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Due to the nonlocal Euler—Bernoulli elastic beam theory, the effects of rippling deformation on
the bending modulus and the structural bending instability of a single-walled carbon nanotube
(SWCNT) are investigated. The nonlinear vibrational model of a cantilevered SWCNT is solved
using the perturbation method of multiscales. The nonlinear resonant frequency and the as-
sociated effective bending modulus of the carbon nanotube (CNT) are derived analytically. The
effects of the nonlocal parameter, the external harmonic force, and the diameter-to-length ratio
on the effective bending modulus are discussed widely. Moreover, the model can predict special
kind of structural instability due to the rippling deformation called rippling instability. The
results show that the nonlocal theory forecasts larger values for the effective bending modulus
compared with the classical beam theory, especially for the stubby CNTs. Meanwhile, the
rippling instability threshold will move to the higher values of the diameter-to-length ratio
based on the nonlocal beam theory comparing with the local ones.
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1. Introduction

Since their initial discovery by Iijima (1991), carbon
nanotubes (CNTs) have come under ever-increasing
scientific scrutiny because they possess excellent
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mechanical properties, such as extremely high
strength, stiffness, and resilience. These, together
with other distinctive physical properties, result
in many prospective applications, such as strong,


http://dx.doi.org/10.1142/S0219581X11008216

448 1. Mehdipour et al.

light and high toughness fibers for nanocomposite
structures, parts of nanodevices, hydrogen storage,
micromechanical oscillators, etc.' > The most indi-
vidual mechanical property of CN'Ts is high stiffness
and high Young’s modulus. There are several
studies to predict Young’s modulus of CNTs
experimentally. Treacy et al.’ obtained Young’s
modulus of 1.8TPa (as an average value) for
multiwalled nanotubes, while Krishnan et al”
obtained it for about 1.25—0.35/+0.45TPa for
single-walled nanotubes (SWCNTs). Young’s
modulus of 1.28 4+ 0.5 TPa also has been calculated
for multiwalled carbon nanotubes by Wong et al.®
experimentally. In all previous researches, Young’s
modulus of CNTs has been predicted to be more
than 1Tpa, but, when CNTs are under bending
deformation and pursuant to high flexibility of
CNTs, the rippling configuration of the SWCNT
affects the stiffness of CNTs directly and effectively.
Poncharal et al.” measured Young’s modulus E of
a multiwalled carbon nanotubes and found the
calculated E decreasing from about 1 to 0.1 TPa
with the diameter D increasing from 8 to 40nm.
They showed that the appearance of rippling
deformation in bending mode of CNTs caused the
stiffness to decrease dramatically, thus, the linear
elastic theory will not predict the mechanical beha-
vior of CNTs with rippling deformation. A finite
element approach has been used to estimate the
nonlinear relationship between the bending moment
against the curvature of a bent SWCNT with rippling
deformation'”*! and the effective elastic modulus has
been calculated using nonlinear analysis due to the
local elastic Euler—Bernoulli beam theory.

In the present study, the nonlocal Euler—
Bernoulli beam theory is applied to investigate the
effective resonant frequency and the corresponding
bending modulus of a cantilevered SWCNT with
rippling deformation. Moreover, the nonlinear
model can predict the structural instability of CNT's
with rippling deformation for bending mode, which
is called the rippling instability. The effects of the
nonlocal parameter, the excitation load-to-damping
ratio, and the diameter-to-length ratio on the non-
linear frequency, the effective bending modulus of
the SWCNT, and the rippling instability threshold
are widely discussed.

2. Nonlocal Elastic Beam Theory

The governing equation of motion for forced vibra-
tion of a SWCNT with the nonlocal Euler—Bernoulli

beam theory can be expressed'” as

M"(x,t) + 2pi(z,t)

0? o M(z,1)
+ pAw w(zx,t) — (epa) =7
= F(z,t), (1a)

F(z,t) = G(z) cos(&t) , (1b)

where M(x,t) denotes the bending moment, w(z, t)
denotes the beam deflection function, p is mass
density, FI is bending rigidity, A is cross-sectional
area of SWCNT, and p is the damping coefficient.
epa is a nonlocal parameter revealing the nanoscale
effect on the response of structures,”” ' F(z,t) is
the excitation load measured per unit length exer-
ted from an electrical harmonic field, and w'(z,t)
and w(z,t) are the partial derivatives dw(zx,t)/0x
and Ow(x,t)/0t, respectively. The corresponding
boundary condition for a cantilevered beam is
expressed as

w(0,t) = w'(0,t) =0,
w”(L,t) = w"(L,t) =0,
where L is the length of the SWCNT.

(2)

2.1.

As a CNT bends, the rippling deformation occurs
specially for the relatively and locally large defor-
mations."’ In this case, the linear relationship
between the bending moment and the curvature of
the CNT does not match anymore. The nonlinear
relation between the bending moment M and the
curvature x has been estimated as a ninth order
polynomial equation for the rippling deformation as
follows'":

M(z,t) = EIk(1 — a3D?k% + az;D*k*
— a;D%5 + agD3K?) , (3)

Nonlinear vibration model

where D is the diameter of CNT, a3 = 1.755 x 103,
az = 2.0122 x 105, a; =1.115 x 10, and a9 =
2.266 x 101,

And the second partial derivative of Eq. (3) with
respect to x is

M"(x,t) = EI[k"(1 — 3a3D*k? + 5a; Dk?
— Ta;D%k5 + 9agD3k8)
+ (k")2(—6a3D*k + 20a; D* K>
—42a; DK% — 72a9 D3k T)] . (4)
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For large deflection, the relation between the
bending curvature x(x,t) against the beam deflec-
tion w(z,t) can be expressed as

w’(z,t)
[+ w(a,1)")?
3 15

2 w2 =2

=~ (z,t)[1 — r(w')?], (5)

where r = 1.5.
Substituting Eq. (5) into Egs. (3) and (4), yields

K(z,t) =

—w"|1— (w/)4_.”

M(x,t) = EI{w" — 3asD*w"? — rw'?>w"}  (6)
and
M”(l‘,t) :EI{U)”” _ 3a3D2[2w//(w///)2 + (w//) 2w////]

_ 7“[2(10” )Z,w////]}‘

(7)
The nonlinear vibrational equation will be obtained
by substituting Eqs. (6) and (7) into Eq. (1):

{w(a: t)

)3 +6wlwllwlll+(

02
EIw" + 2uw + pA

— (ega)*[w" — 3a3D2w — w20}
= FEIN(w) + F(z,t), (8a)
where N(w) is
N(w) :3a3D2[2w//(w”’)2 n (w”)2w””]

+ r[z(w//)3 + 6w/w//w/ll + (wl) Qw///l] . (Sb)

Making all the variables in Egs. (8) dimensionless

by wusing the characteristic length L, time
L2\/pA/EI and force EI/L? give
@"" + 2w + w0 — (en)2ﬁ
ot?
X <w” — 3as <%> 211)”3 rw' %' >
= N+ F(z*,t%), (9a)
F(z*,t*) = G(z*) cos(@w*t*), (9b)
where
a*=x/L, t*=t\/EIJpA/L?, @=w/L,

= puL?/\/EIpA,

G =GL*/EI.

en =eoa/L, [

N =N/L?,
(10)

The associated dimensionless boundary condition in
Eq. (2) is

w(0,t*) = w'(0,t*) =0,
(11)
w"(1,t*) = w"(1,t*) =0.
2.2. Nonlinear analysis
The perturbation method of multiscales'” has been

applied to calculate the resonant frequency @ for a
SWCNT with rippling deformation. The beam
deflection w can be expanded using small pertur-
bation parameter ¢ into w = uy+ cu, where wug
should be zero. To make the exciting and the damp-
ing forces both be of the same orders as the non-
linear terms, the parameters ji = v and G(x*) =
e3g(z* A) are determined'” and Eq. (9) will be

282

" 2 2, i o .
u™ + 2e*vu + i — (e,) BT

% |:u// o 3a3 (%) 2u//3 _ ,r,u/2u//:|
=¢%N, + e?gcos(w*t*), (12a)
where
N, = 3&3(D/L)2[2u”(um)2 + (u//)2u////]
+ 7'[2(u”)3 +6u'u"u" + ( )2u////] . (12b)

In the previous equations, u(x*,t*) and g(x*) are,
respectively, expanded as

=St
Zigmn(w*),
n=1

where ¢,(t*) shows the dynamic response of
SWCNT, g, is the amplitude of the exciting force,
and ¢, for n=1,2,3,... represent the normalized
mode functions of the beam from the linear vibra-
tion analysis due to the specified boundary condition.
Meanwhile, the mode function ¢,, satisfies the fol-
lowing formula:

/01 ¢i(x*)pj(x*)dz* =0
IR

(13)

(e #7),
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Substituting Eq. (13) into Egs. (12) and utilizing 1
Eqgs. (14), we have A= / P1P1dx™ = 0.8582656856 , (16)
(1= Xep)dr + 2¢%vd; +wiqy 10
+ e201e2(3d,q% + 6¢3q) By E/O P10"Sdx* = 7.406496639 (17a)
= e20nqi + gy cos(@°t) (15)

1
— 12 1 *
= dx* = 4.310385928 , 17b
where w; ~ 3.516 is the fundamental linear fre- bz /0 h1P190d (17b)

quency of a cantilevered beam. A\, a; and «y are B )
numerical parameters obtained simply by algebraic =~ *1 = 3az(D/L)*B11 + rPra

operations and are completely related to the nor- ~3a3(D/L)? x 7.406496639 + r x 4.310385928
malized mode functions. | ~ 38995.20480(D/L)? + 6.46557882 , (18)
1
B = / $1[201(61)2 + (¢4)2"da" = 119.6460118, (192)
0
1
B = [ 2617 + 6010101 + (61)%0]ldo = 2021966156, (19b)
0

ay =3a3(D/L)?Ba1 + 1B ~ 3a3(D/L)? x 119.6460118 + r x 20.21966456
~6.299362521 x 10°(D/L)? + 30.32949684 . (20)

0811, Bi2, Bo1, and B9y are also defined to simplify the calculation of a; and as.
Moreover, the nonlinear frequency w* can be expressed by perturbation parameter €; as

.. (21)

V1—Xe?

The solution for Eq. (15) and dimensionless excitation force can be, respectively, stated as

q(t",e) = qo(To, T1) + erqu(To, T1) + - - (22a)
£2g; cos(@*t*) = elg; cos LTO —oTy |, (22b)
V1—Xe?
where
G
2 V] _ H
e=¢, q=_73 and V=5 (22¢)

T, and T} are slow and fast time scales due to the perturbation method of multiscales."”
Substituting Egs. (22) into Eq. (15), and comparing the coefficients of the identical power of €;, we have

(5(1)) (1 - )\ei)Dgfho + W%Qlo =0, (23a)

(5%) (1 - AQEL)D%C]H =+ W%Qn =-2(1- )\ei)DoDﬂho — 2vDyqy + 0424%0
w
- 66’%041(1)0(]10)2%0 - 36721041(D(2JQ11)C]%0 =+ g1 cos <ﬁ Ty — UT1> ) (23b)
— e

where D,, = 0/0T,(n =0,1).
The generating solution can be obtained from Eq. (23a).

i—wl Tb _ —1 =L Tl]
qo = AT)e VoL 4 AT)e ViR (24)
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Substituting ¢q;, into Eq. (23b) gives

(1- )\6721)1)(2)(111 +wign + GeiangQUA(Tl)A(Tl)

=2 {(1 — el (dA(T1)> + UA(Tl)]

dT,
. wl 27
X §————+ 3y A(T1)°A(T1
6e,a A(T1)2A(T1)
w% gl ! :EAE%T
1—Xe?  2eih

2i——T,
— 3enoq DignA(T1)%e Vi

2
+ <o¢2A(T1)3 +6e2a, A(T1)? %)

3i—L—T,

X e \/1—)\6]27(

+ cc, (25)
where cc stands for the complex conjugate of pre-
ceding terms. Secular terms will be eliminated from
the particular solution of Eq. (25) if we choose
A(T1) to be a solution of

2 d . w1
-2 [(1 — Xe;p) (d—TlA(T1)>} + UA(TD’LW
+ 30, A(T1)?A(T1) — 6e2ay A(T1)2A(T1)

2
w1 g1

X .
1—Xe?2 2eih

=0. (26)
To solve Eq. (26), we write A in the polar form

AT) = a(T) expAT),  (27)

where a and [ are real functions of the slow time
scale T7. Then by separating the result into its real
and imaginary parts, we obtain

8wy (1 — Xel)?a’
= —8uw, (1 — Xe?)a
+ 49, (—1 + Ne2)Fsin(B(T1) + oTh)
— 8wy (1 — Ae2)2af
= —(3ap)e? — 3y + el wi)a®
+4g,(1 = Aep)cos(B(Ty) + oTy) . (28)

For the steady-state response in the neighbor-
hood of singular points, every small perturbation
motion has to decay and this occurs when

a’ = 3 = 0."" Therefore,
Suwi\/1 — AeZa = —4g; (1 — Xe?)sin(v) ,
8wy (1 — )\ei)%aa + (BagAeZ — 3an + 6e2a w?i)a®
= 4g;(1 = Aep) cos(v) (29)

where v = 3(T}) + oT;.
By omitting « from Eqgs. (29), it can be written as

640w (1 — Ae2)a® + [8w; (1 — Ae?)o
+ (BagAel — 3an + 6e2awi)a’]?a?
=16g7(1 — Xe2)?. (30)
The solution of the nonlinear Eq. (15) is given by
¢ = acos (Lt* + ﬂ) +0(). (31)
VI=del

and the maximum vibration amplitude is expressed as

V1= )e?
P 7] (32)

2w v
and

6:')’—O—T1

In Eq. (33), o represents a variable of maximum
vibration amplitude a, and is written as

(33)

3 gilander — ay + 205 e5w7)
v2w3y/1 — Ne?

Eventually, by using Eq. (21), the nonlinear
resonance frequency of the CNT due to the rippling
effect can be determined.

T 32

(34)

~ w1
W' = ——————0¢;

V1= De2

w1
V1—)e2

3 g2 (ashe? — ay + 20 e2w?
+_91(2 2 1 1)51.

32 v%ﬁl‘\/l — el

Using Eq. (22c¢), the final form of nonlinear res-
onant frequency will be

(35)

w1
V1= )Xe?
3 Giaghe? — ay + 204 e2w?)

_.I_
32 plwiy/1 — Ne2

W' =

(36)
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From Eq. (27) in Ref. 11, we have

S@-E)

where w* is defined as

. S (38)

V1= Xe?
and F represents Young’s modulus of SWCNT
without rippling deformation.
Thus, by substituting Egs. (36) and (38) into
Eq. (37), the effective bending modulus due to the
rippling deformation F.4 can be calculated as

2
E g _ (1 +3 Gi(agher — g + 20 €5w?)
E 32

— %

2 4
KWy

(39)

Equation (39) indicates that the effective Young’s
modulus F. of a SWCNT with rippling deformation
is a function of the dimensionless nonlocal parameter
(e, = ega/L), the excitation load-to-damping ratio
(G1/p), and the diameter-to-length ratio (D/L).

Furthermore, the rippling deformation may
cause the model to experience structural instability,
especially in large deformations, as the effective
bending modulus-to-Young’s modulus ratio (the
effective bending modulus ratio) E./E reduces
to zero.

3. Results and Discussion

In this study, the governing equation of motion of a
cantilevered SWCNT with rippling deformation has

1.2
1.01  ggme—oomog
0.8+
wl
& 0.6
L ———— classical Euler-G4/u=0.5
.................. eoa/L:O
04| ———=—— epa/L=0.1 .
——o-—---€0alL=0.2 %
— —+ — classical Euler-G4/u=1 WX
]| ——e—— egalL=0 o
0.2 — —e— — epalL=0.1
————€qa/L=0.2
0.0 T T T T T
0.00 0.01 0.02 0.03 0.04 0.05
D/L
Fig. 1. The corresponding relation between E./E and D/L

with different G;/p and eya/L.

been derived using nonlocal Euler—Bernoulli beam
theory. It is assumed that the CNT has been oscil-
lated in a harmonic electrical field for predicting the
effective Young’s modulus and the conditions in
which the structural instability due to rippling
deformation occurs.

Based on the nonlocal elastic theory, our model
shows that there are three important factors that
influence the effective bending modulus of CNTs
with rippling deformation: (1) the dimensions of
SWCNT; (2) the amplitude of the exerted harmonic
force; and (3) the nonlocal parameter (see Eq. (39)).

Figure 1 shows the effective bending modulus
ratio E/FE as a function of dimensionless D/L for
the cantilevered SWCNT with different dimen-
sionless nonlocal parameters eya/L and two differ-
ent excitation load-to-damping ratios G;/u. If the
dimensionless nonlocal ratio is equal to zero
(e, = ega/L = 0), the results will be for the classical
Euler—Bernoulli beam theory and exactly the same
as in Ref. 11. The figure demonstrates that the
effective bending modulus of a CN'T with the rippling
deformation decreases as the dimensionless D/L and
excitation load-to-damping ratio G;/p increase.
Moreover, the nonlinear nonlocal model predicts
larger values for effective bending modulus with
rippling deformations relative to the classical
Fuler—Bernoulli beam theory, especially for huge
values of excitation load-to-damping ratio G,/pu
and dimensionless D/L. For instance, the classical
Euler—Bernoulli beam theory predicts an effective
bending modulus for a cantilevered CNT with D/L
equal to 0.035, of about 1Tpa without rippling
deformation and about 0.25 T'pa due to the rippling
deformation while this model estimates it about
0.311 Tpa when eqga/L = 0.2, G/ = 1.

As mentioned before, the rippling phenomenon
may cause CNTs to experience a special kind of
structural instability called rippling instability
especially for large bending displacements. Under
certain conditions, the high stiffness in addition to
the high flexibility of CNTs cause ripple configur-
ations to appear in the internal radius of a bent
CNT that can reduce the effective bending modulus
down to zero, and consequently Eq. (39) can predict
the conditions for which the rippling instability
should occur.

Figure 2 shows the parameters’ influence on the
rippling instability threshold (i.e., Ey/E = 0) for a
cantilevered SWCNT. The dimensionless nonlocal
ratio ega/L, the excitation load-to-damping ratio
Gi/p, and the diameter-to-length ratio D/L are
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0.16
1 eya/L=0
4 0
0141 4 v €all=0.05
| L €,a/L=0.15
0129 e -all=025
0104 N — — — e,alL=0.35
\
=
5 0.08- N
0.06- \;{ Unstable Region Due to the
- Rippling Deformation
0.04- Stable \
Region
0.024
0.00 T T T T
0 1 2 3 4 5
G,/
Fig. 2. The load-to-damping ratio G /i against the diameter-

to-length ratio with different values of dimensionless nonlocal
parameter ega/L for the rippling instability threshold.

the parameters. It is seen from the figure that as the
excitation load-to-damping ratio G /u increases the
rippling instability threshold occurs in a smaller
diameter-to-length ratio D/L. Meanwhile, the
results indicate that the rippling instability occurs
for CNTs with higher values of D/L as the dimen-
sionless nonlocal ratio eya/L increases.

4. Conclusions

Based on the nonlocal Euler—Bernoulli beam the-
ory, the nonlinear vibrational model for cantilev-
ered SWCNTs with the rippling deformation has
been developed. The nonlinear resonant frequency
and the associated effective bending modulus of a
bent CNT have been obtained using the pertur-
bation method of multiscales. The results indicate
that the rippling deformation causes the effective
bending modulus decrease dramatically for the
short CN'T's, especially for the high exciting harmonic
force. Furthermore, the nonlocal theory predicts the

higher values for the effective bending modulus with
respect to the classical Euler—Bernoulli beam theory
for stubby CNTs. The threshold of the rippling
instability and the parameters’ influence on it are also
discussed widely, and the results point out that the
nonlocal model predicts rippling instability for the
CNTs with higher values of diameter-to-length
compared with the classical Euler—Bernoulli beam
theory.
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