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ABSTRACT 
In the current paper, Extended Kantorovich Method (EKM) has 
been utilized to analytically solve the problem of squeezed film 
damping in micromirrors. A one term Galerkin approximation 
is used and following the extended Kantorovich procedure, the 
solution of the Reynolds equation which governs the squeezed 
film damping in micromirrors is reduced to solution of two 
uncoupled ordinary differential equation which can be solved 
iteratively with a rapid convergence for finding the pressure 
distribution underneath the micromirror. It is shown that the 
EKM results are independent of the initial guess function. It is 
also shown that since EKM is highly convergent, practically 
one iterate is sufficient for obtaining a precise response. 
Furthermore using the presented closed form solutions for the 
squeezed film damping torque, it is proved that when the tilting 
angle of the mirror is small, the damping is linear viscous one. 
Results of this paper can be used for accurate dynamical 
simulation of micromirrors under the effect of squeezed film 
damping. 
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INTRODUCTION 
MEMS devices use parallel plate capacitors in which one plate 
is actuated electrostatically and its movement is detected with 
capacitive changing. In order to increase the excitation 
performance as well as the detection sensitivity, the distance 
between capacitive plates is minimized and the area of the 
electrodes is maximized. In such a condition, squeeze film 
damping becomes the most important energy loss mechanism 
in MEMS. In fact squeeze film damping is the result of massive 
movement of the trapped gas molecules to out of the space 
between electrodes which is opposed by the gas viscosity. This 
mechanism produces some kind of pressure distribution 

underneath the plate which can act like a damping force or like 
a spring force.  
Currently there are two approaches for modeling the damping 
mechanism of the microresonators in the rarefied gas ambient. 
The first approach presented by Veijola et al [1] suggests an 
effective coefficient of viscosity in which an approximated 
viscosity coefficient depends on the gas pressure via the 
Knudsen number of the system. Then by solving the Reynolds 
equation which governs the squeeze film damping phenomenon 
and utilizing this empirical coefficient in the solution allow the 
prediction of the damping effect for different ambient pressures 
[2]. An alternative approach presented by Christian [3], Bao et 
al [4] and Hutcherson and Ye [5] is based on free molecular 
dynamic models developed for a plate vibrating in normal 
direction to a nearby stationary wall [2]. The mentioned model 
is based on momentum transfer rate from the vibrating plate to 
the surrounding gas due to collisions of molecules with the 
plate. 
In recent years, more and more torsion micro-mirrors have 
been used in a variety of MEMS devices, such as optical 
displays, light modulator and optical switches. As the squeeze 
film damping is the key factor to the dynamic performances of 
the mirror, it has been investigated extensively in recent years. 
In micromirrors, since the gap distance and the moving speed 
of the plate are not uniform, the coefficient of the damping 
torque is a function of the tilting angle and the analysis of the 
squeeze film air damping of torsion mirrors becomes more 
difficult than that of a parallel plate actuator [6]. 
Chang et al [7] modeled the squeeze film damping using the so 
called modified molecular gas film lubrication equation with 
the coupling effects of surface roughness and gas rarefaction . 
Hao et al [8] provided analytical expressions for damping 
pressure of a rectangular mirror at its balanced position and 
discussed the influence of design parameters. Wei et al [9] 
provide a simple expression for the coefficient of damping 
torque for torsion mirrors. However their result is based on a 
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simple 1D model for a strip mirror at its balanced position. Pan 
et al [10] presents analytical solutions for the effect of squeeze 
film damping, on a MEMS torsion mirror using Fourier series 
solution and the double sine series solution under the 
assumption of small displacements. For the purpose of 
verification, they also used a numerical finite difference 
scheme to obtain squeeze film damping torque and used their 
analytical and numerical formula to simulate the dynamic 
response of the micromirror and found out that the two 
approaches yield almost the same outcomes. They also 
performed experimental measurements and obtained results that 
were consistent with those obtained from the analytical and 
numerical damping models. Excluding the tilting angle which 
was considered to be small, the main problem of this work was 
that Pan et al [10] assumes the excitation to be harmonic 
function of time and so the response would also be a single 
harmonic function of time, while in real situations where the 
mirror is actuated electrostatically, the excitation is not only a 
function of time, but also a strongly nonlinear function of the 
response, i.e. tilting angle  of the mirror. So one cannot assume 
the response to be a simple harmonic time function. Minikes et 
al [2] adapted the squeeze film model with artificial viscosity 
and the molecular dynamics model for the case of a torsion 
mirror under a wide range of vacuum levels. They employed 
the green function technique to solve the linearized Reynolds 
equation. Their method was based on the assumption that the 
mirror response is a single harmonic function of time which is 
valid only when the excitation is a single harmonic time 
function. This kind of excitations does not hold for the 
electrostatically actuated micromirrors where the excitation is a 
strongly nonlinear function of the response. 
Bao et al [11] proposed an analytical model for calculating the 
squeeze film air damping of a rectangular torsion mirror at 
finite normalized tilting angles. Based on Reynolds equation 
they found damping pressure, damping torque and the 
coefficient of damping torque as functions of tilting angle and 
aspect ratio of the micromirror for the two cases of infinite long 
torsion mirror and rectangular micromirror with finite aspect 
ratio. In the most general case where the micromirror aspect 
ratio is finite and its tilting angle is not infinitesimal, they 
obtained an infinite series for the coefficient of damping torque  
where the coefficients of the series were complicated integrals 
with integrands which were explicit functions of normalized 
tilting angles. 
The current paper make use of the Extended Kantorovich 
Method (EKM) to solve the problem of squeeze film damping 
in micromirrors. The Kantorovich method occupies a position 
intermediate between the exact solution of a given problem and 
solution which is obtained by means of methods of Ritz and 
Galerkin [12]. Results from extended Kantorovich method are 
even more accurate. This method is based on Variational 
principle and reduces the partial differential equation governing 
the system behavior to a set of uncoupled ordinary differential 
equations which are solved iteratively with a rapid convergence 

and the final solution would be independent of the initial guess 
function. 
The Kantorovich method was suggested by Kantorovich and 
Krylov [13]. Kerr [14] and Kerr and Alexander [15], extended 
the Kantorovich method by using it as a first step of an iterative 
procedure and showed that the EKM converges very rapidly to 
a final form, irrespective of the initial guess function. They [15] 
used the extended Kantorovich method to analyze a clamped 
rectangular plate subjected to a uniform lateral load. Cortinez 
and Laura [16] used the same method for the vibrational 
analysis of rectangular plates of discontinuously varying 
thickness. Dalaei and Kerr [12] analyzed clamped rectangular 
orthotropic plates subjected to a uniform lateral load. Since 
there was no exact analytical solution for that problem, they 
tried to derive a closed-form approximate solution of high 
accuracy which was achieved by the EKM. They found that the 
convergence of the procedure is very rapid and that the final 
form of the generated solution is independent of the initial 
choice. Kerr [17] presented an extended Kantorovich procedure 
for the solution of the eigenvalue problems. His specific 
examples were the vibration of rectangular membrane and 
stability of an elastic rectangular plate compressed in its plane. 
He showed that for the membrane problem, the generated 
expressions for the eigenvalues and eigenfunctions are identical 
with the corresponding exact solution and for the clamped plate 
compressed uni-axially or bi-axially. Jones and Milne [18] 
applied the extended Kantorovich method to the vibration 
analysis of clamped rectangular plates and presented closed-
form solutions for the plate mode shapes with high accuracy. 
They found that the process converges so rapidly that usually 
two iterates is sufficient to achieve a precise response. Dalaei 
and Kerr [19] extended what Jones and Milne [18] did and used 
the Extended Kantorovich method to analyze free vibration of 
clamped rectangular orthotropic plates. They derived closed-
form solutions for system mode shapes and corresponding 
natural frequencies for the problem which had no exact 
solution. 
EKM has also been used for the solution of problems 
encountered in MEMS. Ahmadian et al [20] used EKM to solve 
the problem of static pull-in of electrostatically actuated 
microplates and found their results in close agreement with 
experimental data. Behzad et al [21] made use of EKM to find 
the natural frequencies and modeshapes of electrostatically 
actuated microplates. Moeenfard et al [22] modeled the static 
pull-in of the microplates under the effect of capillary force by 
using EKM. 
In this paper the EKM is utilized to solve linearized Reynolds 
equation to characterize  squeezed film damping in 
micromirrors. The process starts with a one term Galerkin 
approximation. Following the extended Kantorovich procedure, 
the response is discretized in x  and y  directions. Then using 
an initial guess function for the dicretized response, yields to 
two uncoupled ordinary differential equations which can be 
solved iteratively. It is shown that the convergence of this 
procedure is very rapid and independent of the initial guess 
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function. At the end, the results are delineated in some figures 
and the effects of geometrical parameters on the squeezed film 
damping torque in micromirrors are assessed. 
 
Problem Formulation 

Figure (1): Schematic view of a torsion micromirror. 
 
 

Figure (1) shows schematic view of a torsion micromirror. As 
the tilting angle of micromirrors is generally small ( 10ϕ ≤ ), 
the squeeze film air damping of micromirror is approximately 
governed by the Reynolds equation [6]. For MEMS devices 
where the inertial effects can be neglected, the Reynolds 
equation reduces to: 
 

( )3 3

12
ˆ ˆ ˆ ˆ

hh P h P
x x y y t

ρ
ρ ρ
µ µ

∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (1) 

 
Where ρ  is the fluid density, h  is the fluid thickness at point 

( )ˆ ˆ,x y , µ  is the fluid viscosity, P  is the fluid pressure and t  
is the time. Under the isothermal condition which is the 
condition which usually arises in MEMS devices, the gas 
density   is directly proportional to its pressure P . So 
equation (1) can be rewritten in the form: 
 

( )3 3

12
ˆ ˆ ˆ ˆ

hPh P h PP P
x x y y tµ µ

∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (2) 

 
 It has to be noticed that the pressure P  is composed of two 
parts aP p p= +  where ap  is the ambient pressure and p  
is the relative pressure which is due to the squeezed film effect. 
For small displacement of the plate around its balance position 
( 0h h∆ <<  and ap p<< ), equation (2) can be linearized as 
[6]: 
 

2 2

2 2 2 3

12 12
ˆ ˆ a

p p p dh
x y p h t h dt

µ µ∂ ∂ ∂+ − =
∂ ∂ ∂

 (3) 

 
When 

2 3
12 12 1

a

p dh
p h t h dt
µ µ⎛ ⎞ ⎛ ⎞∂ <<⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠

 or ap p h h∆ << ∆ , the gas is 

not appreciably compressed [6]. The mentioned condition is 
referred as incompressible gas condition, under which the 
equation (3) is reduced to: 
 

2 2

2 2 3

12
ˆ ˆ
p p dh

x y h dt
µ∂ ∂+ =

∂ ∂
 (4) 

 In electrostatically actuated micromirror, the thickness of the 
fluid gap is a linear function of the position x̂ : 

0 ˆh h xϕ= −  (5) 
Where 0h  is the initial gap between the mirror plate and the 
electrodes. 
So assuming the torsion beams supporting the mirror do not 
bend under the effect of the electrostatic force or squeezed film 
pressure, 0h  would be constant with respect to time. In such a 
condition, one can conclude: 

ˆdh x
dt

ϕ= −  (6) 

Substituting equation (6) into equation (4), yields: 
2 2

2 2 3

12 ˆ
ˆ ˆ
p p x

x y h
µ ϕ∂ ∂+ = −

∂ ∂
 (7) 

The boundary conditions for solving equation (7) are: 
( ) ( ) ( ) ( ), 0 ,0 0, 0, 0p a p a p b p b− = = − = =  (8) 

 
Where a  and b  are the microplate length in x̂  and ŷ  
directions respectively. 
If the angle of rotation of the mirror is small enough, then h  in 
equation (7) can be approximated by 0h . In this condition, 
equation (7) can be written as: 
 

2 2

2 2 3
0

12 ˆ
ˆ ˆ
p p x

x y h
µ ϕ∂ ∂+ = −

∂ ∂
 (9) 

Introducing the nondimensionalized variables 
ˆ ˆ,x x a y y b= =  (10) 

Equation (9) can be simplified as 
2 2

2
2 2 0p p x

x y
α β∂ ∂+ + =

∂ ∂
 (11) 

Where 
a bα = (12) 

3 312 a hβ µ ϕ= (13) 
 
The boundary conditions can also be nondimensionalized as: 
( ) ( ) ( ) ( )1,0 1,0 0, 1 0,1 0p p p p− = = − = =  (14) 

 
For solving equation (11) with EKM, first of all a one-term 
Galerkin approximation is used as follows: 
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( )
2 2

2
2 2 , , . 0

A

p p x p x y t dx dy
x y

α β δ
⎛ ⎞∂ ∂+ + =⎜ ⎟∂ ∂⎝ ⎠∫∫  (15) 

 
Where A  is the nondimensionalized mirror area. Then 
according to the Kantorovich method, it is assumed that: 
( ) ( ) ( ), , ,p x y t f x g y t=  (16) 

 
Assuming that ( )f x  is a previously prescribed known 
function, then: 

( ) ( ) ( ), , ,p x y t f x g y tδ δ=  (17) 
 
Substituting equations (16) and (17) into equation (15) yields: 

( ) ( ) ( ) ( ) ( ) ( )
2 2

2
2 2

,
, . 0

A

d f x g y t
g y f x x f x g y t dx dy

dx y
α β δ

⎛ ⎞∂
+ + =⎜ ⎟∂⎝ ⎠∫∫ (18) 

Where A  is the nondimensionalized mirror area. By 
rearranging the integration in equation (18), this equation can 
be rewritten in the form: 

( ) ( ) ( )

( )( ) ( ) ( )( )( ) ( )

21 1

21 1

21 12 2
21 1

. ,

,
, 0

d f x
f x dx g y t

dx

g y t
f x dx xf x dx g y t dy

y
α β δ

− −

− −

⎡ ⎛ ⎞
+⎢ ⎜ ⎟⎝ ⎠⎣

∂ ⎤+ =⎥⎦∂

∫ ∫

∫ ∫

 

(19) 

According to the fundamental lemma of variational calculus, 
equation (19) would be satisfied if and only if the coefficient of 
the ( ),g y tδ  in equation (19) is zero, or: 

( )( ) ( )

( ) ( ) ( ) ( )

212 2
21

21 1

21 1

,

, 0

g y t
f x dx

y

d f x
f x dx g y t xf x dx

dx

α

β

−

− −

∂
−

∂

⎛ ⎞⎛ ⎞
+ =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫

∫ ∫

 
(20) 

 
The second integral in equation (20) can be written in its weak 
form as 

( ) ( ) ( ) 221 1

21 1

d f x df x
f x dx dx

dx dx− −

⎛ ⎞ ⎛ ⎞
= − ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠∫ ∫  (21) 

 
So equation (20) can be simplified as: 

( ) ( )
2

2
1 2 32

,
,

g y t
I I g y t I

y
α β

∂
− = −

∂
 (22) 

Where 
( )1 2

1 1
I f x dx

−
= ∫  (23) 

( ) 2
1

2 1

df x
I dx

dx−

⎛ ⎞
= ⎜ ⎟⎝ ⎠∫  (24) 

( )1

3 1
I xf x dx

−
= ∫  (25) 

 
The solution of the equation (22) under the boundary 
conditions ( ) ( )1, 1, 0g t g t− = =  is as follows: 

( ) 3

2

cosh, 1
cosh

I yg y t
I

γβ
γ

⎛ ⎞
= −⎜ ⎟⎝ ⎠

 (26) 

 
Where 

2

1

1 I
I

γ
α

=
 

(27) 

If in the formulation of Kantorovich method, it was assumed 
that the function ( ),g y t  is a prescribed known function, then 
by following similar procedure, equation (28) would have been 
obtained: 

( ) ( )
2

2
1 2 32 .
d f x

I I f x I x
dx

α β− = −′ ′ ′  (28) 

 
Where 

( )1 2
1 1

,I g y t dy
−

=′ ∫  (29) 

( ) 2
1

2 1

,g y t
I dy

y−

⎛ ∂ ⎞
=′ ⎜ ⎟∂⎝ ⎠∫  (30) 

( )1

3 1
,I g y t dy

−
=′ ∫  (31) 

The solution of this equation under the boundary conditions 
( ) ( )1 1 0f f− = =  is: 

( ) 3
2

2

sinh
sinh

I xf x x
I

β λ
α λ

′ ⎛ ⎞= −⎜ ⎟⎝ ⎠′
 (32) 

 
Where 

2

1

I
I

λ α ′=
′
 (33) 

 
In the extended Kantorovich method, by using an initial guess 
function ( )0f x , equations (22) and (28) can be solved 

iteratively. Since ( )f x  and ( ),g y t  are computed 
analytically, the integrations in equations (23) to (25) and 
equations (29) to (31) can also be computed analytically in 
terms of their values in the previous step of the EKM as 
follows: 

( )
2

21 2 3
1

2

tanh3 3 tanh
n

n n
nn

n

II
I

γβ γ
γ

+ ⎛ ⎞⎛ ⎞
= − −′ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 
(34) 

( )
2

21 2 3
2

2

tanh
1 tanh

n
n n n

nn
n

I
I

I
γ γβ γ

γ
+ ⎛ ⎞⎛ ⎞
= − + +′ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (35) 

1 3
3

2

tanh
2 1

n
n n

n
n

I
I

I
γβ

γ
+ ⎛ ⎞
= −′ ⎜ ⎟⎝ ⎠

 (36) 

( )

2
1 2 3

1 22 2
2

5 4 3 1
3 tanh tanh

n
n

n
n n n n

II
I

β
α λ λ λ λ

+
⎛ ⎞⎛ ⎞′= + − −⎜ ⎟⎜ ⎟′⎝ ⎠ ⎝ ⎠

 
(37) 

( )
22

1 2 23
2 2

2

2
tanh tanh

n
n n n

nn
n n

I
I

I
λ λβ λ

α λ λ
+

⎛ ⎞⎛ ⎞⎛ ⎞′
= − + + +⎜ ⎟⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠⎝ ⎠  

(38) 
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1 3
3 2 2

2

2 2 2
3 tanh

n
n

n
n n n

II
I

β
α λ λ λ

+ ⎛ ⎞⎛ ⎞′= + −⎜ ⎟⎜ ⎟′ ⎝ ⎠⎝ ⎠
 (39) 

 
Where j

iI ′ , j
iI  ( )1 3i≤ ≤ , jλ  and jγ  are the  values of iI ′ , 

iI , λ  and γ  in the j’th step of the EKM and the final solution 
becomes: 

( ) ( ) ( )
2

3 3
2

2 2

, , ,

sinh cosh1
sinh cosh

p x y t f x g y t

I I x yx
I I

λ γβ
α λ γ

∞ ∞ ∞

∞ ∞
∞ ∞

∞ ∞
∞ ∞

= =

⎛ ⎞ ⎛ ⎞′ − −⎜ ⎟ ⎜ ⎟′ ⎝ ⎠ ⎝ ⎠

 (40) 

 
The convergence of the presented method is so rapid that in 
most cases, one to two iterates are sufficient for obtaining 
highly precise pressure distribution. 
 
Results and discussion 

To validate the proposed model, an initial guess function is 
selected as ( ) ( )2

0 1f x x x= − . For the case of infinitesimal tilting 

angle, figure (2) shows the plot of the ( )f x  and ( ),g y t β  
obtained in first three iterates of the EKM. This figure shows 
that when the tilting angle of the micromirror is infinitesimal, 
the pressure distribution is an odd function along x  axis. 

Figure (2): ( )f x and ( ),g y t β  at the first three iterates 

when 1α = . 
 

It can be seen that the convergence of the proposed method is 
so rapid that the slight difference between the curves of 
different iterates can’t be seen ocularly. So, for the purpose of 
quantitative analysis of the convergence of the proposed 
method, table (1) has been prepared. In this table the values of 

1I , 2I , 3I , 2
1I β′ , 2

2I β′  and 3I β′  in different iterates of 
the EKM has been presented. As it is observed the convergence 
of the EKM is extremely rapid that the values of the parameters 
presented in table (1) does not change appreciably in different 
iterates and practically one iterate is sufficient for obtaining a 
highly precise response. 

Table (1): The values of different parameters at different 
iterates for 1α =  when tilting angle is infinitesimal. 

 
In order to show that the results of EKM is independent of the 
initial guess function, the parameters identifying the final 
solution, that is ( )2

3 3 2 2
n n n nI I I Iβ α′ ′ , nγ  and nλ  has been 

listed in table (2) for different initial guess functions.  It is 
observed that despite some of the initial guess functions don’t 
even satisfy the boundary condition(s), their results are 
practically the same. It has to be noted that the individual 
functions ( )f x  and ( ),g y t  depend on the initial guess 
function, but their product, that is ( ), ,p x y t  does not. 
 
Table (2): Effect of initial guess function on the final solution 

when 1α =  
 

Finally in order to verify the presented model, the squeezed 
film torque on the micromirror is calculated analytically. In fact 
the squeezed film torque can be calculated as: 

( ) ( )

( )

( ) ( )

ˆ ˆ

ˆ ˆ

1 1 2

1 1

1 12

1 1

ˆ ˆ ˆ ˆ ˆ. , ,

. , , .

. ,

y b x a

d y b x a

y x

y x

T t x p x y t dxdy

ba x p x y t dx

ba x f x dx g y t dy

= =

=− =−

= =

=− =−

− −

=

=

=

∫ ∫
∫ ∫

∫ ∫

 

Since the initial guess function for ( )0f x  is independent of β , 

iI  1 3i≤ ≤  is also independent of β  and iI ′  1 2i≤ ≤  is 

some coefficient of 2β  and 3I ′  is some coefficient of β . So, 

considering equation (84), ( )dT t  would be a linear function of 

β  which implies that when the micromirror tilting angle is 
very small, the squeezed film damping can be modeled with a 
linear viscous one.  
In order to verify the presented model, in figure (3), the results 
of the presented method has been compared with the results of 
Bao et al [11]. It is observed that when the tilting angle is 
infinitesimal, even a one iterate EKM solution is in a close 
agreement with previously published results in the literature. 
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This figure shows that with increasing the microplate aspect 
ratio, the damping torque is also increased. It has to be noted 
that for plotting the results presented by Bao et al [11], their 
suggested relation for damping torque has been used. 

Figure (3): A plot of ( ),g y t η  and ( )f x  at different iterates 

when 1α =  and 0.3σ = . 
 
Conclusions 

The current paper made use of the EKM to solve the problem 
of squeezed film air damping in micromirrors. Using a one-
term Galerkin approximation, and following the extended 
Kantorovich procedure, the solution of the Reynolds equation 
in micromirrors was reduced to the solution of two uncoupled 
ordinary differential equation which was solved iteratively with 
a rapid convergence. It was shown that the presented model is 
highly convergent and also independent of initial guess 
function. It was observed that in the case of infinitesimal tilting 
angle, the damping torque is linear viscous one. The results of 
this paper can be used to simulate the nonlinear dynamical 
behavior of micromirrors in presence of squeezed film damping 
and the method presented by this paper can be viewed as a new 
efficient approach for solving the problem of squeezed film 
damping in microstructures. 
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