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Abstract:          

    The construction of an exam timetable is a common problem for all universities and 

institutions of higher education. Quite often it is done by hand or with the limited help 

of a simple administration system and usually involves taking the previous year�s 

timetable and modifying it so it will work for the new year. But increasing the number 

of students, changing the courses that are offered and student�s freedom in selecting 

them, needs a great correction on the past year�s timetable and also so much time. 

Therefore it is no longer good enough to use the previous year�s timetable.  

   In this approach we modify Scatter Search method and solve the Examination 

Timetabling Problem (ETP) with a first solution procedure that is based on scatter 

search. Also we solve this problem with existing methods such as Simulated 

Annealing and Tabu search and compare results of them with each other. Finally we 

apply new Scatter Search algorithm on Carter�s datasets and conclude that our 

algorithm works better than other published results.  
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1. Introduction: 

    The Examination Timetabling problem regards the scheduling for the exams of a 

set of university courses, avoiding overlap of exams of courses having common 

students, and spreading the exams for the students as much as possible. 

    The process of finding a period for each exam so that no two conflict has been 

shown to be equivalent to assigning colours to vertices in graph so that adjacent 

vertices always have different colours [1]. This in turn has been proved to lie in the 

set of NP_Complete problems [2,3,4], which means that carrying out an exhaustive 

search for the timetable is not possible in a reasonable time. 
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    There are so many heuristic methods which has been offered for solving this 

problem based on graph colouring or metaheuristic methods such as Simulated 

Annealing, Tabu Search, ect, that has been applied to solve the problem [5-18]. 

    We approach this problem with a solution procedure based on the evolutionary 

approach called Scatter Search (SS). Recent studies have demonstrated the practical 

advantages of this approach for solving a diverse array of optimization problems from 

both classical and real world settings. A good overview of SS is provided by Laguna, 

Glover, and Marti [19,20]. 

    To continue we explain Examination Timetabling problem and modification of 

scatter search then we try to describe how to solve this problem by using modification 

of scatter search algorithm. Finally we�ll distinguish the results, which have been 

concluded of this algorithm in compare of another metaheuristics. 

 

2. Common details in all methods 

    In this section we explain the common details that are used in all methods. 

 

2.1. Problem Description  

    Given are a set of examinations, a set of (contiguous) time slots, a set of students 

and a set of student enrolments to examinations. The problem is to assign 

examinations to time slots satisfying a set of constraints [14]. 

   Many different constraint types have been proposed in the literature. In this work, 

we consider the version proposed by Carter et al. [6], which is based on the so�called 

first-order and second-order conflicts. 

    First-order conflicts arise when a student has to take two exams scheduled in the 

same time slot, while second order ones emerge when a student has to take two exams 

in time slot �close� to each other. 

   Second�order conflicts are treated as soft constraints, thus they are included into the 

objective function f that measure the quality of the solution; conversely, first�order 

conflicts are modelled as hard constraints. 

 

2.2. The Objective Function 

    Assuming that consecutive time slots lie one unit apart, we define f assigning a 

proximity cost w(i) when ever a student has to attend two exams scheduled within i 
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time slots. The cost of each conflict is thus multiplied by the number of students 

involved in both examinations. 

   As it is mentioned in [14], the cost decrease logarithmically from 16 to 1 for soft 

constraints as follows: w(1) =16, w(2)=8, w(3)=4, w(4)=2, w(5)=1 and the cost for 

violation of hard constraint is 1000. 

    The objective function (cost function) is then normalized based on the total number 

of students. This way we obtain a measure of the number of violations �per student�, 

which allows us to compare results for instances of different size. So we have the 

below cost function, 
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    Where N and M indicate the number of exams and students consecutively and C(i,j) 

shows the number of common students between both exam i and exam j, also ti is the 

period of exam i (for i=1,�,N).  

   There are other constraints like saloon capacity in the real case that we don�t 

consider them in order to make it easier and because we can compare our results with 

result of published papers on Carter�s data sets [6,11,14]. 

 

2.3. Solution representation  

   We show every solution in all algorithms with one vector, with the length of the 

vector equal to the number of exams. Each elements of this vector shows the assigned 

period for each exam. Periods and exams are numbered sequentially. 

                              1      2      3      4                            N-2     N-1     N 

  20    3  18   5 � � �     7    11    6 
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2.4. Neighbour solution 

    A neighbour solution may not be a feasible solution necessarily (as initial 

solutions), and it is obtained by random alteration of one element of the solution 

vector. We also considered the neighbour, which is obtained from exchange of two 

exams of solution with each other. We didn�t get any significant difference between 

final solutions with two definitions of neighbourhood. 

 

3. Modification of Scatter Search and Solution Approach: 

    The solution approach that we have developed for our Examination Timetabling 

problem consists of adaptation of Scatter Search. 

    Scatter Search (SS) is a novel instance of evolutionary methods and embodies 

principles and strategies that are still not emulated by other evolutionary methods, that 

proves advantageous for solving a variety of complex optimization problems [19,20].   

    In this algorithm at first Diversification Generation Method constructs a set of 

solutions, then these solutions are improved by Improvement Method. In the next step 

Reference Set is constructed based on improved and also diverse solutions. Then in a 

loop, solutions are selected for combination by Subset Generation Method and 

generate the new solutions by Solution Combination Method. The new solutions are 

improved by same Improvement method and this loop continues until we can�t obtain 

new solution. In this step, the algorithm reinitialized the initial set by generate the 

New Set and run this loop for predefined times.  

3.1.What are our modifications for SS? 

    In the general case of Scatter Search, at first a set of solutions is constructed 

completely and when this process is finished then in a next step these solutions are 

improved by a heuristic method. In fact these two steps are completely independent.  

    But it seems that if we can use the information of best current solution in process of 

constructing the next one, we will get a better solution. That �s the first and main 

modification of SS in our algorithm. 

    In fact in our modification, at first a solution is constructed and improved 

consecutively. Then the next solution produced based on the information of the best 

solution, which has been obtained through previous steps. This new solution is 

improved and the best current solution is updated. So the construction and 

improvement method are applied sequent for each solution and we use the 
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information of improvement step in construction of next solution. This process is 

repeated for |initial set| (cardinal of initial set) times.  

    Also in the general case of SS, there is one Improvement Method that is applied 

two times: after construction of initial solutions and after generation of new solutions 

from Solution Combination Method.  

    But as a second modification, we use two different heuristic methods for these 

steps. As we said before we apply Improvement Method after construction of each 

solution and we use the information of the best solution to generate the next one. So if 

we use the heuristic method, which needs a long time for execution, it will increase 

the amount of time for complete run of this step and it is no good for us. 

    Besides, if we use the strong heuristic when we generate the new solutions, we can 

reach the better solutions. Therefore it seems that�s better to use two different 

heuristics for these two steps: improvement after construction of each initial solutions 

and improvement after generation of new solutions by Solution Combination Method.   

    So we use the simple descent algorithm for improving the initial solution and Tabu 

Search method is applied to improve the new solutions, which are obtained by 

Solution Combination Method.  

    Also in general case of SS there is one method (which is named Diversification 

Generation Method) to construct solutions in two steps: generation of initial solutions 

and to reinitialize of algorithm with New Set of solutions when we can�t reach any 

new solution in internal loop.  

    Since our generation method for initial solutions depends to information of best 

solution and it will get the new solution very similar to this one, we can�t reach 

enough diversification in new set by applying this method. So it is better to use 

another generation method to give diverse solutions in this step, which is need for 

climbing up from local optimum point. In Second Generation Method we apply 

frequency memory and the probability of selecting each period is inverse of frequency 

of this and neighbour periods in solution.  

    To continue we describe several parts of this algorithm and explain how to apply 

these three modifications.  

    Because we apply diversification generation and improvement methods 

consecutively for each initial solution and because of affections of these steps on each 

other, we explain these two steps in one section with name Mixed Diversification and 

First Improvement Method.  
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3.2. Mixed Diversification and First Improvement Method: 

    In our modification of SS, The construction process of initial solutions is applied in 

an artificial manner, so that in selection of period for each exam, increased amount of 

cost is considered and a period will selected that causes minimum increasement. 

    Also the information of the best solution is considered and finally a random period 

(timeslot) is selected according to the two factors that are mentioned. 

    To generate the initial solutions we do as follows: 

      At first we assign the same initial values for each pair (exam,timeslot) and we call 

it �credit �. Suppose that there are k solutions, which have been constructed, and now 

we want to produce k+1 Th solution.  

    In the beginning, the best solution is considered and then the credit of each pair 

(exam,timeslot) is updated. Credits of the pairs that have been appeared in the best 

solution, is increased and the credit of others is decreased by this formula: 

0.2. ( , ) 1 ( , )
( , )

0.2. ( , )

credit e t if e t is in the best solution
credit e t

credit e t otherwise


 


          (3.1.1) 

    Now we consider the exams one by one and assign to each of them one period 

(timeslot). The selection probability of each period is based on the increasing amount 

of cost and credit value of pairs as a followed formula: 
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( ( , )) .( ( , ))
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                   (3.1.2) 

That c(e,t) is inverse of cost and achieved from: 

1.0
( , )

1.0 ( , )
c e t

V e t



                                                                                (3.1.3) 

And V(e,t) shows the increased amount of cost by adding (e,t) .T is a set of timeslots 

and the coefficients  ,  indicate the effect of each factor. 

    For selecting a timeslot, at first a random number of [0,1] is selected and if this 

number is equal to or less than selection probability of period, (that has been reached 

from formula.3.1.2) this period is assigned to the exam and else another random 

timeslot is selected. This process continues until a period is assigned to this exam. 

When a complete solution is constructed, First Improvement Method improves it and 
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the best solution is updated. If this improved solution is better than the best current 

solution, this solution is considered as a best solution instead of it. 

 The First Improvement Method 

    First Improvement method is applied after construction of each initial solution. For 

this aim one exam is selected randomly and its period exchange to another random 

period and then the cost of new solution is computed. 

    If new solution has less cost, it is considered instead of previous one and else this 

process is going to be continuing until the first better solution is reached. Then the 

best solution, which is considered in construction process, is updated and the credits 

are changed regards to it (as it is explained above). 

 

3.3. Reference Set Update Method: 

    The reference set, Refset, is a collection of both high quality and diverse solutions 

that are used to generate new solutions by way of applying the solution combination 

method [19,20]. Specifically, The reference set consists of the union of two subsets, 

Refset1 and Refset2, of size b1 and b2, respectively. That is, | Refset | = b = b1+b2. The 

construction of the initial reference set starts with the selection of the best b1 solutions 

from the set of initial solutions, which is named P. These solutions are added to Refset 

and deleted from P. For each improved solution in P-Refset, the minimum of 

Euclidian distances to the solutions in Refset is computed. Then the solution with the 

maximum of these minimum distances is selected. This solution is added to Refset and 

deleted from P and the minimum distances are updated. This process is repeated b2 

times. The resulting reference set has b1 high quality solutions and b2 diverse 

solutions.  

    To explain the Euclidian distance, for example we consider one solution as a 

current solution and another as a solution of Refset. The Euclidian distance between 

these two solutions are computed as follows:  

X = current solution  

20 8 13 � � � 7 32 

Y = solution of Refset 

12 30 10 � � � 7 16 

 

D(X,Y) =          22222 163277...10133081220   
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    After the initial reference set is constructed, the Solution Combination Method is 

applied to the subsets generated as outlined in the following section. The reference set 

is dynamically updated during the application of the Solution Combination Method. A 

newly generated solution may become a number of the reference set if either one of 

the following conditions is satisfied.  

1. The new solution has a better objective function value than the solution with 

the worst objective value in Refset1. 

2. The new solution has a better dmin value than the solution with the worst dmin 

value in Refset2.  

    In both cases, the new solution replaces the worst and the ranking is updated to 

identify the new worst solution in terms of either quality or diversity. 

    The reference set is also generated when a combination method is incapable of 

creating solutions that can be admitted to Refset according to the rules outlined above. 

    The regeneration consist of keeping Refset1 intact and using the Second Generation 

Method to construct a new diverse subset Refset2. As we mentioned before, in general 

case of SS in this step the same Diversification Generation Method is used but in our 

modification, we use another method because of reasoning that are mentioned in 

section 3.1. We will express this method in section 3.7. 

 

3.4. Subset Generation Method: 

    This method consists of generating the subsets that will be used for creating new 

solutions with the Solution Combination Method [19,20]. 

    We limit our scope to considering five solutions. Four solutions of high quality and 

one of diverse solutions of Refset are selected. Then we consider all pair wise of 

them. 

 

3.5. Solution Combination Method: 

    This method consists of generating new solutions from the combination of two 

existing solutions.  

    When we select two solutions to combine, at first we consider all periods one by 

one and then choose one of two solutions randomly. Combined solution will consist 

of all the exams that have been appeared in this period of this selected solution. Then 
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another period is considered and this process continues until all periods are 

considered.  

3.6. The Second Improvement method: 

    We use Tabu Search algorithm in this part on the new solutions, which are given 

from Solution Combination Method (see section 3.5) and it is terminated before its 

convergence. Stopping condition of TS is a little limited time and the best improving 

solution is considered as an improved solution. This part is used in internal loop of 

Scatter Search algorithm. The details of this algorithm are as same as section 6. 

3.7.The second Generation Method 

    When a combination method is incapable of creating solutions that can be admitted 

to Refset according to the rules outlined in section 3.3, the Refset is regenerated.    

The regeneration consists of keeping Refset1 intact and constructs a new diverse 

subset Refset2. In general case of SS in this step the same Diversification Generation 

Method is used for generation of Refset2 but in our modification, we use another 

method to achieve diverse solutions because of reasoning that are mentioned in 

section 3.1. 

    This generation method employs controlled randomisation and frequency memory 

to generate a set of diverse solutions. We divide the range of N periods into [N/5] 

sub_ranges (this is may differ for instances with different size). Then a solution is 

constructed in two steps. First a sub_range is randomly selected. The probability of 

selecting a sub_range is inversely proportional to its frequency count. Then a period is 

randomly generated within the selected sub_range. The number of times sub_range j 

has been chosen to assign a period for exam i is accumulated in freq(i,j). This 

diversification generation method focuses on diversification and not on the quality of 

solutions. Note that the best b1 solutions are entered in Refset intact and because of 

this we don�t consider the quality of new solutions and we just consider 

diversification. 

 

4. An outline of the procedure: 

    This outline is a general algorithm of SS that is mentioned in [19,20] but with our 

modifications and uses the following parameters: 

PSize = the size of the set of initial solutions, which are generated by the Mixed  

Diversification and First Improvement Method. 
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b= the size of the Reference set . 

b1= the size of the high quality subset (Refset1). 

b2= the size of the diverse subset (Refset2). 

MaxIter = maximum number of iterations. 

    The procedure consist of the steps in the outline of Table.1, where P denotes the set 

of solutions generated with the Mixed Diversification and First Improvement Method 

and Refset is the set of solutions in the reference set. Also New Set is the set of new 

solutions that are constructed with Second Generation Method.  

 

Table 1. Modification of Scatter Search for Examination timetabling problem 

�
�

P     1.  Start with   

            Use the Mixed Diversification and First Improvement method to construct  

          the initial solution x.     

          Repeat this step Until | P | = PSize. 

      2. Order the solutions in P according to their objective function value (where 

           the best overall solution is first on the list). 

      For (Iter=1 to MaxIter) 

RefSet2 from P, with | RefSet | = b,                         3.  Build RefSet=RefSet1  

                      | RefSet1| = b1 and | Refset2 | = b2. Take the first b1 solutions in P and 

                   add them to RefSet1. For each solution x in P-RefSet and y in RefSet 

                   calculate a measure of distance d(x,y). Select the  

   min Re
( ) min ( , )

y fSet
d x d x y


 that maximizes dmin(x) , where x                   solution  

 to RefSet2, until | RefSet2 | = b2. Make NewElements=TRUEx                    add  

           While (NewElements) do 

                4.  Calculate the number of subsets (MaxSubset) that include at least one 

                     new element. Make NewElements = FALSE.   

                For (SubsetCounter = 1, ... , Maxsubset) do 

                       5. Generate the next subset "s" from RefSet with the Subset              

                               Generation Method.  

                       6. Apply the Solution Combination Method to" s" to obtain one new 

                           solutions xs. 
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                       7. Apply the Second Improvement Method (TS) to xs , to obtain the 

.                          *
sx                                 improved solution  

 is*
sx is not in RefSet and the objective function value of *

sx                          If  ( 

                       better than the objective function value of the worst element in   

                       RefSet1) then 

 To RefSet1 and delete the worst element                         *
sx                                 8.  Add  

                                Currently in RefSet1. (The worst element is the solution  

                                With worst objective value.) 

                            9. Make NewElements = TRUE. 

                      Else  

) is larger than dmin(x)   *
sx is not in RefSet2 and dmin(

*
sx         If ( 

                                for a solution x in RefSet2) then 

 to RefSet2 and delete the worst                               *
sx                                   10 . Add  

                                    element currently in RefSet2. (The worst element is the               

                                solution x with the smallest dmin(x) value.) 

                             11. Make NewElements = TRUE. 

                          End If 

                      End If         

                End For 

           End While  

           If (Iter < MaxIter) then  

                 12. Build the New Set using the Second Generation method. 

                       (Initialize the generation process with the solutions currently in RefSet1 

                        That is, the first b1 solutions in the new P are the best b1 solutions in     

                        the current RefSet.) 

           End If 

     End For   

 

 

5. Simulated Annealing: 

    ��The principle of the SA metaheuristic is deduced from the physical annealing 

process of solids. Kirckpatrick et al. [21] and Cerny [22] proposed the use of SA for 

combinatorial problems. Their work is based on the research of Metropolis et al. [23] 
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in the field of Statistical Mechanics. For an overview of the research and applications 

of SA, the reader is referred to Vanlaarhoven and Aarts [24], Aarts and Korst [25], 

Collins et al. [26] and Eglese [27]. 

    The representation of solution, definition of cost function and neighbour solution 

are defined in section 2 and the initial solution is produced completely random. 

   As far as our implementation is concerned, the following choices have been made. 

In order to determine the value of the initial temperature, Tbegin is computed by 

solving the expression: 

      beginTC
eaP

/
  

and hence 

      
aP

C
beginT

ln


          (1) 

    Here C represents the average deterioration value, which is computed as the 

cumulative value of the values of all worsening moves possible from the initial 

solution, divided by the number of moves, which cause a deterioration of the 

objective function value. Parameter Pa represents the acceptance fraction, i.e. the ratio 

of the accepted to the total number of generated moves. 

    The cooling function we use for the reduction of the temperature is the simple 

geometric function. 

The temperature at iteration t, Tt, is obtained from the temperature of the previous 

iteration as follows: 

      Tt=R.Tt-1                   (2) 

Here, R represents the cooling rate and we consider it equal to 0.99. 

 

5.1. Algorithm  

A general description of SA is given in Table 2. 
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Table 2: The General Simulated annealing technique 

 

6. Tabu Search  

    Tabu search was conceived by Glover [28]. TS is base on the principles of 

intelligent problem solving.  

    The representation of solution, definition of cost function and neighbour solution 

are defined in section 2 and the initial solution is produced completely random. 

    Each time a move is performed and linked the couple (exam, period) to tabu list 

that includes inhibited moves. It means, period of this exam can�t change until             

| tabu list | (length of tabu list) times. From a given solution not all neighbours can 

usually be reached. A new candidate move in fact brings the solution to its best 

neighbour, but if the move is present in the tabu list, it is accepted only if it decreases 

the objective function value below the aspiration level. Aspiration level is minimum 

of cost function so far achieved. This process is repeated until a stopping criterion is 

reached. The stopping criterion of this algorithm is reaching to the limited number of 

iteration between current iteration and iteration that best solution is reached. 

   A good overview of TS and its applications is provided by Glover, Laguna and 

Rosing [29,30].  

 

 
 
Select an initial state Si  
Select an initial temperature T > 0; 
Set  temperature change counter t = 0; 
Repeat 

Set repetition Counter n = 0; 
Repeat  

Generate state j, a neighbour of i; 
Calculate );i(f)j(f   
if 0  Then ;j:i   
else if random (0,1) < exp(  /T)  Then i := j; 
n :=n+1; 

Until n=N(t); 
 t := t+1; 
T := T(t); 

Until Stopping Criterion true. 
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6.1. Algorithm  

A general description of TS is given in Table 3. 

Table 3: The general tabu search technique 

� 
Initialization  

    s: = initial solution in X; 

    nbiter: = 0; 

         (* Current iteration *) 

     bestiter: = 0; 

         (* iteration when the best solution has been found *) 

     bestsol: = s; 

         (* Best solution *) 

     T: =  ; (* T is Tabu list *) 

      Initialize the aspiration function A; 

While  (f (s) > f*) and  (nbiter-bestiter < nbmax) do  

      nbiter: = nbiter + 1; 

      Generate a set V* of solutions si in N(s) which are either 

       not tabu or such that A( f(s)) >= f ( si ) ;  

      Choose a solution s* minimizing f over V*; 

       Update the aspiration function A and the tabu list T; 

       If  f(s*) < f(bestsol) then  

       bestsol: = s*; bestiter: = nbiter ; 

���       s: = s* ; 

End while 

��        

 

 

7. Datasets: 

   We produce several random problems in different size in order to apply these 

algorithms for different ones. In these problems the number of exams averts from 40 

to 200 and respect to the number of exams, the number of students and periods has 

been determined. The elements of conflict matrix of student Aij (that shows the 
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common students in both i and j exams) have been produced randomly. You can see 

the information about these problems in the Table 4. 

Table 4: Characteristics of Data Sets 

 

 

 

 

 

 

 

 

 

 

 

 

8. Metaheuristic analysis 

   Due to the fact that the stopping criterions of the metaheuristics are not defined 

samely, a simple comparison of only the final solution values of the three 

metaheuristics would not be appropriate. 

   Besides, the computing time of heuristics highly depends on the value assigned to 

the parameters. Also it is difficult to estimate the processing time of heuristics. 

Moreover, the probability of finding a better final solution increases with the run time. 

Therefore a simple comparison of the final solution of the three metaheuristics 

without taking into account the run time is not appropriate. 

   An important analysis tool for the dynamic heuristic analysis is the graphical 

representation of the path of the objective function value of each heuristic versus 

computing time. Example is given in Fig.1. 

Data set Exams Timeslots Students 

1 40 15 800 

2 60 15 1400 

3 80 20 1900 

4 100 24 2850 

5 120 20 3600 

6 140 24 4552 

7 150 25 4800 

8 160 32 5226 

9 180 28 6540 

10 200 30 7000 



 - �� -��

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

 

Fig.1. Example of the path of the objective function value versus computing time for 
Simulated Annealing, Tabu Search and Scatter Search for average solutions for all 
instances.  
 

   An alternative for comparing the improvement heuristics dynamically is required. 

The specific feature of the dynamic analysis is that intermediary solutions of 

metaheuristics at various time points are compared. We considered three time points 

and report the minimum value of cost for each algorithm at these times (which are 

named minimum 1,2,3). 

In Table .5 the symbol �*� indicates which heuristic attains its minimal value after the 

given run time. The best solutions of the three metaheuristics at each time point are 

printed in bold face. The column at the right of each cell contains the relative 

difference with respect to the best solution at that time point and this formula: 

 
solutionbestoft

solutionbestoftsolutionoft
solutiondifferencerelative

cos

coscos 
  

 

    In column 1, each Si is consisting to instance that we generated and explained in 

section 7 and in column 3 we report the cost of initial solution. 

SA�

TS�

 
SS 
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    The same computer has been used for all experiments and our computer is Pentium 

III, 600MHZ(half cash), under IBM and the program is written in MATLAB software 

language under Microsoft Windows 98. 

    

Table 5. Heuristic analysis of SA, TS and SS 

Problem  Initial Minimum        

1 

 Minimum 

2 

 Minimum 

3 

 

S1 Time  50  140  180  

 SA 938.5788 881.9550 0.48 813.7112 0.90 765.5462* 1.09 

 TS 877.0063 732.1413 0.23 532.6425* 0.24 532.6425 0.45 

 SS 774.4750 594.1800  428.7437  366.1112*  

S2 Time  30  120  480  

 SA 1116.4 1100.2 0.03 1038.1 0.14 976.0064* 0.30 

 TS 1197.5 1066.8  912.3136  835.0114* 0.12 

 SS 1242.4 1225.6 0.15 969.4100 0.06 747.4143*  

S3 Time  60  300  540  

 SA 1217.3 1217.3 0.04 1150.3 0.20 1059.2* 0.17 

 TS 1365.0 1802.8 0.54 956.0505  905.3221*  

 SS 1175.8 1170.9  1058.5 0.10 971.1268* 0.07 

S4 Time  60  300  540  

 SA 940.2081 723.8502 0.07 697.2733 0.14 676.2716* 0.15 

 TS 750.8274 697.1719 0.03 646.0586 0.06 585.7909*  

 SS 690.7649 674.6260  611.0365  595.9551* 0.02 

S5 Time  100  300  540  

 SA 1015.2 994.5783 0.11 979.9100* 0.10 979.9100 0.13 

 TS 1125.5 1001.8 0.12 952.2086 0.07 915.0758* 0.06 

 SS 899.8344 895.5561  888.5972  863.5269*  

S6 Time  300  600  960  

 SA 1456.3 1417.6 0.12 1417.6 0.17 1379.2* 0.14 

 TS 1468.8 1390.4 0.10 1207.8*  1207.8  

 SS 1360.8 1268.0  1252.0 0.04 1235.9* 0.02 

S7 Time  350  700  1020  

 SA 1739.3 1494.2 0.11 1494.2 0.13 1355.9* 0.06 
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 TS 1736.4 1434.1 0.07 1335.0 0.01 1273.5*  

 SS 1352.2 1340.8  1318.4  1308.0* 0.03 

S8 Time  380  800  1200  

 SA 1266.3 1147.4 0.04 1143.9 0.04 1124.9* 0.06 

 TS 1304.3 1258.5 0.14 1147.4 0.04 1068.3* 0.01 

 SS 1136.1 1100.5  1100.5  1061.9*  

S9 Time  470  670  1200  

 SA 1507.6 1389.5* 0.05 1389.5 0.05 1389.5 0.07 

 TS 1546.0 1376.0 0.04 1347.4 0.04 1299.3* 0.00 

 SS 1322.1 1321.4  1321.4  1295.2*  

S10 Time  300  640  1200  

 SA 1573.2 1557.7 0.08 1557.7 0.09 1441.4* 0.08 

 TS 1624.6 1530.6 0.06 1427.4  1334.7*  

 SS 1440.6 1438.2*  1438.2 0.01 1438.2 0.11 

    

    As it is shown in the Table.5_6, we gain the best solution from SS in different 

times. SS is in first grade and then TS after that SA has the third grade. 

 

Table 6. Ability of metaheuristics to find the best solution 

Algorithm SA TS SS 

Ability of Alg. to find the best solution % 0 %33.3 %66.6 

     

The values that have been shown in above table achieved from following formula: 

 

100
int

lgint


spoallofnumberThe

solutionbestthefoundbeenhasorithmathatspoofnumberThe
 

 

    Since the initial solution of SA and TS are produced completely random and they 

are different and this effects on quality of the best solution, which is reached on each 

time point, for fair comparison we calculate amount of cost reduction for these 

algorithms. The difference between cost of initial and final solution (minimum 3) for 

each data set is given in table 7. In this way we can compare them fairly. 
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Table 7.Values of cost reduction in each data set for SA and TS 

Algorithm/test 

problem 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

SA 173.0 140.3 158.1 263.9 35.29 77.1 383.4 141.4 118.1 131.8 

TS 344.3 362.4 459.6 165.0 210.42 261.0 462.9 236.0 246.7 289.9 

 

    As it is shown in Table.7 TS has maximum cost reduction in %90 cases and it 

worked better than SA. This result is consisting with the result of Tables 5,6. 

9. Comparison with published Results 

    In previous section it is shown that Modified Scatter Search is better than SA and 

TS. Now this best algorithm is compared with other published results on the same 

problem and Carter�s test bed [6]. We consider Sequencing Heuristics with 

backtracking (SH) [6], Tabu Search with a variable tabu list (TS) [14] and Degraded 

Ceiling algorithm (DC) [11]. These results are shown in Table 8. The best results are 

presented in bold. 
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Table 8.Published and our results for proximity cost of ETP 

Published Results 

(Best Cost/ Time for best) 

Modification 

of Scatter Search 

Algorithm 

 

Data 

Sets 

 

Exams 

 

Students 

 

Time 

slots 

SH Time TS Time DC Time Best 

cost 

Time 

for 

best 

EAR-

F-83 

190 1125 24 36.4 24.7 45.7 4.6 35.4 134 41.6693 17.2  

HEC-

S-92 

81 2823 18 10.8 7.4 12.4 3.7 10.8 278 10.4623 388.6  

KFU-

S-93 

461 5349 20 14.0 120.2 18.0 12.3 13.7 729 17.8267 403.7  

LSE-

F-91 

381 2726 18 10.5 48.0 15.5 20.3 10.4 1030 14.2913 370.6 

RYE-

S-93 

486 1483 23 7.3 507.2 __ __ 8.9 752 7.1220 190.0 

STA-

F-83 

139 611 13 161.5 5.7 160.8 3.9 159.1 157 95.3502 18.1 

TRE-

S-92 

261 4360 23 9.6 107.4 10.0 16.2 8.3 392 11.5229 187.9  

UTE-

S-92 

184 2750 10 25.8 9.1 29.0 42.4 25.7 236 18.0058 296.6 

YOR-

F-83 

181 941 21 41.7 271.4 41.0 25.2 36.7 546 34.8321 165.0 

 

 

10. Conclusions: 

    As it is shown in Tables 5_6, SS works better than TS and SA. One of its reasoning 

refers to our modifications; in both TS and SA, one solution is constructed randomly 

and then improved. In those algorithms, neighbour solution may have no similarity to 

current one and just the cost of it, is less than current solution. But in our modification 

of SS the solutions are not constructed randomly. While constructing each solution, 

amount of increasing cost is considered, and also we try to construct the solution, 

which is similar to the best solution by justifying the amount of the credits of each 

pair (exam,period). As we mentioned before, the information of best solution is 
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considered and the new solution is generated based on it. So we get each new 

solutions of initial set better than previous ones. 

    Also we use a strong searching engine _TS _ as the second improvement method of 

SS, which improved the solution well. Also existence of diverse solutions in Refset 

inhibits the fast convergence of the algorithm and cause to have better solutions in 

solution space. 

    In addition we use two different generation methods in two steps of SS: generation 

of initial solutions and generation of new solutions after we can�t obtain any new 

solution regards to mentioned conditions. We construct initial solutions in artificial 

manner and use the information of best solution in generation of new solution in 

Mixed Diversification and First Improvement Method. In this way we generate high 

quality initial solutions and this effects on final solutions. As it is shown in Table.5, 

SS starts with the better initial solution in 90% of problems. So regards to Table.6 we 

have better solutions from SS in 66% cases. Also we use Second Generation Method 

when we are at local optimum point and we generate diverse solutions by this method. 

So we clime up from these points and we get better solutions.   

    Using Ts as a part of SS instead of applying it after SS sequent has advantages for 

us. If we use SS and then apply TS after it, TS may converge in a local optimum, but 

if we apply TS as a part of SS, we can inhibit from fast convergence. Because of in 

our modification of SS, we use Second Generation Method to regenerate the Refset 

with diverse solutions for continuing the search process and climb up from local 

optimum points. So in this way we can obtain better solutions. 

    In compare of real datasets, as it is shown in Table.8 SS works better than other 

published algorithms in five cases and it is hopeful for us to apply it in real problems. 

    The computing times are incomparable due to the use of different hardware. But we 

present the computing time for best results only to show that the given solutions were 

produced in quite acceptable time.  
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