm by Fleszar
et al. [8] were obtained on a Pentium M 2 GHz. We have to note that the cost
of the initial solution reported in Table 1 for instance C8 is different from all the
ones reported in [10], and hence for this initial solution we did not report the
corresponding computing time.

Table 1. Computational results on benchmark instances starting from the solutions by Fu et al.
[10].

Instance Prev. best sol. Initial solution HIP
F = ∞ F = 0

m cost (m)/cost (m)/cost time (m)/cost b.time t.time

C1 5 ∗416.06 (6)/412.96 ∗416.06 0.8
C2 10 567.14 (11)/564.06 567.14 7.8 — — 84.2
C3 8 ∗639.74 (9)/639.57 641.88 23.2 ∗639.74 106.0 119.9
C4 12 733.13 738.94 6.8 733.13 21.2 156.6
C5 16 879.37 (17)/869.25 (17)/878.95 61.9 (17)/868.81 10.3 220.3
C6 6 412.96 412.96 0.6 — — 45.1
C7 10 583.19 (11)/568.49 (11)/568.49 6.0 — — 83.1
C8 9 644.63 646.31 644.63 0.1 136.2
C9 13 757.84 (14)/756.14 (14)/761.28 46.6 (14)/756.14 102.7 255.5
C10 17 875.07 903.10 51.9 878.54 323.9 460.2
C11 7 682.12 (10)/678.54 717.15 23.1 683.64 165.8 198.8
C12 10 ∗534.24 534.71 4.2 ∗534.24 1.6 94.0
C13 11 904.04 (12)/896.50 (12)/917.90 82.1 (12)/894.19 475.0 1165.3
C14 11 591.87 (12)/581.81 600.66 2.5 591.87 293.8 354.7
F11 4 ∗177.00 ∗177.00 0.4
F12 7 769.66 777.07 28.4 769.55 77.8 148.2

Pentium IV 3 GHz Pentium IV 3.4 GHz

The tables show that HIP is able to improve even extremely-good quality
solutions, obtained by some of the most effective metaheuristic techniques pro-
posed for OVRP. Taking into account the different performance of the processors
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Table 2. Computational results on benchmark instances starting from the solutions by Fleszar et
al. [8].

Instance Prev. best sol. Initial solution HIP
F = ∞ F = 0

m cost (m)/cost (m)/cost time (m)/cost b.time t.time

C1 5 ∗416.06 (6)/412.96 ∗416.06 0.5
C2 10 567.14 (11)/564.06 567.14 2.3
C3 8 ∗639.74 (9)/639.57 ∗639.74 239.6
C4 12 733.13 733.13 585.0 — — 151.2
C5 16 879.37 (17)/869.25 905.96 13.2 900.01 349.3 436.6
C6 6 412.96 412.96 1.2
C7 10 583.19 (11)/568.49 596.47 1.0 584.32 70.8 96.8
C8 9 644.63 644.63 587.6 — — 136.8
C9 13 757.84 (14)/756.14 760.06 1094.1 758.24 41.45 121.2
C10 17 875.07 875.67 1252.4 874.71 30.6 396.2
C11 7 682.12 (10)/678.54 682.12 5.7 — — 178.3
C12 10 ∗534.24 ∗534.24 163.7
C13 11 904.04 (12)/896.50 904.04 1820.1 899.16 6.3 959.3
C14 11 591.87 (12)/581.81 591.87 389.0 — — 276.3
F11 4 ∗177.00 178.09 140.2 ∗177.00 14.2 98.5
F12 7 769.66 769.66 75.4 769.55 56.6 142.2

Pentium M 2 GHz Pentium IV 3.4 GHz

Table 3. Computational results on benchmark instances starting from the solutions by Pisinger and
Ropke [15].

Instance Prev. best sol. Initial solution HIP
F = ∞ F = 0

m cost (m)/cost (m)/cost time (m)/cost b.time t.time

C1 5 ∗416.06 (6)/412.96 ∗416.06 120.0
C2 10 567.14 (11)/564.06 567.14 360.0
C3 8 ∗639.74 (9)/639.57 641.76 850.0 — — 90.2
C4 12 733.13 733.13 1790.0 — — 161.2
C5 16 879.37 (17)/869.25 896.08 2370.0 892.37 276.5 450.2
C6 6 412.96 412.96 200.0
C7 10 583.19 (11)/568.49 583.19 330.0 — — 80.6
C8 9 644.63 645.16 1140.0 — — 130.9
C9 13 757.84 (14)/756.14 757.84 1850.0 757.73 33.9 412.5
C10 17 875.07 875.67 1200.0 874.71 201.3 459.8
C11 7 682.12 (10)/678.54 682.12 730.0
C12 10 ∗534.24 ∗534.24 800.0
C13 11 904.04 (12)/896.50 909.80 610.0 905.87 360.2 874.5
C14 11 591.87 (12)/581.81 591.87 400.0
F11 4 ∗177.00 ∗177.00 690.0
F12 7 769.66 770.17 2370.0 — — 149.3

Pentium IV 3 GHz Pentium IV 3.4 GHz

used for testing the different algorithms, the overall computing time required by
HIP is comparable with the other ones reported in the tables and in several
cases the final improved solution is found very quickly. For instance C1, with
F = ∞, [10], [8] and [15] all yield a provably optimal solution, and in several
instances they provide the same initial solution. Hence, our test-bed concerns
in practice 15 instances (instead of 16) and 34 different non provably optimal
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initial solutions which could be improved. (Note that, for instances C4 and C10,
the solution provided by [8] and [15] are different but with the same cost.) Out
of these 34 solutions, HIP improves on the initial solution in 22 cases, in 7 cases
reaches the previously best known solution (provably optimal in 3 cases), while
in 8 cases finds a new best solution. Concerning the 12 initial solutions which
HIP does not improve, it is worth noting that 9 of them are best known solutions
(for the case F = ∞ or F = 0).

In addition, we considered also the (previously) best known solution provi-
ded by Derigs and Reuter [5] for instances C5, C9, C10 and C14. HIP was not
able to improve on C9 and C14, while for instance C5 found a solution of cost
(17)/868.93 after 2960 iterations and 130.2 seconds, starting from (17)/869.24,
and for instance C10 found a solution of cost 874.71 after 56 iterations and 2.6
seconds, starting from 875.07.

In order to look for possible better solutions, we performed some additional
experiments. In particular, after the first 5,000 iterations, we ran HIP for 2,000
more iterations with a slightly different parameter setting. Starting from the
solutions provided by Fu et al. [10], for instance C5 HIP found a solution of cost
(17)/868.44 after 5220 iterations and 237.4 seconds, for instance C10 a solution
of cost 878.52 after 5151 iterations and 483.1 seconds, and for instance C11 a
solution of cost 683.15 after 6371 iterations and 380.1 seconds. (Note that the
solution obtained for instance C5 corresponds to a further improvement on the
previous best-known solution.)

Finally, still starting from the solutions by Fu et al. [10], we ran HIP with
a different tuning of the parameter p, to understand how the neighborhood
size affects the overall performance of the method, both in terms of quality of
the solutions found and of CPU time. Let zavg(p̄) be the average final solu-
tion value obtained on the 14 instances C2–C14 and F12 with p = p̄, and let
ttimeavg(p̄) be the corresponding average CPU time in seconds. With p = 0.3,
p = 0.5 and p = 0.7 we obtained the following results: zavg(0.3) = 684.55 and
ttimeavg(0.3) = 71.9, zavg(0.5) = 681.65 and ttimeavg(0.5) = 251.6, zavg(0.7) =
683.32 and ttimeavg(0.7) = 460.0. As expected, the average CPU time consisten-
tly increases with the number of extracted customers, while the best solution
values are obtained with the default setting of p (i.e., p = 0.5), thus indica-
ting that extracting too many customers leads in general to worse solutions (i.e.,
zavg(0.7) > zavg(0.5)). This is not completely surprising, and it is essentially due
to the column generation heuristic, which falls in troubles in finding good varia-
bles for the Reallocation Model when the current solution has been completely
“destroyed” by the removal of too many customers.

The current best known solution costs are given in summary in Table 5, where
we also report the number of customers n and the total distance-travelled limit
D of the tested problems. For each solution which was not improved by HIP we
report the algorithms providing the corresponding best known cost. Previously
best known solution costs reached also by HIP are underlined, while new best
solution costs found by HIP are in bold face. For the capacitated instances, in
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the case F = ∞, we also report the best known lower bound LB taken from [12]
and [14].

Table 4. Current best known solutions for the tested OVRP benchmark instances.

Inst. n D Best known sol.
F = ∞ F = 0

m LB cost best heuristics (m)/cost best heursitiscs

C1 50 5 416.1 ∗416.06 [1], [5], [8], [9, 10], [13], [15] (6)/412.96 [19], [20], [21]
C2 75 10 559.62 567.14 [5], [8], [9, 10], [13], [15] (11)/564.06 [19], [20], [21]
C3 100 8 639.7 ∗639.74 [5], [8], [13] (9)/639.57 [21]
C4 150 12 730.2 733.13 [5], [8], [13], [15]
C5 199 16 848.5 879.37 [20] (17)/868.44
C6 50 180 6 412.96 [1], [5], [8], [9, 10], [13], [15]
C7 75 144 10 583.19 [15] (11)/568.49 [5], [9, 10], [13]
C8 100 207 9 644.63 [1], [5], [8], [13]
C9 150 180 13 757.73 (14)/756.14 [5]
C10 199 180 17 874.71
C11 120 7 657.1 682.12 [5], [8], [15] (10)/678.54 [21]
C12 100 10 534.2 ∗534.24 [5], [8], [13], [15], [19], [20], [21]
C13 120 648 11 899.16 (12)/894.19
C14 100 936 11 591.87 [5], [8], [13], [15] (12)/581.81 [5]
F11 71 4 177.0 ∗177.00 [5], [9, 10], [13], [15]
F12 134 7 762.9 769.55

6 Conclusions and Future Directions

We addressed the Open Vehicle Routing Problem (OVRP) and presented a heu-
ristic improvement procedure for OVRP based on Integer Linear Programming
(ILP) techniques. Given an initial solution to be possibly improved, the method
follows a destruct-and-repair paradigm, where the given solution is randomly de-
stroyed (i.e., customers are removed in a random way) and repaired by solving
an ILP model, in the attempt of finding a new improved solution.

Computational results on benchmark instances from the literature showed
that the proposed method can be used as a profitable tool for improving exi-
sting OVRP solutions, and that even extremely-good quality solutions found by
the most effective metaheuristic techniques proposed for OVRP can be further
improved. Out of the 21 best known solutions which are not provably optimal,
in 6 cases the proposed method was able to improve the best-known solution
reported in the literature.

Future directions of work could involve more sophisticated criteria for re-
moving customers from the current solution, as well as more sophisticated al-
gorithms for solving the column generation problem related to the ILP model.
Further, it could be interesting to consider the larger benchmark instances pro-
posed by Li et al. [13] and addressed also by Derigs and Reuter [5], and to test the
method with random initial solutions, in order to understand if “near-optimal”
solutions can be reached even when starting from “poor-quality” initial solu-
tions. On the other side, the overall procedure can be considered as a general
framework and it could be extended to cover other variants of Vehicle Routing
Problems, as, for example, Vehicle Routing Problems with heterogenous vehicles
and multi-depot Vehicle Routing Problems.
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