
 - � -��

Modification of Scatter Search for Examination Timetabling

Problem

Majid Salari, Zahra Naji Azimi �
Department of Mathematical Sciences

Ferdowsi University of Mashhad
com.@yahoonajiazimi,alarimajids

Abstract:

 The construction of an exam timetable is a common problem for all universities and

institutions of higher education. Quite often it is done by hand or with the limited help

of a simple administration system and usually involves taking the previous year�s

timetable and modifying it so it will work for the new year. But increasing the number

of students, changing the courses that are offered and student�s freedom in selecting

them, needs a great correction on the past year�s timetable and also so much time.

Therefore it is no longer good enough to use the previous year�s timetable.

 In this approach we modify Scatter Search method and solve the Examination

Timetabling Problem (ETP) with a first solution procedure that is based on scatter

search. Also we solve this problem with existing methods such as Simulated

Annealing and Tabu search and compare results of them with each other. Finally we

apply new Scatter Search algorithm on Carter�s datasets and conclude that our

algorithm works better than other published results.

Keywords: Timetabling, Scatter Search, Simulated Annealing, Tabu search

1. Introduction:

 The Examination Timetabling problem regards the scheduling for the exams of a

set of university courses, avoiding overlap of exams of courses having common

students, and spreading the exams for the students as much as possible.

 The process of finding a period for each exam so that no two conflict has been

shown to be equivalent to assigning colours to vertices in graph so that adjacent

vertices always have different colours [1]. This in turn has been proved to lie in the

set of NP_Complete problems [2,3,4], which means that carrying out an exhaustive

search for the timetable is not possible in a reasonable time.

id662687 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

mailto:com.@yahoonajiazimi,alarimajids

 - � -��

 There are so many heuristic methods which has been offered for solving this

problem based on graph colouring or metaheuristic methods such as Simulated

Annealing, Tabu Search, ect, that has been applied to solve the problem [5-18].

 We approach this problem with a solution procedure based on the evolutionary

approach called Scatter Search (SS). Recent studies have demonstrated the practical

advantages of this approach for solving a diverse array of optimization problems from

both classical and real world settings. A good overview of SS is provided by Laguna,

Glover, and Marti [19,20].

 To continue we explain Examination Timetabling problem and modification of

scatter search then we try to describe how to solve this problem by using modification

of scatter search algorithm. Finally we�ll distinguish the results, which have been

concluded of this algorithm in compare of another metaheuristics.

2. Common details in all methods

 In this section we explain the common details that are used in all methods.

2.1. Problem Description

 Given are a set of examinations, a set of (contiguous) time slots, a set of students

and a set of student enrolments to examinations. The problem is to assign

examinations to time slots satisfying a set of constraints [14].

 Many different constraint types have been proposed in the literature. In this work,

we consider the version proposed by Carter et al. [6], which is based on the so�called

first-order and second-order conflicts.

 First-order conflicts arise when a student has to take two exams scheduled in the

same time slot, while second order ones emerge when a student has to take two exams

in time slot �close� to each other.

 Second�order conflicts are treated as soft constraints, thus they are included into the

objective function f that measure the quality of the solution; conversely, first�order

conflicts are modelled as hard constraints.

2.2. The Objective Function

 Assuming that consecutive time slots lie one unit apart, we define f assigning a

proximity cost w(i) when ever a student has to attend two exams scheduled within i

 - � -��

time slots. The cost of each conflict is thus multiplied by the number of students

involved in both examinations.

 As it is mentioned in [14], the cost decrease logarithmically from 16 to 1 for soft

constraints as follows: w(1) =16, w(2)=8, w(3)=4, w(4)=2, w(5)=1 and the cost for

violation of hard constraint is 1000.

 The objective function (cost function) is then normalized based on the total number

of students. This way we obtain a measure of the number of violations �per student�,

which allows us to compare results for instances of different size. So we have the

below cost function,

 F=(f1+f2)/M

    












  otherwise

ttif
jtit

jiwwherejiwCf ji

N

i

N

ij
ij

0

51
5

2,,
1

1 1
1

    


 




  otherwise

ttif
jiwwherejiwCf ji

N

i

N

ij
ij 0

1000
,,

1

1 1
2

 Where N and M indicate the number of exams and students consecutively and C(i,j)

shows the number of common students between both exam i and exam j, also ti is the

period of exam i (for i=1,�,N).

 There are other constraints like saloon capacity in the real case that we don�t

consider them in order to make it easier and because we can compare our results with

result of published papers on Carter�s data sets [6,11,14].

2.3. Solution representation

 We show every solution in all algorithms with one vector, with the length of the

vector equal to the number of exams. Each elements of this vector shows the assigned

period for each exam. Periods and exams are numbered sequentially.

 1 2 3 4 N-2 N-1 N

 20 3 18 5 � � � 7 11 6

 - � -��

2.4. Neighbour solution

 A neighbour solution may not be a feasible solution necessarily (as initial

solutions), and it is obtained by random alteration of one element of the solution

vector. We also considered the neighbour, which is obtained from exchange of two

exams of solution with each other. We didn�t get any significant difference between

final solutions with two definitions of neighbourhood.

3. Modification of Scatter Search and Solution Approach:

 The solution approach that we have developed for our Examination Timetabling

problem consists of adaptation of Scatter Search.

 Scatter Search (SS) is a novel instance of evolutionary methods and embodies

principles and strategies that are still not emulated by other evolutionary methods, that

proves advantageous for solving a variety of complex optimization problems [19,20].

 In this algorithm at first Diversification Generation Method constructs a set of

solutions, then these solutions are improved by Improvement Method. In the next step

Reference Set is constructed based on improved and also diverse solutions. Then in a

loop, solutions are selected for combination by Subset Generation Method and

generate the new solutions by Solution Combination Method. The new solutions are

improved by same Improvement method and this loop continues until we can�t obtain

new solution. In this step, the algorithm reinitialized the initial set by generate the

New Set and run this loop for predefined times.

3.1.What are our modifications for SS?

 In the general case of Scatter Search, at first a set of solutions is constructed

completely and when this process is finished then in a next step these solutions are

improved by a heuristic method. In fact these two steps are completely independent.

 But it seems that if we can use the information of best current solution in process of

constructing the next one, we will get a better solution. That �s the first and main

modification of SS in our algorithm.

 In fact in our modification, at first a solution is constructed and improved

consecutively. Then the next solution produced based on the information of the best

solution, which has been obtained through previous steps. This new solution is

improved and the best current solution is updated. So the construction and

improvement method are applied sequent for each solution and we use the

 - � -��

information of improvement step in construction of next solution. This process is

repeated for |initial set| (cardinal of initial set) times.

 Also in the general case of SS, there is one Improvement Method that is applied

two times: after construction of initial solutions and after generation of new solutions

from Solution Combination Method.

 But as a second modification, we use two different heuristic methods for these

steps. As we said before we apply Improvement Method after construction of each

solution and we use the information of the best solution to generate the next one. So if

we use the heuristic method, which needs a long time for execution, it will increase

the amount of time for complete run of this step and it is no good for us.

 Besides, if we use the strong heuristic when we generate the new solutions, we can

reach the better solutions. Therefore it seems that�s better to use two different

heuristics for these two steps: improvement after construction of each initial solutions

and improvement after generation of new solutions by Solution Combination Method.

 So we use the simple descent algorithm for improving the initial solution and Tabu

Search method is applied to improve the new solutions, which are obtained by

Solution Combination Method.

 Also in general case of SS there is one method (which is named Diversification

Generation Method) to construct solutions in two steps: generation of initial solutions

and to reinitialize of algorithm with New Set of solutions when we can�t reach any

new solution in internal loop.

 Since our generation method for initial solutions depends to information of best

solution and it will get the new solution very similar to this one, we can�t reach

enough diversification in new set by applying this method. So it is better to use

another generation method to give diverse solutions in this step, which is need for

climbing up from local optimum point. In Second Generation Method we apply

frequency memory and the probability of selecting each period is inverse of frequency

of this and neighbour periods in solution.

 To continue we describe several parts of this algorithm and explain how to apply

these three modifications.

 Because we apply diversification generation and improvement methods

consecutively for each initial solution and because of affections of these steps on each

other, we explain these two steps in one section with name Mixed Diversification and

First Improvement Method.

 - � -��

3.2. Mixed Diversification and First Improvement Method:

 In our modification of SS, The construction process of initial solutions is applied in

an artificial manner, so that in selection of period for each exam, increased amount of

cost is considered and a period will selected that causes minimum increasement.

 Also the information of the best solution is considered and finally a random period

(timeslot) is selected according to the two factors that are mentioned.

 To generate the initial solutions we do as follows:

 At first we assign the same initial values for each pair (exam,timeslot) and we call

it �credit �. Suppose that there are k solutions, which have been constructed, and now

we want to produce k+1 Th solution.

 In the beginning, the best solution is considered and then the credit of each pair

(exam,timeslot) is updated. Credits of the pairs that have been appeared in the best

solution, is increased and the credit of others is decreased by this formula:

0.2. (,) 1 (,)
(,)

0.2. (,)

credit e t if e t is in the best solution
credit e t

credit e t otherwise


 


 (3.1.1)

 Now we consider the exams one by one and assign to each of them one period

(timeslot). The selection probability of each period is based on the increasing amount

of cost and credit value of pairs as a followed formula:

((,)) .((,))
((,), (,))(,)

((,)) .((,))

credit e t c e t
p credit e t c e te t

credit e c e
T



 






 (3.1.2)

That c(e,t) is inverse of cost and achieved from:

1.0
(,)

1.0 (,)
c e t

V e t



 (3.1.3)

And V(e,t) shows the increased amount of cost by adding (e,t) .T is a set of timeslots

and the coefficients  , indicate the effect of each factor.

 For selecting a timeslot, at first a random number of [0,1] is selected and if this

number is equal to or less than selection probability of period, (that has been reached

from formula.3.1.2) this period is assigned to the exam and else another random

timeslot is selected. This process continues until a period is assigned to this exam.

When a complete solution is constructed, First Improvement Method improves it and

 - � -��

the best solution is updated. If this improved solution is better than the best current

solution, this solution is considered as a best solution instead of it.

 The First Improvement Method

 First Improvement method is applied after construction of each initial solution. For

this aim one exam is selected randomly and its period exchange to another random

period and then the cost of new solution is computed.

 If new solution has less cost, it is considered instead of previous one and else this

process is going to be continuing until the first better solution is reached. Then the

best solution, which is considered in construction process, is updated and the credits

are changed regards to it (as it is explained above).

3.3. Reference Set Update Method:

 The reference set, Refset, is a collection of both high quality and diverse solutions

that are used to generate new solutions by way of applying the solution combination

method [19,20]. Specifically, The reference set consists of the union of two subsets,

Refset1 and Refset2, of size b1 and b2, respectively. That is, | Refset | = b = b1+b2. The

construction of the initial reference set starts with the selection of the best b1 solutions

from the set of initial solutions, which is named P. These solutions are added to Refset

and deleted from P. For each improved solution in P-Refset, the minimum of

Euclidian distances to the solutions in Refset is computed. Then the solution with the

maximum of these minimum distances is selected. This solution is added to Refset and

deleted from P and the minimum distances are updated. This process is repeated b2

times. The resulting reference set has b1 high quality solutions and b2 diverse

solutions.

 To explain the Euclidian distance, for example we consider one solution as a

current solution and another as a solution of Refset. The Euclidian distance between

these two solutions are computed as follows:

X = current solution

20 8 13 � � � 7 32

Y = solution of Refset

12 30 10 � � � 7 16

D(X,Y) =          22222 163277...10133081220 

 - � -��

 After the initial reference set is constructed, the Solution Combination Method is

applied to the subsets generated as outlined in the following section. The reference set

is dynamically updated during the application of the Solution Combination Method. A

newly generated solution may become a number of the reference set if either one of

the following conditions is satisfied.

1. The new solution has a better objective function value than the solution with

the worst objective value in Refset1.

2. The new solution has a better dmin value than the solution with the worst dmin

value in Refset2.

 In both cases, the new solution replaces the worst and the ranking is updated to

identify the new worst solution in terms of either quality or diversity.

 The reference set is also generated when a combination method is incapable of

creating solutions that can be admitted to Refset according to the rules outlined above.

 The regeneration consist of keeping Refset1 intact and using the Second Generation

Method to construct a new diverse subset Refset2. As we mentioned before, in general

case of SS in this step the same Diversification Generation Method is used but in our

modification, we use another method because of reasoning that are mentioned in

section 3.1. We will express this method in section 3.7.

3.4. Subset Generation Method:

 This method consists of generating the subsets that will be used for creating new

solutions with the Solution Combination Method [19,20].

 We limit our scope to considering five solutions. Four solutions of high quality and

one of diverse solutions of Refset are selected. Then we consider all pair wise of

them.

3.5. Solution Combination Method:

 This method consists of generating new solutions from the combination of two

existing solutions.

 When we select two solutions to combine, at first we consider all periods one by

one and then choose one of two solutions randomly. Combined solution will consist

of all the exams that have been appeared in this period of this selected solution. Then

 - � -��

another period is considered and this process continues until all periods are

considered.

3.6. The Second Improvement method:

 We use Tabu Search algorithm in this part on the new solutions, which are given

from Solution Combination Method (see section 3.5) and it is terminated before its

convergence. Stopping condition of TS is a little limited time and the best improving

solution is considered as an improved solution. This part is used in internal loop of

Scatter Search algorithm. The details of this algorithm are as same as section 6.

3.7.The second Generation Method

 When a combination method is incapable of creating solutions that can be admitted

to Refset according to the rules outlined in section 3.3, the Refset is regenerated.

The regeneration consists of keeping Refset1 intact and constructs a new diverse

subset Refset2. In general case of SS in this step the same Diversification Generation

Method is used for generation of Refset2 but in our modification, we use another

method to achieve diverse solutions because of reasoning that are mentioned in

section 3.1.

 This generation method employs controlled randomisation and frequency memory

to generate a set of diverse solutions. We divide the range of N periods into [N/5]

sub_ranges (this is may differ for instances with different size). Then a solution is

constructed in two steps. First a sub_range is randomly selected. The probability of

selecting a sub_range is inversely proportional to its frequency count. Then a period is

randomly generated within the selected sub_range. The number of times sub_range j

has been chosen to assign a period for exam i is accumulated in freq(i,j). This

diversification generation method focuses on diversification and not on the quality of

solutions. Note that the best b1 solutions are entered in Refset intact and because of

this we don�t consider the quality of new solutions and we just consider

diversification.

4. An outline of the procedure:

 This outline is a general algorithm of SS that is mentioned in [19,20] but with our

modifications and uses the following parameters:

PSize = the size of the set of initial solutions, which are generated by the Mixed

Diversification and First Improvement Method.

 - �� -��

b= the size of the Reference set .

b1= the size of the high quality subset (Refset1).

b2= the size of the diverse subset (Refset2).

MaxIter = maximum number of iterations.

 The procedure consist of the steps in the outline of Table.1, where P denotes the set

of solutions generated with the Mixed Diversification and First Improvement Method

and Refset is the set of solutions in the reference set. Also New Set is the set of new

solutions that are constructed with Second Generation Method.

Table 1. Modification of Scatter Search for Examination timetabling problem

�
�

P 1. Start with

 Use the Mixed Diversification and First Improvement method to construct

 the initial solution x.

 Repeat this step Until | P | = PSize.

 2. Order the solutions in P according to their objective function value (where

 the best overall solution is first on the list).

 For (Iter=1 to MaxIter)

RefSet2 from P, with | RefSet | = b,  3. Build RefSet=RefSet1

 | RefSet1| = b1 and | Refset2 | = b2. Take the first b1 solutions in P and

 add them to RefSet1. For each solution x in P-RefSet and y in RefSet

 calculate a measure of distance d(x,y). Select the

  min Re
() min (,)

y fSet
d x d x y


 that maximizes dmin(x) , where x solution

 to RefSet2, until | RefSet2 | = b2. Make NewElements=TRUEx add

 While (NewElements) do

 4. Calculate the number of subsets (MaxSubset) that include at least one

 new element. Make NewElements = FALSE.

 For (SubsetCounter = 1, ... , Maxsubset) do

 5. Generate the next subset "s" from RefSet with the Subset

 Generation Method.

 6. Apply the Solution Combination Method to" s" to obtain one new

 solutions xs.

 - �� -��

 7. Apply the Second Improvement Method (TS) to xs , to obtain the

. *
sx improved solution

 is*
sx is not in RefSet and the objective function value of *

sx If (

 better than the objective function value of the worst element in

 RefSet1) then

 To RefSet1 and delete the worst element *
sx 8. Add

 Currently in RefSet1. (The worst element is the solution

 With worst objective value.)

 9. Make NewElements = TRUE.

 Else

) is larger than dmin(x) *
sx is not in RefSet2 and dmin(

*
sx If (

 for a solution x in RefSet2) then

 to RefSet2 and delete the worst *
sx 10 . Add

 element currently in RefSet2. (The worst element is the

 solution x with the smallest dmin(x) value.)

 11. Make NewElements = TRUE.

 End If

 End If

 End For

 End While

 If (Iter < MaxIter) then

 12. Build the New Set using the Second Generation method.

 (Initialize the generation process with the solutions currently in RefSet1

 That is, the first b1 solutions in the new P are the best b1 solutions in

 the current RefSet.)

 End If

 End For

5. Simulated Annealing:

 ��The principle of the SA metaheuristic is deduced from the physical annealing

process of solids. Kirckpatrick et al. [21] and Cerny [22] proposed the use of SA for

combinatorial problems. Their work is based on the research of Metropolis et al. [23]

 - �� -��

in the field of Statistical Mechanics. For an overview of the research and applications

of SA, the reader is referred to Vanlaarhoven and Aarts [24], Aarts and Korst [25],

Collins et al. [26] and Eglese [27].

 The representation of solution, definition of cost function and neighbour solution

are defined in section 2 and the initial solution is produced completely random.

 As far as our implementation is concerned, the following choices have been made.

In order to determine the value of the initial temperature, Tbegin is computed by

solving the expression:

 beginTC
eaP

/


and hence

aP

C
beginT

ln


 (1)

 Here C represents the average deterioration value, which is computed as the

cumulative value of the values of all worsening moves possible from the initial

solution, divided by the number of moves, which cause a deterioration of the

objective function value. Parameter Pa represents the acceptance fraction, i.e. the ratio

of the accepted to the total number of generated moves.

 The cooling function we use for the reduction of the temperature is the simple

geometric function.

The temperature at iteration t, Tt, is obtained from the temperature of the previous

iteration as follows:

 Tt=R.Tt-1 (2)

Here, R represents the cooling rate and we consider it equal to 0.99.

5.1. Algorithm

A general description of SA is given in Table 2.

 - �� -��

Table 2: The General Simulated annealing technique

6. Tabu Search

 Tabu search was conceived by Glover [28]. TS is base on the principles of

intelligent problem solving.

 The representation of solution, definition of cost function and neighbour solution

are defined in section 2 and the initial solution is produced completely random.

 Each time a move is performed and linked the couple (exam, period) to tabu list

that includes inhibited moves. It means, period of this exam can�t change until

| tabu list | (length of tabu list) times. From a given solution not all neighbours can

usually be reached. A new candidate move in fact brings the solution to its best

neighbour, but if the move is present in the tabu list, it is accepted only if it decreases

the objective function value below the aspiration level. Aspiration level is minimum

of cost function so far achieved. This process is repeated until a stopping criterion is

reached. The stopping criterion of this algorithm is reaching to the limited number of

iteration between current iteration and iteration that best solution is reached.

 A good overview of TS and its applications is provided by Glover, Laguna and

Rosing [29,30].

Select an initial state Si
Select an initial temperature T > 0;
Set temperature change counter t = 0;
Repeat

Set repetition Counter n = 0;
Repeat

Generate state j, a neighbour of i;
Calculate);i(f)j(f 
if 0 Then ;j:i 
else if random (0,1) < exp( /T) Then i := j;
n :=n+1;

Until n=N(t);
 t := t+1;
T := T(t);

Until Stopping Criterion true.

 - �� -��

6.1. Algorithm

A general description of TS is given in Table 3.

Table 3: The general tabu search technique

�
Initialization

 s: = initial solution in X;

 nbiter: = 0;

 (* Current iteration *)

 bestiter: = 0;

 (* iteration when the best solution has been found *)

 bestsol: = s;

 (* Best solution *)

 T: =  ; (* T is Tabu list *)

 Initialize the aspiration function A;

While (f (s) > f*) and (nbiter-bestiter < nbmax) do

 nbiter: = nbiter + 1;

 Generate a set V* of solutions si in N(s) which are either

 not tabu or such that A(f(s)) >= f (si) ;

 Choose a solution s* minimizing f over V*;

 Update the aspiration function A and the tabu list T;

 If f(s*) < f(bestsol) then

 bestsol: = s*; bestiter: = nbiter ;

��� s: = s* ;

End while

��

7. Datasets:

 We produce several random problems in different size in order to apply these

algorithms for different ones. In these problems the number of exams averts from 40

to 200 and respect to the number of exams, the number of students and periods has

been determined. The elements of conflict matrix of student Aij (that shows the

 - �� -��

common students in both i and j exams) have been produced randomly. You can see

the information about these problems in the Table 4.

Table 4: Characteristics of Data Sets

8. Metaheuristic analysis

 Due to the fact that the stopping criterions of the metaheuristics are not defined

samely, a simple comparison of only the final solution values of the three

metaheuristics would not be appropriate.

 Besides, the computing time of heuristics highly depends on the value assigned to

the parameters. Also it is difficult to estimate the processing time of heuristics.

Moreover, the probability of finding a better final solution increases with the run time.

Therefore a simple comparison of the final solution of the three metaheuristics

without taking into account the run time is not appropriate.

 An important analysis tool for the dynamic heuristic analysis is the graphical

representation of the path of the objective function value of each heuristic versus

computing time. Example is given in Fig.1.

Data set Exams Timeslots Students

1 40 15 800

2 60 15 1400

3 80 20 1900

4 100 24 2850

5 120 20 3600

6 140 24 4552

7 150 25 4800

8 160 32 5226

9 180 28 6540

10 200 30 7000

 - �� -��

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

Fig.1. Example of the path of the objective function value versus computing time for
Simulated Annealing, Tabu Search and Scatter Search for average solutions for all
instances.

 An alternative for comparing the improvement heuristics dynamically is required.

The specific feature of the dynamic analysis is that intermediary solutions of

metaheuristics at various time points are compared. We considered three time points

and report the minimum value of cost for each algorithm at these times (which are

named minimum 1,2,3).

In Table .5 the symbol �*� indicates which heuristic attains its minimal value after the

given run time. The best solutions of the three metaheuristics at each time point are

printed in bold face. The column at the right of each cell contains the relative

difference with respect to the best solution at that time point and this formula:

 
solutionbestoft

solutionbestoftsolutionoft
solutiondifferencerelative

cos

coscos 


 In column 1, each Si is consisting to instance that we generated and explained in

section 7 and in column 3 we report the cost of initial solution.

SA�

TS�

SS

 - �� -��

 The same computer has been used for all experiments and our computer is Pentium

III, 600MHZ(half cash), under IBM and the program is written in MATLAB software

language under Microsoft Windows 98.

Table 5. Heuristic analysis of SA, TS and SS

Problem Initial Minimum

1

 Minimum

2

 Minimum

3

S1 Time 50 140 180

 SA 938.5788 881.9550 0.48 813.7112 0.90 765.5462* 1.09

 TS 877.0063 732.1413 0.23 532.6425* 0.24 532.6425 0.45

 SS 774.4750 594.1800 428.7437 366.1112*

S2 Time 30 120 480

 SA 1116.4 1100.2 0.03 1038.1 0.14 976.0064* 0.30

 TS 1197.5 1066.8 912.3136 835.0114* 0.12

 SS 1242.4 1225.6 0.15 969.4100 0.06 747.4143*

S3 Time 60 300 540

 SA 1217.3 1217.3 0.04 1150.3 0.20 1059.2* 0.17

 TS 1365.0 1802.8 0.54 956.0505 905.3221*

 SS 1175.8 1170.9 1058.5 0.10 971.1268* 0.07

S4 Time 60 300 540

 SA 940.2081 723.8502 0.07 697.2733 0.14 676.2716* 0.15

 TS 750.8274 697.1719 0.03 646.0586 0.06 585.7909*

 SS 690.7649 674.6260 611.0365 595.9551* 0.02

S5 Time 100 300 540

 SA 1015.2 994.5783 0.11 979.9100* 0.10 979.9100 0.13

 TS 1125.5 1001.8 0.12 952.2086 0.07 915.0758* 0.06

 SS 899.8344 895.5561 888.5972 863.5269*

S6 Time 300 600 960

 SA 1456.3 1417.6 0.12 1417.6 0.17 1379.2* 0.14

 TS 1468.8 1390.4 0.10 1207.8* 1207.8

 SS 1360.8 1268.0 1252.0 0.04 1235.9* 0.02

S7 Time 350 700 1020

 SA 1739.3 1494.2 0.11 1494.2 0.13 1355.9* 0.06

 - �� -��

 TS 1736.4 1434.1 0.07 1335.0 0.01 1273.5*

 SS 1352.2 1340.8 1318.4 1308.0* 0.03

S8 Time 380 800 1200

 SA 1266.3 1147.4 0.04 1143.9 0.04 1124.9* 0.06

 TS 1304.3 1258.5 0.14 1147.4 0.04 1068.3* 0.01

 SS 1136.1 1100.5 1100.5 1061.9*

S9 Time 470 670 1200

 SA 1507.6 1389.5* 0.05 1389.5 0.05 1389.5 0.07

 TS 1546.0 1376.0 0.04 1347.4 0.04 1299.3* 0.00

 SS 1322.1 1321.4 1321.4 1295.2*

S10 Time 300 640 1200

 SA 1573.2 1557.7 0.08 1557.7 0.09 1441.4* 0.08

 TS 1624.6 1530.6 0.06 1427.4 1334.7*

 SS 1440.6 1438.2* 1438.2 0.01 1438.2 0.11

 As it is shown in the Table.5_6, we gain the best solution from SS in different

times. SS is in first grade and then TS after that SA has the third grade.

Table 6. Ability of metaheuristics to find the best solution

Algorithm SA TS SS

Ability of Alg. to find the best solution % 0 %33.3 %66.6

The values that have been shown in above table achieved from following formula:

100
int

lgint


spoallofnumberThe

solutionbestthefoundbeenhasorithmathatspoofnumberThe

 Since the initial solution of SA and TS are produced completely random and they

are different and this effects on quality of the best solution, which is reached on each

time point, for fair comparison we calculate amount of cost reduction for these

algorithms. The difference between cost of initial and final solution (minimum 3) for

each data set is given in table 7. In this way we can compare them fairly.

 - �� -��

Table 7.Values of cost reduction in each data set for SA and TS

Algorithm/test

problem

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

SA 173.0 140.3 158.1 263.9 35.29 77.1 383.4 141.4 118.1 131.8

TS 344.3 362.4 459.6 165.0 210.42 261.0 462.9 236.0 246.7 289.9

 As it is shown in Table.7 TS has maximum cost reduction in %90 cases and it

worked better than SA. This result is consisting with the result of Tables 5,6.

9. Comparison with published Results

 In previous section it is shown that Modified Scatter Search is better than SA and

TS. Now this best algorithm is compared with other published results on the same

problem and Carter�s test bed [6]. We consider Sequencing Heuristics with

backtracking (SH) [6], Tabu Search with a variable tabu list (TS) [14] and Degraded

Ceiling algorithm (DC) [11]. These results are shown in Table 8. The best results are

presented in bold.

 - �� -��

Table 8.Published and our results for proximity cost of ETP

Published Results

(Best Cost/ Time for best)

Modification

of Scatter Search

Algorithm

Data

Sets

Exams

Students

Time

slots

SH Time TS Time DC Time Best

cost

Time

for

best

EAR-

F-83

190 1125 24 36.4 24.7 45.7 4.6 35.4 134 41.6693 17.2

HEC-

S-92

81 2823 18 10.8 7.4 12.4 3.7 10.8 278 10.4623 388.6

KFU-

S-93

461 5349 20 14.0 120.2 18.0 12.3 13.7 729 17.8267 403.7

LSE-

F-91

381 2726 18 10.5 48.0 15.5 20.3 10.4 1030 14.2913 370.6

RYE-

S-93

486 1483 23 7.3 507.2 __ __ 8.9 752 7.1220 190.0

STA-

F-83

139 611 13 161.5 5.7 160.8 3.9 159.1 157 95.3502 18.1

TRE-

S-92

261 4360 23 9.6 107.4 10.0 16.2 8.3 392 11.5229 187.9

UTE-

S-92

184 2750 10 25.8 9.1 29.0 42.4 25.7 236 18.0058 296.6

YOR-

F-83

181 941 21 41.7 271.4 41.0 25.2 36.7 546 34.8321 165.0

10. Conclusions:

 As it is shown in Tables 5_6, SS works better than TS and SA. One of its reasoning

refers to our modifications; in both TS and SA, one solution is constructed randomly

and then improved. In those algorithms, neighbour solution may have no similarity to

current one and just the cost of it, is less than current solution. But in our modification

of SS the solutions are not constructed randomly. While constructing each solution,

amount of increasing cost is considered, and also we try to construct the solution,

which is similar to the best solution by justifying the amount of the credits of each

pair (exam,period). As we mentioned before, the information of best solution is

 - �� -��

considered and the new solution is generated based on it. So we get each new

solutions of initial set better than previous ones.

 Also we use a strong searching engine _TS _ as the second improvement method of

SS, which improved the solution well. Also existence of diverse solutions in Refset

inhibits the fast convergence of the algorithm and cause to have better solutions in

solution space.

 In addition we use two different generation methods in two steps of SS: generation

of initial solutions and generation of new solutions after we can�t obtain any new

solution regards to mentioned conditions. We construct initial solutions in artificial

manner and use the information of best solution in generation of new solution in

Mixed Diversification and First Improvement Method. In this way we generate high

quality initial solutions and this effects on final solutions. As it is shown in Table.5,

SS starts with the better initial solution in 90% of problems. So regards to Table.6 we

have better solutions from SS in 66% cases. Also we use Second Generation Method

when we are at local optimum point and we generate diverse solutions by this method.

So we clime up from these points and we get better solutions.

 Using Ts as a part of SS instead of applying it after SS sequent has advantages for

us. If we use SS and then apply TS after it, TS may converge in a local optimum, but

if we apply TS as a part of SS, we can inhibit from fast convergence. Because of in

our modification of SS, we use Second Generation Method to regenerate the Refset

with diverse solutions for continuing the search process and climb up from local

optimum points. So in this way we can obtain better solutions.

 In compare of real datasets, as it is shown in Table.8 SS works better than other

published algorithms in five cases and it is hopeful for us to apply it in real problems.

 The computing times are incomparable due to the use of different hardware. But we

present the computing time for best results only to show that the given solutions were

produced in quite acceptable time.

Acknowledgment

 I offer my thanks to Dr.Ibrahim Osman for his good comments to this paper.

References:

[1] Welsh D.J.A and Powell M.B, An Upper bound for the Chromatic Number of a

 - �� -��

 Graph and Its Application to Timetabling Problems, Comp. Jrnl 10 (1967) 85-86 .

[2] Karp R.M , Reducibility among combinatorial Problems, In Complexity of

 computer computations, Plenum Press, New York,1972 .

[3] D. de Werra , The combinatorics of timetabling, European Journal of Operational

 Research 96(1997)504-513 .

[4] A.S. Asratian and D. de Werra , A generalized class_teacher model for some

 timetabling problems , European Journal of Operational Research 143(2002)

 531-542

[5] Michael W. Carter, A survey of practical applications of Examination Timetabling

 Algorithms, Operation Research 34(2)(1986)193-202 .

[6] Michael W.Carter, Gilbert Laporte, Sau Yan Lee, Examination Timetabling :

 Algorithmic Strategies and Applications, Journal of the Operational Research

 Society 47(1996) 373-383 .

[7] Mirjana Cangalovic,Jan A.M. Schreuder, Exact Colouring algorithm for weighted

 graphs applied to timetabling problems with lectures of different lengths,

 European Journal of Operational Research 51(1991)248-258 .

 [8] Luis F. Paquete, Carlos M. Fonseca , A Study of Examination Timetabling with

 Multiobjective Evolutionary Algorithms, MIC 2001- 4 th metaheuristic

 International Conference. Porto, Portugal, July 16-20, 2001 .

 [9] O.Rossi-Doria, Ch. Blum, J. Knowles, M.Sampels, K. Socha, B. Paechter, A

 Local Search for the Timetabling Problem, Technical Report

 No.TR/IRIDIA/2002-16, July 2002 .

 [10] Edmund Burke, Yuri Bykov, James Newall and Sanja Petrovic, A Time-

 Predefined Local Search Approach to Exam Timetabling Problems, Computer

 Science Technical Report No. NOTTCS-TR-2001-6 .

 [11] E.K. Burke, Y. Bykov, J.P. Newall and S.Petrovic, A New Local Search

 Approach with Execution Time as an Input Parameter, Computer Science

 Technical Report No. NOTTCS-TR-2002-3 .

 [12] Jonathan M. Thompson, Kathryn A. Dowsland, A Robust Simulated Annealing

 Based Examination Timetabling System, Computers and Operations Researchs

 25(7/8)(1998)637-648 .

 [13] A. Hertz, Tabu search for large scale timetabling problems, European Journal of

 Operational Research 54(1991)39_47 .

 [14] Luca Di Gaspero and Andrea Schaerf, Tabu Search Techniques for Examination

 - �� -��

 Timetabling, Third International Conference Patat 2000 , Lecture Notes in

 Computer Science 2079(2000)p.104-117 .

[15] J Wood, D Whitaker, Student centred school timetabling, Journal of the

 Operational Research Society 49(1998)1146-1152 .

 [16] Victor A. Bardadym, Computer-Aided School and University Timetabling:The

 New Wave, Lecture Notes in Computer Science 1153(1996) 22-45 .

 [17] Safaai Deris, Sigeru Omatu, Hiroshi Ohta, Timetable planning using the

 constraint-based reasoning, Computer & Operations Research 27(2000)819-840 .

 [18] Edmund Kieran Burke, Sanja Petrovic, Recent research directions in automated

 timetabling, European Journal of Operational Research 140(2002)266-280 .

 [19] Manuel Laguna,Scatter Search,to appear in handbook of applied

 optimization,P.M.Pardalos and M.G.C.Resende(Eds),Oxford Academic

 Press(2000).

 [20] Fred Glover,Manuel Laguna and Rafael Marti , Scatter Search ,to appear in

 Theory and Applications of Evolutionary Computation : Recent Trends, A .

 Ghosh and S.Tsutsui(Eds),Springer-Verlag(1999) .

 [21] Kirckpatric S,Gellat Jr. C,Vecchi M,Optimization by simulated annealing,

 Science 220(1983)671-680 .

 [22] Cerny V, A Thermodynamical approach to the travelling salseman problem : an

 efficient simulation algorithm, Journal of Optimization Theory Application

 45(1985)41-51 .

 [23] Metropolis N, Rosenbluth A, Rosenbluth M, Teller A,Teller E, Equation of state

 calculations by fast computing machines, Journal of Chemical Physics

 21(1953)1087-1092 .

 [24] Van Laarhoven P, Aarts E, Simulated Annealing :Theory and Practic,

 Dordrecht:Kluwer Academic Publishers, The Netherlands, 1987 .

 [25] Aarts E. Korst J, Simulated annealing and Boltzmann machines, Chichester:

 Wiley,1989 .

 [26] Collins N, Eglese R, Golden B, Simulated annealing an annotated bibliography,

 American Journal of Mathematical and Management Sciences 8(1988)209-307 .

 [27] R.W.Eglese,Simulated Annealing : A tool for Operational Research , European

 Journal of Operational Research 46(1990)271-281.

 [28] Glover F, The general employee scheduling problem: an integration of

 management science and artificial intelligence, Computers and Operations

 - �� -��

 Research 15(1986)563-593 .

 [29] Glover F., Laguna M, Tabu search, Kluwer academic Publishers, 1997 .

 [30] K.E.Rosing, C.S.ReVelle, E.Rolland, , D.A.Schilling, J.R.Current, Heuristic

 concentration and Tabu Search : A head to head comparison, European Journal

 of Operational Research 104(1998)93-99.

 - �� -��

