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Open Vehicle Routing Problem(OVRP)

- A variant of the “classical” Vehicle Routing Problem (VRP) in

which the vehicles are not required to return to the depot after

completing their service.

- Application in the companies which do not own a vehicle fleet

- In the problems consist of pick up and delivery, planning of a

set of school bus routes,… .
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General Constraints:

- Each path associated with one vehicle.

- Each route must have a total duration not exceeding the given
limit D of the vehicles.

- Each route must have a total capacity not exceeding the given
limit Q of the vehicles.

Objectives:

- Minimize the number of used vehicles as the first objective and

- Minimize the traveling cost.

Open Vehicle Routing Problem(OVRP)

An ILP improvement procedure for OVRP

Given a feasible initial solution z for the OVRP,

11)) SelectionSelection phasephase::

Select a set of customers F, each customer with a probability p.

22)) ExtractionExtraction phasephase::

Extract the customers in F and build a restricted solution z(F)
by short-cutting the extracted nodes .

In z(F), consider the edges incident at the depot as directed arcs
leaving the depot, and add artificial arcs (with cost 0)
connecting the last customer of each route with the depot.

EachEach edge/arcedge/arc inin z(F)z(F) isis thenthen viewedviewed asas anan insertioninsertion pointpoint ii
whichwhich cancan allocateallocate oneone oror moremore nodesnodes inin FF.. DenoteDenote withwith II thethe
setset ofof allall thethe insertioninsertion pointpoint..

General descripsion of the algorithm

33)) RecombinationRecombination phasephase:

Generate a pool of sequences S through the recombination of
the nodes in F (i.e., a pool of elementary paths through the
nodes of F).

44)) ReallocationReallocation phasephase::

Reallocate all the extracted nodes to the restricted solution
(through some sequences in S and some insertion points in I) in
an optimal way, by solving an ILP model (Reallocation Model)

Approach proposed by De Franceschi et al. [4] and deeply
investigated by Toth and Tramontani [22] in the context of the
classical VRP.







Reallocation Model:

SomeSome notationsnotations andand definitionsdefinitions::

- :Restricted solution obtained by extracting some nodes
from the initial solution.

- : the set of routes in the restricted solution.

- : the set of all edges or the set of insertion pointes in

.

- Si (for each insertion point i): the subset of the sequences S
which can be allocated to the insertion point i in I

- and , overall cost and request of the sequence .
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Reallocation Model:

SomeSome notationsnotations andand definitionsdefinitions::

- : Extra cost for assigning sequence to insertion point .

- : Set of all the insertion points associated with .

- and maximum capacity and travel length of the vehicles.

- and are the total request and demand computed for
route .
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Recombination phase

1)1) InitializationInitialization

- Initialize each subset     with the basic sequence extracted 

from i and

- The feasible singleton sequence with the minimum

insertion cost.

- Initialize Linear Programming relaxation of the

Reallocation Model (LRM) with the initial set of variables

corresponding to the current subsets, and solve LRM.
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- For each insertion point add to the pool of variables all the

sequences , such that it’s reduced cost is less than

a given threshold .

- For each insertion point , solve the column generation

problem associated with , adding to all the sequences

corresponding to elementary path in whose associated

variables have a reduced cost under a given threshold .
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Column generation

Column generation

- For any fixed insertion point ,the column generation

problem associated with i in LRM is in practice a Resource

Constrained Elementary Shortest Path Problem (RCESPP),

which usually arises in the Set Partitioning formulation of

the classical VRP.

- Here, for each insertion point, we solve the corresponding

RCESPP through a simple greedy heuristic, with the aim of

finding as many variables with small reduced cost as

possible.

Ii ∈

Column generation (Heuristic Algorithm)
Given a graph and a starting feasible path , with :

1) Evaluate all the 1-1 feasible exchanges between all the

nodes and all the nodes and select the best one, if

such an exchange leads to an improvement perform it and

repeat from 1.

2) Evaluate all the feasible insertions of all the nodes in all

the edges and select the best one, force such an

insertion even if it leads to a worsening of the current path

and repeat from 1.

At any time a new path is generated, the corresponding 

variable is added to the variable pool V if its reduced cost is 

smaller than a certain threshold         .
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Algorithm:
1. (Initialization) Set kt := 0 and kp := 0. Take as the incumbent solution and

initialize the current solution as := .

2. (Node selection) Build the set F by selecting each customer with a probability
p.

3. (Node extraction) Extract the nodes selected in the previous step from the
current solution and construct the corresponding restricted OVRP solution

, obtained by shortcutting the extracted nodes.

4. (Reallocation) Define the subsets as described. Build the
corresponding Reallocation Model (2)-(7) and solve the model by using a
general-purpose ILP solver. Once an optimal ILP solution has been found,
construct the corresponding new OVRP solution and possibly update and

.

5. (Termination) Set kt := kt + 1. If kt = , terminate.

6. (Perturbation) If has been improved in the last iteration, set kp := 0;

otherwise set kp := kp + 1. If kp = , “perturb” the current solution

and set kp := 0. In any case, repeat from step 2.
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Perturbation:

- If the current solution is not improved after a given number

of consecutive iterations we do the random perturbation.

- Randomly extract np customers from the solution.

- Reinsert each extracted customer, in turn, in its best feasible

position.

- If a customer cannot be inserted in any currently non-empty

route (due to the capacity and/or distance restrictions), a

new route is created to allocate the customer.

Computational Results:

- Benchmark instances, taken from Christofides et al. (instances

C1-C14), Fisher (instances F11-F12) and Golden.

- The number of customers ranges from 50 to 480.

- C1-C5, C11-C12 and F11-F12 and Golden instances have only

capacity constraints, while C6-C10 and C13-C14 are the same

instances as C1-C5 and C11-C12, respectively, but with both

capacity and distance constraints.

- High quality initial solutions taken from Fu et al. [9, 10].

Computational Results:

- Test on a Pentium IV 3.4 GHz with 1 GByte RAM using ILOG 

Cplex 10.0 as ILP solver.

- Parameters:                                                   .

- (randomly) in which                               .[ ]maxmin , npnpnp ∈

5000,50,5.0,1 maxmaxmax ==== KTKPpRC

25,15 maxmin == npnp



Instances Prev.best sol. Initial solution Final solution Best time Final time

Cost Time

C1 416.06* 416.06* 32.0 - - -

C2 567.14 567.14 312.0 - - 84.2

C3 639.74* 641.88 928.0 369.74* 106.0 119.9

C4 733.13 738.94 272.0 733.13 21.2 156.6

C5 869.25 878.95 2476.0 868.81 10.3 220.3

C6 412.96 412.96 24.0 - - 45.1

C7 568.49 568.49 240.0 - - 83.1

C8 644.63 646.31 416.0 644.63 0.1 136.2

C9 756.14 761.28 1864.0 756.14 102.7 255.5

C10 875.07 903.10 2076.0 878.54 323.9 460.2

C11 682.12 717.15 924.0 683.64 165.8 198.8

C12 534.24* 534.71 168.0 534.24* 1.6 94.0

C13 896.50 917.90 3284.0 894.19 475.0 1165.3

C14 591.87 600.66 100.0 591.87 293.8 354.7

F11 177.00* 177.00* 16.0 - - -

F12 769.66 770.07 1136.0 769.55 77.8 148.2

Pentium IV 3 GHz Pentium IV 3.4 GHz

Table 1: Computational results on benchmark instances starting from the solutions by Fu et al.

*: Provably optimal solutions                             “_”: Final solution costs equal to the previously best known ones.

new best solutions are in bold face.

Table 1: results on 8 large instances of Golden.

Problem Name Best known Starting Value final Best Time Final Time

Golden201 6018.52 6018.52 --- --- 182.23

Golden241 4584.55 4584.69 4573.53 34.59 283.96

Golden281 7731.46 7731.46 --- -- 304.60

Golden321 7260.59 7260.59 7253.91 94.45 438.93

Golden361 9167.20 9167.20 9165.40 41.37 499.62

Golden401 9803.80 9805.45 --- --- 581.31

Golden441 10348.57 10348.57 10344.37 8.56 652.96

Golden481 12420.16 12420.16 --- --- 623.56

Different tuning of parameters:

- Considering the different probabilities of extracting the
nodes:

- is the average of final value obtained on 14 instances.

- is the corresponding average CPU time in
seconds.
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Conclutions and Future directions :

- The proposed method is very effective in improving the starting

solution, even if it is of very-good quality.

- More sophisticated criteria for removing customers from the

current solution.

- More sophisticated algorithms for solving the column generation

problem related to the ILP model.

- The overall procedure can be considered as a general framework

and it could be extended to cover other variants of Vehicle Routing

Problems such as :Vehicle Routing Problems with heterogenous

vehicles and multidepot Vehicle Routing Problems.
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