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ABSTRACT

In this paper, we consider a nonparametric estimator of the Lorenz curve when data
are showing some kind of dependence. The uniform strong convergence rate of the
estimator under strong mixing hypothesis is obtained. Strong Gaussian approximation for
the associated Lorenz process are established under appropriate assumptions. A law of
the iterated logarithm for the Lorenz process is also derived.
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1. INTRODUCTION AND PRELIMINARIES

Pietra (1915) and Gastwirth (1971) independently introduced the Lorenz curve
corresponding to a non-negative random variable with a distribution function ,
quantile function ( ): = inf { : ( ) ≥ } and finite mean = as:( ): = ∫ ( ) , 0 ≤ ≤ 1.

In econometrics, with representing income, ( ) gives the fraction of total
income that the holders of the lowest th fraction of income possesses. Most of the
measures of income inequality are derived from the Lorenz curve. An important example
is the Gini index associated with defined by: = ∫ [ ( )]∫ = 1 − 2( ) ,
where

1

0
( ) ( ) F FCL L u du is the cumulative Lorenz curve corresponding to . This is a

ratio of the area between the Lorenz curve and the 45 line to the area under the 45 line.
The numerator is usually called the area of concentration. Kendall and Stuart (1963)
showed that this is equivalent to a ratio of a measure of dispersion to the mean. In
general, these notions are useful for measuring concentration and inequality in
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distributions of resources, and in size distributions. For a list of applications in different
areas, we refer the readers to Csörgő and Zitikis (1996a).

To estimate the Lorenz curve, one can use the Lorenz statistic ( ) defined by( ): = ∫ ( ) , 0 ≤ ≤ 1,
where is the sample mean and ( ): = inf { : ( ) ≥ } is the empirical quantile
function constructed from i.i.d. sample taken from ( is the empirical distribution
function).

Goldie (1977) proved the uniform consistency of to and derived the weak
convergence of the Lorenz process ( ): = √ [ ( ) − ( )], 0 ≤ ≤ 1 to a Gaussian
process under suitable conditions. Csörgő et al. (1986) gave a unified treatment of strong
and weak approximations of the Lorenz and other related processes. In particular, they
established a strong invariance principle for the Lorenz process, by which Rao and Zhao
(1995) derived one of their two versions of the law of the iterated logarithm (LIL) for the
Lorenz curve. Different versions of the LIL under weaker assumptions are also obtained
by Csörgő and Zitikis (1996a, 1997). In Csörgő and Zitikis (1996b), confidence bands for
the Lorenz curve that are based on weighted approximations of the Lorenz process are
constructed. Strong Gaussian approximations for the Lorenz process when data are
subject to random right censorship and left truncation are established by Tse (2006), he is
also derived a functional LIL for the Lorenz process.

However, in most economic situations, the basic sequence of observations may not be
independent. It is more realistic to assume some form of dependence among the data are
observed. Csörgő and Yu (1999), obtained weak approximations for Lorenz statistic and
its inverse under the assumption of mixing dependence. Glivenko-Cantelli-type
asymptotic behavior of the empirical generalized Lorenz curves based on random
variables forming a stationary ergodic sequence with deterministic noise were considered
by Davydov and Zitikis (2002). Davydov and Zitikis (2003) established large sample
asymptotic theory for the empirical generalized Lorenz curves when observations are
stationary and either short-range or long-range dependent. Strong laws for generalized
absolute Lorenz curves when data are stationary and ergodic sequences established by
Helmers and Zitikis (2005). Based on the generalized Lorenz curves Davydov et al.
(2007) proposed a statistical index for measuring the fluctuations of a stochastic process.
They developed some of the asymptotic theory of the statistical index in the case where
the stochastic process is a Gaussian process with stationary increments and a nicely
behaved correlation function.

It is the purpose of this pa per to derive strong uniform consistency of the Lorenz
statistic and strong Gaussian approximation for Lorenz process, for the case in which data
are assumed to be strong mixing. As a result of our strong Gaussian approximation, we
obtain a functional LIL for the Lorenz process.

In this paper we consider the strong mixing dependence, which amounts to a form of
asymptotic independence between the past and the future as shown by its definition.
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Definition 1:
Let { , ≥ 1} denote a sequence of random variables. Given a positive integer , set( ) = sup {| ( ∩ ) − ( ) ( )|; ∈ , ∈ }, (1.1)

where denote the -field of events generated by { ; ≤ ≤ }. The sequence is said
to be strong mixing ( -mixing) if the mixing coefficient ( ) → 0 as → ∞.

Among various mixing conditions used in the literature, -mixing is reasonably weak
and has many practical applications (see, e.g. Doukhan (1994) or Cai (1998, 2001, for
more details). In particular, Masry and Tjostheim (1995) proved that, both ARCH
processes and nonlinear additive AR models with exogenous variables, which are
particularly popular in finance and econometrics, are stationary and -mixing.

For convenient reference, the basic conditions on , and the assumptions used in this
paper from which the various results are obtained, are gathered together here.

Assumptions:
(1) Suppose that { , ≥ 1} is a non-negative sequence of stationary -mixing

random variables with continuous distribution function and finite mean= .
(2) ( ) = ( ) for some 0 < ≤ .
(3) Assume that satisfies the Csörgő-Révész conditions, i.e.,

(i) ( ) is twice differentiable on ( , ), where= sup { : ( ) = 0} , = inf { : ( ) = 1} , 0 ≤ < ≤ ∞;
(ii) = ≠ 0 on ( , );
(iii) for some > 0 we havesup ( ) 1 − ( ) | ( )|( ) = sup (1 − ) ( )( ) ≤ .

(4) lim inf ↓ 0 ( ) > 0, and lim inf ↑ 1 ( ) > 0.
(5) lim sup ↓ 0 ( ) < ∞, and lim sup ↑ 1 ( ) < ∞.$

In the next section, we present our main results.

2. ASYMPTOTIC BEHAVIORS OF LORENZ CURVE

We first introduce the following Gaussian process, which plays an important role to
present the main results of the study. Let( ) = ( ≤ ) − , ≥ 1,
where { ; ≥ 1} is a uniform on [0,1] strictly stationary strong mixing sequence of
random variables. Define for 0 ≤ , ≤ 1,Γ( , ) = ( ), ( ) + ∑ ( ), ( ) + ( ), ( ) .

A separable Gaussian process { ( , ): 0 ≤ ≤ 1, ≥ 0} is called a Kiefer process if
it satisfies ( , 0) = (1, ) = (0, ) = 0, ( , ) = 0, and has covariance function
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We now restate below a strong approximation by Yu (1996) for the normed quantile
process ( ): = √ ( ) [ ( ) − ( )].
Theorem 1:

(Yu, 1996) Let { , ≥ 1} be a stationary -mixing sequence of random variables
with common continuous distribution function . Assume that satisfies the Csörgő-
Révész conditions and Assumption 2 holds. Then there exists a Kiefer process( , ) defined on the same probability space as ( ) with covariance functionΓ∗( , ′, , ′) = min( , ′) Γ( , ′) and a constant > 0 depending only on such that

 
1

( , )sup ( ) (log ) . .,

   
  

n n

n
s

K s ns O n a s
n

(2.1)

where = (log ) (log log ).

If, in addition to the Csörgő - Révész conditions, we also assume that satisfies the
Assumptions (4) and (5), then we havesup ( ) − ( , )√ = (log ) . . (2.2)

An implication of Theorem 1 is the law of the iterated logarithm for empirical
quantile process, i.e.,sup | ( ) − ( )| = . . (2.3)

2.1 Strong Uniform Consistency
Theorem 2 below proves the uniform strong consistency with rate of the estimator .

Theorem 2:
Suppose that Assumptions (1)-(5) are satisfied. Thensup | ( ) − ( )| = . . (2.4)

An elementary computation shows that,( ) − ( ) = ∫ [ ( ) − ( )] − ( ) ( ). (2.5)

It is easy to see that,− = ∫ [ ( ) − ( )] . (2.6)

Now, using (2.3), (2.5) and (2.6), we obtain the result.



Fakoor and Rad 235

2.2 Strong Gaussian Approximation
In Theorem 3 below, we construct a two parameter mean zero Gaussian process that

strongly uniformly approximate the empirical process ( ).

Theorem 3:
Suppose that Assumptions (1)-(5) are satisfied. Then there exists a Kiefer process,( , ) , defined on the same probability space as the sequence { , ≥ 1}

with covariance function Γ∗( , ′, , ′) = min( , ′) Γ( , ′) , for 0 < , ′ < ∞ , and0 ≤ , ≤ 1, such that,

 
1

0 1 0 0

1 ( , ) / ( , ) /sup ( ) ( ) (log ) . .,
( ( )) ( ( ))



 

 
    
 
p

n F
p

K y n n K y n nl p dy L p dy O n a s
f Q y f Q y

(2.7)
for some > 0.

Proof:
See the Appendix.

2.3 Functional LIL
An immediate result of an almost sure invariance principle of the form (2.7) is a

functional law of the iterated logarithm for Lorenz curve. Let = (2 log log ) , [ , ]
be the space of functions on [ , ] that are right continuous and have left limits.

Theorem 4:
Suppose that Assumptions (1)-(5) are satisfied. On a rich enough probability space,(.) is almost surly relatively compact in [0,1] with respect to the supremum norm and

its set of limit points isG = : ( ) = ∫ ( )( ) − ( ) ∫ ( )( ) , 0 ≤ ≤ 1, ∈ B .
where B is the unit ball in the reproduce kernel Hilbert space  *H .

Proof:
Theorem 4 follows at once from (2.7) and Theorem A in Berkes and Philipp (1977).

3. APPENDIX

In establishing Theorem 3, we were aided by some ideas found in Tse (2006). The
total time on test transform curve corresponding to a continuous distribution F on
 0, ,  1

FH p , is defined for  0,1p as (see e.g. Langberg et al., 1980),

           1
0 0: 1 1      
p p

FH p y d Q y p Q p Q y dy (3.1)

 0 0Q .
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Obviously,      1 1 1
11 : lim .  
   F F FpH p H H p A natural estimator for

 1
FH p is

         1
01 , 0,1    
p

n n nH p p Q p Q y dy p

Lemma 1 proves that this estimator is uniform strong consistent for 1
FH .

Lemma 1:
Suppose that Assumptions (1)-(5) are satisfied. Then, we have

   1 1

0 1

log logsup . . 

 

 
    

 
n F

p

nH p H p O a s
n

Proof:
By (2.3), we have

1 1

0 1 0 1

0 1 0

sup | ( ) ( ) | sup (1 ) ( ) ( )

sup ( ) ( )

log log . .

 

   

 

     

 

 
   



n F n
p p

p

n
p

H p H p p Q p Q p

Q y Q y dy

nO a s
n

We define the normed total time on test empirical process  nt p by

       1 1: , 0,1     n n Ft p n H p H p p .

Lemma 2:
Suppose that Assumptions (1)-(5) are satisfied. Then there exists a Kiefer process,
 ,K s t , defined on the same probability space as the sequence  , 1iX i with

covariance function      , , , min , ,      n n s s n n s s , for 0 ,   n n , and
0 ,   s s , such that

0 1 0

( , ) / ( , ) /sup ( ) (1 ) ((log ) ) . .,
( ( )) ( ( ))



 

 
     

p

n
p

K y n n K p n nt p dy p O n a s
f Q y f Q p

for some 0  .

Proof:
By (3.2), (3.4) and the definition of  np p , we have
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0

0

( ) (1 )[ ( ) ( )] [ ( ) ( )]

( , ) / ( , ) /(1 ) ((log ) ) . .
( ( )) ( ( ))



    

   





p

n n n

p

t p n p Q p Q p n Q y Q y dy

K p n n K y n np dy O n a s
f Q p f Q y

So, we obtain the result.

Next, we define the scaled total time on test transform, its statistics and associated
empirical process corresponding to F .

       1 1

: , :
 

 
 

F n
F n

n

H p H p
W p W p

and
     :    n n FW p n W p W p

for  0,1p . The following lemmas give the uniform consistency of  nW p and strong
approximation of the scaled total time on test empirical process respectively. Their proofs
can be done along the lines of lemma 3.4 and lemma 3.5 of Tse (2006). We therefore
omit the proofs.

Lemma 3:
Suppose that Assumptions (1)-(5) are satisfied. Then, we have

   
0 1

log logsup . .
 

 
    

 
n F

p

nW p W p O a s
n

Lemma 4:
Suppose that Assumptions (1)-(5) are satisfied. Then there exists a Kiefer

process  ,K s t , defined on the same probability space as the sequence  , 1iX i with

covariance function      * , , , min , ,     n n s s n n s s , for 0 ,   n n , and
0 , 1 s s , such that,

1 1

0 1 0 0

( )1 ( , ) / ( , ) / ( , ) /sup ( ) (1 )
( ( )) ( ( )) ( ( ))

((log ) ) . .,



 



  
        



 
p

F
n

p

H pK y n n K p n n K y n nw p dy p dy
f Q y f Q p f Q y

O n a s
for some 0  .

Proof of Theorem 3:
By definition of the Lorenz curve and by using (3.1) and (3.2) we have

     
 

 1
0

1
 


F F
p Q p

W p L p
Q u du

(3.3)
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We have also

     
 

   1
0

1
, 0,1


  


n
n n

n

p Q p
W p L p p

Q u du
. (3.4)

Substituting (3.3) and (3.4) in Lemma 4 we obtain the result.
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