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In this paper, an imprecise data classification is considered using new version of Fisher discrimi-
nator, namely interval Fisher. In the conventional formulation of Fisher, elements of within-class
scatter matrix (related to covariance matrix between clusters) and between-class scatter matrix
(related to covariance matrix of centers of clusters) have single values; but in the interval Fisher,
the elements of matrices are in the interval form and can vary in a range. The particle swarm
optimization search method is used for solving a constrained optimization problem of the interval
Fisher discriminator. Unlike conventional Fisher with one optimal hyperplane, interval Fisher
gives two optimal hyperplanes thereupon three decision regions are obtained. Two classes with
regard to imprecise scatter matrices are derived by decision making using these optimal hyper-
planes. Also, fuzzy region lets us help in fuzzy decision over input test samples. Unlike a support
vector classifier with two parallel hyperplanes, interval Fisher generally gives us two nonparallel
hyperplanes. Experimental results show the suitability of this idea. C© 2011 Wiley Periodicals,
Inc.

1. INTRODUCTION

In many theoretical and practical applications, there are imprecise, incomplete,
and noisy data. These may be due to the lack of enough knowledge, low accuracy of
measurement devices, noise, and so on. Therefore, it is necessary to deal with these
data in their relevant applications.

A question is propounded in the field of classification: How imprecise data
can be applied in the classification and clustering? Interval and fuzzy numbers are
recently used for this purpose as Hiremath and Prabhakar1 proposed symbolic kernel
Fisher discriminant (KFD) analysis with radial basis function kernel. It is important
to note the application of Hausdorff distance for conversion of interval data to a
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crisp value in the KFD and used classifier.1 They adapted the symbolic KFD to
extract interval-type nonlinear discriminating features. They applied a new RBF
kernel function to map input data into highly nonlinear data in a high-dimensional
space. Then, they extracted interval-type nonlinear discriminating features.

Yang et al.2 presented a new model, which used a fuzzification of the Choquet
integral for solving the classification problem, involving heterogeneous fuzzy data,
including crisp data, fuzzy numbers, interval values, and linguistic variables. The
proposed model acted as a projection tool, which can map a high-dimensional het-
erogeneous fuzzy data to a crisp virtual value on a real axis, so that the classification
problem in high-dimensional heterogeneous fuzzy datum space was simplified to
that in one-dimensional crisp data space.

Huhn and Hullermeie3 introduced a fuzzy-rule-based classification method
called fuzzy round robin, repeated incremental pruning to produce error reduction
(RIPPER), (FR3). As the name suggests, FR3 builds upon the RIPPER algorithm.
More specifically, in the context of polychotomous classification, it used a fuzzy
extension of RIPPER as a base learner. A key feature of FR3, in comparison with its
nonfuzzy counterpart (R3 learner that has recently been introduced in the literature),
was its ability to represent different facets of uncertainty involved in a classification
decision in a more faithful way. FR3 provides the basis for implementing “reliable
classifiers” that might abstain from a decision when not being sure enough, or at
least indicated that a classification was not fully supported by the empirical evidence
at hand.

Zhao et al.4 presented an interval set classification based on support vector
machines (SVM). To make incomplete information patterns that could be classified
correctly by trained SVM, they extended the input vectors of SVM to interval input
vectors where each unmeasured attribute of input was represented by an interval
that includes its possible value. Also, the operation in the classification function
was extended to interval operation correspondingly. For the incomplete information
input, the value of the classification function was the interval operation result.
When the output of classification function satisfied the classification condition, the
incomplete information input pattern could be classified correctly. Meanwhile, the
attribute value prior to knowledge about interval representation could be utilized
fully in the proposed algorithm. Lu et al.5 also presented another algorithm using
SVM. In Ref. 6, a new version of support vector machine with fuzzy data was
presented. In that work, fuzzy input data were modeled on the form of fuzzy cost.

Fernández et al.7 considered the problem of classification with imbalanced
data sets, that is, some data sets with a different class distribution among their pat-
terns. This work improved the behavior of fuzzy rule based classification systems
(FRBCSs) in the framework of imbalanced data sets by means of a tuning step. They
adapted the 2-tuples-based genetic tuning approach to classification problems, show-
ing the good synergy between this method and some FRBCSs. The 2-tuples-based
genetic tuning increased the performance of FRBCSs in all types of imbalanced
data.

Li et al.8 proposed a probabilistic method for classification of noisy data. They
presented two classifiers, probabilistic kernel Fisher and probabilistic Fisher, based
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on a probabilistic model proposed by Lawrence and Schölkopf9 (in Ref. 9, the
class noise was assumed to have been generated by a classification noise process.
In this kind of noise process, the input feature distribution remained the same but
their labels were independently and randomly reversed with some probabilities).
The proposed methods in Ref. 8 were able to tolerate class noise and extended the
earlier work of Lawrence and Schölkopf9 in two ways. First, it presented a novel
incorporation of their probabilistic noise model in the kernel Fisher discriminator;
second, the distribution assumption previously made was relaxed in their work. The
proposed method improved standard classifiers in noisy data sets and achieved larger
performance gain in non-Gaussian data sets and small size data sets.

Yang et al.10, Hung and Yang11, and Yang et al.12 presented more precise fuzzy
C-Means clustering over symbolic and fuzzy data. Some other related works can be
found in Refs. 13 and 14.

In this paper, Fisher discriminator over interval data (presentation of imprecise
data) as a classifier is presented. Two optimal hyperplanes are obtained from the
interval Fisher that led to three decision regions. This kind of decision results in
fuzzy decision. This paper deals with modeling of imprecise data with interval data,
solving interval quadratic problem using particle swarm optimization (PSO), and
fuzzy decision and classification with utilization of interval Fisher discriminator
(IFD).

The rest of the paper is organized as follows. Section 2 explains the Fisher linear
discriminator, and Section 3 presents the proposed method. Experimental results are
considered in Section 4. Finally, Section 5 concludes the paper and presents the
future works.

2. FISHER LINEAR DISCRIMINATOR

Fisher linear discriminator uses linear transformation of predictor variables
that provides a more accurate discrimination. Classes are separated satisfactorily if
a direction can be found to project data on it when (a) between-class variance is
maximized and (b) within-class variance is minimized. To simplify, suppose that
there are two classes (and then the method can be generalized to multiple classes).
Linear projection is y = wT x + w0. In the new space of y, between-class and
within-class variances are calculated. Between-class variance can be presented by
(m̃2 − m̃1)2 (where m̃1 and m̃2 are means of classes c1 and c2, respectively, in the
transform space) and within-class variance for classes c1 and c2 are shown to be in
the form of s̃2

1 + s̃2
2 (where s̃2

1 and s̃2
2 are covariances of two classes). So, the Fisher

criteria can be written in the following form:

max JF = (m̃2 − m̃1)2

s̃2
1 + s̃2

2

(1)

Between-class variance is calculated as

(m̃2 − m̃1)2 = wT (m2 − m1)(m2 − m1)T w (2)
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where m1 and m2 are means of class c1 and c2, respectively, in input space. Between-
class scatter matrix is defined as

SB = (m2 − m1)(m2 − m1)T (3)

So, the numerator of fraction is wT SBw. For simplification of denominator, it can
be written as

s̃2
1 =

∑

yi :xi∈R1

(yi − m̃1)2 =
∑

xi∈R1

(wT xi − wT m1)2

(4)

= wT

⎛

⎝
∑

xi∈R1

(xi − m1)(xi − m1)T

⎞

⎠ w = wT S1w

and

s̃2
2 =

∑

yi :xi∈R2

(yi − m̃2)2 =
∑

xi∈R2

(wT xi − wT m2)2

(5)

= wT

⎛

⎝
∑

xi∈R2

(xi − m2)(xi − m2)T

⎞

⎠ w = wT S2w

where R1 and R2 are the sets of all data, which belong to Classes 1 and 2, respectively.
Within-class scatter matrix is defined as Sw = S1 + S2. So, the criteria can be written
in the following form:

max J (w) = wT SBw

wT Sww
(6)

For solving the above fractional optimization problem, it is simplified as

max
w

J (w) = wT SBw

(7)
s.t. wT Sww = 1

So w = S−1
w (m2 − m1) and optimum hyperplane is

y(x) = wT x − 1

2
(m̃1 + m̃2) = wT x − 1

2
wT (m1 + m2)

(8)

= (
S−1

w (m2 − m1)
)T

(
x − 1

2
(m1 + m2)

)
.
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The original problem of Equation 6 is also equivalent to

min
w

Z(w) = wT Sww

(9)
s.t. wT SBw = 1

where Z(w) is the cost function that should be minimized and wT SBw = 1 is the
constraint.

3. INTERVAL FISHER DISCRIMINATOR

The interval Fisher discriminator is similar to the Fisher linear discriminator
with this distinction that the elements of matrices Sw and SB are not single values,
but they are in the interval form. It means that Sw and SB can vary in a range. This
case may occur because of noisy data, incomplete data, and any other reason that
can lead to inaccurate and imprecise knowledge of parameters. These parameters
are shown with SI

w and SI
B , where the superscript “I” is a representative of interval.

It is worth mentioning that in fact each element of SI
w (or SI

B) is a random variable
that can vary within its interval range. So, the problem that should be solved as

min
w

Z(w) = wT SI
ww

(10)
s.t. wT SI

Bw = 1

Equivalently, Equation 10 can be written as

min
w

Z(w) =
n∑

i=1

n∑

j=1

sw,ijwiwj

(11)

s.t.
n∑

i=1

n∑

j=1

sB,ijwiwj = 1

where sw,ij ∈ sI
w,ij , sB,ij ∈ sI

B,ij and the interval matrices SI
w = (sI

w,ij )n×n and SI
B =

(sI
B,ij )n×n are symmetric positive semidefinite. Also, matrices are n × n, in which

n is the number of classes that should be separated. For two classes, SI
w = [a b

b c] is
a within-class scatter matrix, where a, b, and c are three numbers. For example,
a ∈ [4.6 4.8] , b ∈ [0.1 0.3] , and “c” is a number in the interval of [1.9 2.1] .

According to our knowledge, this kind of problem, optimization of an inter-
val quadratic programming problem, has not been solved analytically so far and it
is a very demanding problem. Li and Tian15 and Liu and Wang16 have presented
numerical solution methods for interval quadratic programming. But their methods
are applicable to optimization problems with linear interval constraints. Their meth-
ods cannot be used for the proposed problem in this paper because the proposed
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problem is confronted with quadratic interval constraint. It is useful to discuss more
on Equation 10. For each known Sw and SB , the Equation 10 is converted to the
Equation 9. It means that for each Sw ∈ SI

w and SB ∈ SI
B , there is a specific w that

minimizes the cost function with respect to related constraint.
Clearly, min Z(w) is an interval. To find the interval that bounds the objective

values, it suffices to find the lower bound and the upper bound of the objective
values of Equation 10. The lower bound of min Z(w) is indicated with ZL and the
upper bound with ZU . Denote S = {(Sw, SB)|Sw ∈ SI

w, SB ∈ SI
B}. Therefore, the

following formulas can be written:

ZL = min
(Sw,SB∈S)

min
w

Z(w) = wT Sww

(12)
s.t.wT SBw = 1

and

ZU = max
(Sw,SB∈S)

min
w

Z(w) = wT Sww

(13)
s.t.wT SBw = 1

As a result, between all Sw ∈ SI
w andSB ∈ SI

B , two sets are found: One set is
Smin = {Sw1, SB1} that belongs to ZL and Smax = {Sw2, SB2} that belongs to ZU .
As it was pointed earlier, there is no analytical solution, like the Lagrange method,
for this optimization problem. To overcome this problem, one of the popular meta-
heuristic algorithms is applied in this work. PSO is a powerful tool for solving this
kind of problem, and the solution of this problem can be found easily with good
approximation (obviously, other metaheuristic algorithms such as genetic algorithm
can also be used). PSO is used two times in the program: one for finding w1 related
to Smin and the other for finding w2 related to Smax. Consequently, there is a range,
that is [w1, w2], that w can vary between w1 and w2. Of course, the answered range
of w in Equation 10, namely [wmin, wmax], maybe more than [w1, w2], but since
there is no analytical algorithm for finding the largest range ofw, the later domain
can also help in classification.

The code of program can be written as

• Finding w1

1. Initialize K randomly Sw ∈ SI
w and SB ∈ SI

B , and finding the related w and
cost(k) = Zk(w) using an analytical method (e.g., the Lagrange method), where
K is the population size for PSO.

2. PSO receives Sw ∈ SI
w and SB ∈ SI

B , and cost(k)and generates new K of Sw ∈ SI
w

and SB ∈ SI
B .

3. For new Sw ∈ SI
w andSB ∈ SI

B , find the related w and cost(k) = Zk(w) using an
analytical method.
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4. If stopping criteria are satisfied go to 5, else go to 2.
5. The output of PSO is theSmin, and the related w isw1.

• Finding w2

1. Initialize K randomly Sw ∈ SI
w and SB ∈ SI

B , and finding the related w and
cost(k) = −Zk(w) using an analytical method, where K is the population size
for PSO.

2. PSO receives Sw ∈ SI
w and SB ∈ SI

B , and cost(k) and generates new K of Sw ∈ SI
w

and SB ∈ SI
B .

3. For new Sw ∈ SI
w andSB ∈ SI

B , find the related w and cost(k) = −Zk(w) using
an analytical method.

4. If stopping criteria are satisfied go to 5, else go to 2.
5. The output of PSO is theSmax, and the related w is w2.

It should be noted that “stopping criteria” are the parameters in the PSO
algorithm that lead to the ending of the PSO algorithm. For example, maximum
number of runs for the algorithm can be a stopping criterion.

It is worth mentioning in detail the concept of interval Fisher classifier. First,
suppose that there is a conventional Fisher classifier, that is, Equation 9. Solving
this optimization problem yields us one w that gives us one line or hyperplane, for n

classes, (namely Equation 8) that it can linearly separate classes. Now consider the
interval case. Solving Equations 12 and 13 gives us two hyperplanes. To simplify
the discussion, suppose there are two classes. With these hyperplanes, for any data,
its degree of belonging to any of the classes can be determined. This subject is more
clarified in the Experimental results section. It should be noticed that the IFD is just
applicable to classes that are linearly separable.

4. EXPERIMENTAL RESULTS

The proposed classifier, IFD, is the first interval type of linear discriminator
analysis (LDA). The proposed method and its properties are illustrated with some
examples. It is worth noting that the data of classes presented in Sections 4.1 and
4.2 are generated by the “rand” function of MATLAB in different manners.

4.1. IFD over Low-Imprecision Training Samples

At first, two classes of data are generated. SI
w and SI

B have 20% tolerance;
that is, the lower bound of SI

w is 20% smaller than the center of SI
w interval and

the upper bound of SI
w is 20% larger than the center of SI

w interval (this case is for
SI

B , too). Then, using PSO w1 andw2 are found, and after that the resultant lines
y1 = w1T x + w01 and y2 = w2T x + w02 are plotted. Figure 1 shows two classes
of data, one class with (.)symbols and the other class with (+) symbols.

In this figure, the bottom line is related to line of w1 and the upper line is related
tow2. For instance in this example, w1 = [0.4821 − 0.4300]T , w01 = 0.0708; and
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Figure 1. An example of two classes and two classifier lines.

the other vector is w2 = [0.5455 − 0.4347]T , w02 = 0.1075. As it is observed,
these two lines separate two classes with good approximation and also give us a
margin (the region between two lines). This margin indicates that data in this region
have fuzzy belonging and for any test data, its degree of belonging to any of classes
can be determined. For any data below the lower line, the data belong to Class 1
and its degree of belonging is 100%. Also for any data above the upper line, the
data belong to Class 2 and its degree of belonging is 100%. For the data inside the
margin, it has fuzzy belonging. In fact, the result of classification is fuzzy. For more
explanation of classification, Figures 2–4 show three cases.

In Figure 2, the data belong to Class 1. First of all, for the data,x, calculate
y1 = w1T x + w01 and y2 = w2T x + w02, (for instance in the experiment, y1 =
−0.4030 and y2 = 0.3444). Also for other x in this region, y1 is negative and y2 is
positive. All data in this region have this characteristic.

Now consider Figure 3, where the data belong to Class 2. For data x, calculate
y1 = w1T x + w01 and y2 = w2T x + w02, (for instance in the experiment, y1 =
0.6365 and y2 = −0.9352). Also for the other x in this region, y1 is positive and y2

is negative. All data in this region have this property.
Now consider Figure 4, where data are placed in the fuzzy region. y1 and y2

have the same sign in this region, (for instance in this example y1 = −0.556 and
y2 = −0.1440). For other data in this region, this property exists, that is, if y1 and
y2 have negative sign, x is in the fuzzy region. For data in this region, its degree
of belonging to any of the classes can be calculated. For this case, the Euclidean
distance of data with each of the lines is determined. Suppose d1 is distance of x

from the lower line and d2 is distance of x from the upper line (in this example
d1 = 0.0995 and d2 = 0.1607). So d1

/
(d1 + d2) is degree of belonging x to the

Class 1, and d2
/

(d1 + d2) is degree of belonging x to the Class 2.
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Figure 2. Test sample in the region of Class 1.

Figure 3. Test sample in the region of Class 2.
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Figure 4. Test sample in the fuzzy region.

Figure 5. An example of classifier lines with increased range of SI
w and SI

B .

4.2. IFD over High-Imprecision Training Samples

Now consider the case, where the range of SI
w and SI

B is larger than the previous
case; SI

w and SI
B have 30% tolerance. The optimal lines are shown in Figure 5. As
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Figure 6. Classifier lines for Classes 1 and 3 in the iris data set.

Figure 7. Classifier lines for Classes 2 and 4 in the iris data set.
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it is observed, the line related to ZL has not changed but the line of that ZU has
changed and the fuzzy region has been expanded. So with increasing the range of
SI

w and SI
B , the fuzzy region becomes enlarged.

4.3. IFD over Real Samples

In Figures 6 and 7, data of two classes of iris data (UCI Machine learning
repository17) are shown. In these simulations, Sw and SB have 10% tolerance. In
these figures, the solid line is related to ZU and the dashed line is related to ZL. As
it is seen in these figures, these lines separate the classes.

5. CONCLUSION AND FUTURE WORKS

In this paper, a new version of Fisher discriminator namely IFD was introduced.
In IFD, the elements of the between-class scatter matrix (related to covariance matrix
of center of clusters) and within-class scatter matrix (related to covariance matrix
between clusters) are in the interval form. One of the important applications of
IFD can be in classification of imprecise and incomplete data. Because there is no
analytical solution for minimization of an interval quadratic programming, problem
one of the metaheuristic methods, PSO, was used for solving the optimization
problem of IFD. Unlike conventional Fisher classifier with one optimal hyperplane,
IFD gave two optimal hyperplanes and three decision regions were obtained. Two
classes with regard to imprecise scatter matrices were derived using these two
optimal hyperplanes. Also, the fuzzy region let us help in fuzzy decision over input
test samples. In fact, IFD is a kind of fuzzy classification. An important result
that could be inferred is that with increasing of imprecision of parameters, the
fuzzy region increased.Experimental results validated the ability of this proposed
method. For the future work, we will pursue comparison of the proposed method
with other methods such as fuzzy method over practical data sets, presentation of
kernel IFD, and presentation of analytical approach for solving IFD and kernel-type
of IFD.
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