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Abstract

There is a long standing line of research, which is devoted toinvestigate bounds
for |G′| whenG is an infinite group. This line goes back to a classic result ofI. Schur.
The present paper deals with the structure ofG′ whenG is a compact group, showing
that|G′| can be controlled by the notion of commuting probability.
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1. Introduction

If G is a finite group, the probability that a randomly chosen pair of elements ofG commutes
is defined to be #com(G)/|G|2, where #com(G) is the number of pairs(x,y) ∈ G×G with
xy= yx, G2 is the product of two copies ofG and|G|2 is the order ofG2. Note that this ratio
is denoted bycp(G) = k(G)/|G| in [1, 3, 5, 10] wherek(G) is the number of the conjugacy
classes ofG. See also [2, 4, 7]. More precisely, ifG is a finite group,

cp(G) =
|{(x1,x2) ∈ G2 ; xix j = x jxi for all 1≤ i, j ≤ 2}|

|G|2
.

If G is a non-abelian group, thencp(G) ≤ 5/8; furthermore this bound is achieved if and
only if G/Z(G) has order 4, whereZ(G) is the center ofG. Such a result can be found in
[5].

The ratiocp(G) has been extended to a compact groupG already in [5, Section 2],
definingcp(G) = (µ×µ)(C), whereC = {(x,y)∈G2 | xy= yx}, f : (x,y)∈G2 → [x,y]∈G,
C = f−1(1) andµ is the normalized Haar measure onG. Note thatC is measurable, since it
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is the anti-image of the closed set{1} under the mapf which is continuous (see [5, Section
2]). These information and the properties of the Haar measure onG guarantee thatcp(G) is
well–defined (see also [6, Chapter 2]). Obviously, ifG is finite, then it is a compact group
with the discrete topology and so the Haar measure onG is the counting measure. Most of
the results in [1, 3, 4, 5, 7, 10] can be seen in such a way. We list now ourmain results.
Section 2 will allow us to prove them in Section 3.

Theorem A. Let G be a non-abelian connected compact group, Z0(G) be the identity
component of Z(G) and G/Z0(G) be a p-group, where p is a prime. Then the following
statements are equivalent:

(i) G/Z0(G) is a p-elementary abelian group of rank2;

(ii) G′ is a p-elementary abelian group of rank2;

(iii) cp(G) = p2+p−1
p3 .

Theorem B.Let G be a non-abelian compact group, sol(G/Z(G)) be the soluble radi-
cal of G/Z(G), F(G/Z(G)) be the Fitting subgroup of G/Z(G), d be the maximum number
of elements in a conjugacy class of G, l be the derived length of G/Z(G), p be a prime and
n,m be positive integers.

(i) If |G/Z(G)| = n, then d−
1
2(1+log2d) ≤ |G′|−1 < cp(F(G/Z(G)))

1
2 |G/Z(G) :

F(G/Z(G))|−
1
2 ≤ |G/Z(G) : F(G/Z(G))|−

1
2 .

(ii) If G/Z(G) is soluble of order n, then d−
1
2(1+log2d) ≤ |G′|−1 < log2(|G/Z(G) :

sol(G/Z(G))|)−
1
3 .

(iii) If |G/Z(G)| = n, then d−
1
2(1+log2d) ≤ |G′|−1 < |G/Z(G) : sol(G/Z(G))|−

1
2 .

(iv) If G/Z(G) is finite soluble with l≥ 4, then d−
1
2(1+log2d) ≤ |G′|−1 < 4l−7

2l+1 .

(v) If |G/Z(G)| = pm, then p−
1
2m(m−1) ≤ |G′|−1 < pl +pl−1−1

p2l−1 .

2. Preliminaries

In this section,G is assumed to be a non-abelian compact group (not necessarily finite even
uncountable) with normalized Haar measureµ.

Lemma 2.1. Let CG(x) be the centralizer of an element x in G. Then

cp(G) =
∫

G
µ(CG(x))dµ(x),

where µ(CG(x)) =
∫

G χC(x,y)dµ(y) andχC denotes the characteristic map of the set C.

Proof. See [2, Lemma 3.1].♦
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Lemma 2.2. Let H be a closed subgroup of G, n, r be positive integers and p be a
prime.

(i) If |G : H| ≥ n, then µ(H) ≤
1
n

.

(ii) If |G : H| ≤ n, then µ(H) ≥
1
n

.

(iii) Assume that G/Z(G) is a p-group of order pr . An element x belongs to Z(G) if and
only if µ(CG(x)) > 1

p.

Proof. See [2, Lemmas 3.2, 3.4].♦

Lemma 2.3.Let r be a positive integer. If G/Z(G) is a p-elementary abelian group of
rank r, then cp(G) ≤ pr+p−1

pr+1 , for every prime p. The equality holds when r= 2.

Proof. Assume thatG/Z(G) is a p-elementary abelian group of rankr . By Lemma 2.1
and Lemma 2.2, we have

cp(G) =
∫

Gµ(CG(x))dµ(x) =
∫

G−Z(G) µ(CG(x))dµ(x)+µ(Z(G))

≤ 1
p(µ(G)−µ(Z(G)))+µ(Z(G)) = 1

p(1− 1
pr )+ 1

pr = pr+p−1
pr+1

If r = 2, thenG is the union ofp2 distinct cosets

G = Z(G)∪x1Z(G)∪x2Z(G)∪ . . .∪xp2−1Z(G)

and so 1= µ(G) = p2µ(Z(G)). Moreover, ifa,b∈ xiZ(G), for 1≤ i ≤ p2−1, thena= xiz1

andb = xiz2 for somez1,z2 ∈ Z(G) so that

ab= xiz1xiz2 = xixiz1z2 = xixiz2z1 = xiz2xiz1 = ba.

Thus, ifa∈ xiZ(G), thenCG(a) = Z(G)∪aZ(G)∪a2Z(G)∪ . . .∪ap−1Z(G) and so

µ(CG(a)) = µ(Z(G))+µ(aZ(G))+µ(a2Z(G))+ . . .+µ(ap−1Z(G))

= pµ(Z(G)) = p( 1
p2 ) = 1

p

Thus, we have

cp(G) =
∫

Gµ(CG(x))dµ(x)

=
∫

Z(G) µ(CG(x))dµ(x)+∑p2−1
i=1

∫

xiZ(G) µ(CG(x))dµ(x)

= µ(Z(G))+ 1
p ∑p2−1

i=1 µ(Z(G)) = ( 1
p(p2−1)+1)µ(Z(G))

= p2+p−1
p3 . ♦

Proposition 2.4. Let N be a closed normal subgroup of G. Then

cp(G) ≤ cp(G/N).
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In particular, if N∩G′ = 1, then the equality holds.

Proof. Letλ, µandν be the corresponding Haar measure ofN, G andG/N respectively.
Let x∈ G, y∈ N andxN∈ G/N. The integral properties of the Haar measure onG allow us
to write

∫

G
µ(CG(x))dµ(x) =

∫

G/N

(

∫

N
µ(CG(xy))dλ(y)

)

dν(xN).

Sinceν is a Haar measure onG/N, ν acts onG/N asµonG moduloN so thatµ(CG(xy)N) =
ν(CG(xy)N/N). But in generalCG(xy)N/N ≤ CG/N(xN), so that ν(CG(xy)N/N) ≤
ν(CG/N(xN)) beingν monotone.

Then,µ(CG(xy)N) = ν(CG(xy)N/N) ≤ ν(CG/N(xN)) and, from Lemma 2.1, we have

cp(G) = (µ×µ)(C)

=
∫

Gµ(CG(x))dµ(x) =
∫

G/N (
∫

N µ(CG(xy))dλ(y))dν(xN)

≤
∫

G/N (
∫

N µ(CG(xy)N)dλ(y))dν(xN)

≤
∫

G/N

(
∫

N ν(CG/N(xN))dλ(y)
)

dν(xN)

=
∫

G/N ν(CG/N(xN))(
∫

N dλ(y))dν(xN)

=
∫

G/N ν(CG/N(xN))dν(xN) = cp(G/N).

In particular, ifN∩G′ = 1, thenCG(xy) = CG(xy)N and soµ(CG(xy)) = µ(CG(xy)N). Fur-
thermore,µ(CG(xy)N) = ν((CG(xy)N)/N) = ν(CG/N(xN)). So, the equality holds.♦

Recall from [6] thatG0 denotes theidentity componentof G. In particular,Z0(G)
denotes the identity component ofZ(G).

Lemma 2.5. If G is connected, then µ(G′) = µ(G/Z0(G)).

Proof. From [6, Theorem 9.24 (ii)],G = Z0(G)G′ andZ0(G)∩G′ is totally discon-
nected. We conclude that

µ(G) = µ(Z0(G)G′) = µ(Z0(G))+µ(G′)−µ(Z0(G)∩G′)

SinceZ0(G)∩G′ is totally disconnected,µ(Z0(G)∩G′) = 0, and so

µ(G′) = µ(G)−µ(Z0(G)) = µ(G/Z0(G)). ♦

The proof of Lemma 2.5 uses [6, Theorem 9.24 (ii)] which is a fundamental result in the
Theory of Compact Groups. Moreover it allows us to have a precise control of the measure
of G′ as the following remark shows.

Remark 2.6. From [6, Theorem 9.24 (ii)], if we have a non-abelian compact groupG,
then there exists a family{Sj : j ∈ J} of simple connected compact Lie groups and a totally
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disconnected central subgroupD of Z0(G)×∏ j∈J Sj such thatG∼=
Z0(G)×∏ j∈J Sj

D . SinceD is
totally disconnected,µ(D) = 0, and soµ(G) is equal to

µ
(Z0(G)×∏ j∈J Sj

D

)

= (µ(Z0(G))+µ(∏
j∈J

Sj))−µ(D) = µ(Z0(G))+µ(∏
j∈J

Sj).

By Lemma 2.5,µ(G′) = µ(G/Z0(G)) = µ(∏ j∈J Sj).♦

The following lemma adapts [4, Lemma 2 (vi)].

Lemma 2.7. Let G be a non-abelian compact group with|G : Z(G)| = n, where n is a
positive integer. Then|G′|−1 < cp(G).

Proof. A famous bound of Wiegold (see [8, p.102 (2)]) shows that, if|G : Z(G)| is finite,
then|G′| is finite as well. Now, we can easily observe that the length of every conjugacy
class is bounded above by the order of derived subgroupG′ for every elementx∈ G. This
means|G : CG(x)| ≤ |G′| for all x∈ G. By Lemma 2.2,µ(CG(x)) ≥ |G′|−1 for each element
x∈ G. Moreover, if|G : Z(G)| = n, then we may writeG as the union ofn distinct cosets

G = Z(G)∪x1Z(G)∪x2Z(G)∪ . . .∪xn−1Z(G)

and soµ(Z(G)) = 1/n. Thus we will have

cp(G) =
∫

Gµ(CG(x))dµ(x) =
∫

Z(G) µ(CG(x))dµ(x)+
∫

x1Z(G) µ(CG(x))dµ(x)+

· · ·+
∫

xn−1Z(G) µ(CG(x))dµ(x) = µ(Z(G))+∑n−1
i=1

∫

xiZ(G) µ(CG(x))dµ(x)

≥ 1
n +∑n−1

i=1

∫

xiZ(G) |G
′|−1dµ(x) > 1

n|G
′|−1 + n−1

n |G′|−1 = |G′|−1. ♦

3. Proofs of Theorems A and B

This Section contains our main results with some instructive examples.

Proof of Theorem A. (i)⇒(ii). From [6, Theorem 9.24],G = Z0(G)G′ so thatG′ is
isomorphic as compact group toG/Z0(G). Now the property to be ap-elementary abelian
group of rank 2 is invariant under isomorphisms of compact groups. Then the result follows.

(ii)⇒(iii). Again from [6, Theorem 9.24] we have thatG′ is isomorphic toG/Z0(G)
and soG/Z0(G) is a p-elementary abelian group of rank 2. SinceZ0(G) ≤ Z(G) and the
class ofp-elementary abelian groups is closed with respect to forming subgroups, images
and extensions of its members (see [8]), we conclude thatG/Z(G) is a p-elementary
abelian group of rank 2. Now Lemma 2.3 gives the required bound.

(iii)⇒(i). Assume thatcp(G) = p2+p−1
p3 and G/Z0(G) is not a p-elementary abelian

group of rank 2. By assumptionG/Z0(G) is a p-group. So, ifG/Z0(G) has order 1 orp,
then it is cyclic. SinceZ0(G) ≤ Z(G), alsoG/Z(G) is cyclic. It follows thatG is abelian
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and there is a contradiction. Thus|G : Z0(G)| ≥ p2. If |G : Z0(G)| = p2, thenG/Z0(G) is
an abelian of orderp2 and it is either cyclic of orderp2 or a p-elementary abelian group of
rank 2. In the first case we obtain again a contradiction and in the second case we finish.
Now suppose that|G : Z0(G)| > p2. Using [6, Theorem 9.24 (ii)] and Lemma 2.5, we have

cp(G) =
∫

Gµ(CG(x))dµ(x) =
∫

Z0(G)G′ µ(CG(x))dµ(x)

=
∫

Z0(G) µ(CG(x))dµ(x)+
∫

G′ µ(CG(x))dµ(x)−
∫

G′∩Z0(G) µ(CG(x))dµ(x)

=
∫

Z0(G) µ(CG(x))dµ(x)+
∫

G′ µ(CG(x))dµ(x)

=
∫

Z0(G) µ(CG(x))dµ(x)+
∫

G′\Z0(G) µ(CG(x))dµ(x)

≤ µ(Z0(G))+(µ(G′)−µ(Z0(G))) = µ(G′) = µ(G/Z0(G)).

But Z0(G) is a closed normal subgroup ofG with |G : Z0(G)| > p2, then Lemma 2.2

implies µ(G/Z0(G)) < 1
p2 . Now the relationp2+p−1

p3 < 1
p2 gives a contradiction and the

result follows.♦

Proof of Theorem B.The finiteness ofG/Z(G) implies the finiteness ofG′ by a famous
Schur’s Lemma (see [8, Theorem 4.12]), so there are no problems to consider the maximum
number of elements in a conjugacy class ofG [8, Theorem 4.35].

Lemma 2.7, combined with [4, Theorem 4 (ii)] and Proposition 2.4, implies

|G′|−1 < cp(G) < cp(G/Z(G)) ≤

cp(F(G/Z(G)))
1
2 |G/Z(G) : F(G/Z(G))|−

1
2 ≤ |G/Z(G) : F(G/Z(G))|−

1
2 .

On the other hand, the bound of Wiegold [8, Chapter 4, p.126-127] gives

(∗) d− 1
2(1+log2d) ≤ |G′|−1,

then (i) is proved.
Lemma 2.7, combined with [4, Theorem 8 (i)] and Proposition 2.4, gives

|G′|−1 < cp(G) < cp(G/Z(G)) < log2(|G/Z(G) : sol(G/Z(G))|)−
1
3 .

As before we use(∗) and (ii) follows.
Lemma 2.7, combined with [4, Theorem 9] and Proposition 2.4, gives

|G′|−1 < cp(G) < cp(G/Z(G)) ≤ |G/Z(G) : sol(G/Z(G))|−
1
2 .

As before we use(∗) and (iii) follows.
Lemma 2.7, combined with [4, Theorem 12 (i)] and Proposition 2.4, gives

|G′|−1 < cp(G) < cp(G/Z(G)) ≤
4l −7
2l+1 .
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As before we use(∗) and (iv) follows.
Lemma 2.7, combined with [4, Theorem 12 (ii)] and Proposition 2.4, gives

|G′|−1 < cp(G) < cp(G/Z(G)) ≤
pl + pl−1−1

p2l−1 .

Now the bound [8, p.102] gives

(∗∗) p−
1
2m(m−1) ≤ |G′|−1,

then (v) follows. ♦

The conditions(∗) and(∗∗) in the proof of Theorem B are classical restrictions on|G′| (see
[9]) of an infinite groupG. Recent developments can be found in literature: for instance,
[9] improves(∗) using techniques of Combinatorial Group Theory (see [9, Theorems 1.1,
1.3, 1.4]). The same authors of [9] have continued to improve these bounds during the last
twenty years.

Example 3.1.Let n be a positive integer andG= E×T
n, whereT

n is then-dimensional
torus group andE is a finite non-abelian group. See [6, pp.11–17] and [6, Proposition
2.42] for details. Of course,G is a compact group and if we knowcp(E), thencp(G) =
cp(E)cp(Tn) = cp(E) by an application of Lemma 2.1. This means that informations on
cp(G) can be deduced from those oncp(E). Note thatcp(E) is well known by [1, 3, 4,
5, 7, 10], sinceE is a finite group. This construction gives a source of examples both for
Theorem A and Theorem B.♦
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