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Abstract This paper gives a general insight into how the neuron structure in a multilayer
perceptron (MLP) can affect the ability of neurons to deal with classification. Most of the
common neuron structures are based on monotonic activation functions and linear input
mappings. In comparison, the proposed neuron structure utilizes a nonmonotonic activation
function and/or a nonlinear input mapping to increase the power of a neuron. An MLP of these
high power neurons usually requires a less number of hidden nodes than conventional MLP
for solving classification problems. The fewer number of neurons is equivalent to the smaller
number of network weights that must be optimally determined by a learning algorithm. The
performance of learning algorithm is usually improved by reducing the number of weights,
i.e., the dimension of the search space. This usually helps the learning algorithm to escape
local optimums, and also, the convergence speed of the algorithm is increased regardless of
which algorithm is used for learning. Several 2-dimensional examples are provided manually
to visualize how the number of neurons can be reduced by choosing an appropriate neuron
structure. Moreover, to show the efficiency of the proposed scheme in solving real-world
classification problems, the Iris data classification problem is solved using an MLP whose
neurons are equipped by nonmonotonic activation functions, and the result is compared with
two well-known monotonic activation functions.

Keywords Neuron structure · Nonmonotonic activation function · Nonlinear input
mapping · Classification · Multilayer perceptron (MLP) · Iris data classification

H. Sadoghi Yazdi (B)
Department of Computer Engineering, Ferdowsi University
of Mashhad, 91775-1111 Mashhad, Iran
e-mail: h-sadoghi@um.ac.ir

A. Rowhanimanesh · H. Modares
Department of Electrical Engineering, Ferdowsi University
of Mashhad, 91775-1111 Mashhad, Iran

123



136 H. Sadoghi Yazdi et al.

1 Introduction

Neural networks have emerged as an important tool for classification. Recent research activi-
ties identified neural networks (NNs) as a promising alternative to other classification methods
([25]). Many different types of NNs are now being used for classification purposes ([25]),
including, among others, multilayer perceptron (MLP) NNs (Hagan et al.; Lin et al.), radial
basis function (RBF) NNs ([1,30]), recurrent NNs ([9,28]), general regression neural net-
works ([31]), and product unit neural networks ([5]) as a multiplicative NNs.

The design of NNs requires several decisions, including the following: (1) the number of
hidden units that resides in the hidden layer, (2) the neuron structure including the neuron
input mapping and type of neuron activation function that used at the hidden and output
units, and (3) learning algorithm that determines what weights will be applied to the net-
work. Also, these three factors are not independent of each other. The number of hidden units
influences the speed and performance of learning algorithm. It is a natural hope to employ
as fewer as possible the number of hidden neurons under the conditions that they meet the
performance requirements. In fact, a small network is able to have faster learning speeds. On
the other hand, the type of neuron activation functions and the way of aggregation are the
important factors that influence the number of hidden units required for a satisfying perfor-
mance. Also, the types of activation functions have very important influences on the network
learning speed, classification correction rates, and nonlinear mapping precision ([6,26]). So,
the type of activation function is the first important factor that must be considered, because
it influences the two other factors.

Several neural networks with different activation functions are introduced in the literature.
The most frequently used activation functions are monotonic activation functions, such as
sigmoid function and hard-limiter. A very good comparison between these two activation
functions is made in Daqi and Yan [4]. MLP neural networks with sigmoid activation functions
usually are the most widely used NNs. The classification mechanisms of MLPs with sigmoid
activation functions have been paid attention to in the literature ([2,8,10,18,19,21,32,36]).
However, when the networks with sigmoid activation functions are used in pattern recogni-
tion, there are some difficulties including convergence to local minima, a slow learning speed,
and a proper selection rule of the number of hidden units. Various activation functions have
been introduced to apply to neural networks in order to address the above-mentioned diffi-
culties ([7,11,12,16,17,20,22,24,27,29,33,35,37]). Among them, nonmonotonic activation
functions seem to be promising. Gaussian functions and sinusoidal activation functions are
the most frequently used ones. Comparative results of this type of neurons with sigmoid
functions were considered in the past. In Karaköse and Akin [20], a quadratic sigmoid func-
tion, which resembles radial basis functions, is utilized, and better performance indications
than sigmoid based networks are emphasized. In a study by Sopena et al. [33], a sinusoidal
activation function is used, and the authors show empirically that it has better performance
in comparison with sigmoid ones. Also, in Gutierrez et al. [12], Hara and Nakayamma [14]
sigmoid, sinusoidal, and Gaussian type activation functions are compared, and among those,
the sinusoidal one is seen to display most desirable characteristics. The authors of these
papers empirically show that there are a number of reasons that the choice of nonmonotonic
functions, especially sinusoidal active functions, can produce a notable improvement in the
performance of a neural network in classification. But they offer no analysis for their results.

This paper focuses on the analysis of performance of nonmonotonic neuronal activation
function and answer to the question why nonmonotonic activation functions create better
performance than monotonic activation functions. We will show that the use of nonmon-
otonic activation functions sometimes reduces the complexity of network by reducing the
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Fig. 1 Conventional neuron
structure

number of hidden nodes needed. Moreover, nonlinear aggregation mapping is considered in
this paper to design a new kind of neural structure that involves a more sophisticated architec-
ture. The ability of the proposed neuron, which is called high power neuron (HPN), is shown
through solving different synthetic 2-dimensional examples, which are solved manually. The
motivation is to visualize what the proposed approach claims. Moreover, the effectiveness of
the proposed HPN in solving the real-world classification problems is shown by solving the
well-known Iris data classification problem. It should be mentioned that in this paper, we just
focus on a particular class of neural networks, whose neuron structure consists of activation
functions and aggregation mappings. This structure is discussed with details in Sect. 2.

The rest of the paper is organized as follows. In Sect. 2, the conventional neuron structure
is described, and it is shown that how a conventional neuron solves a classification prob-
lem. In Sect. 3, the proposed general neuron structure is discussed based on nonmonotonic
activation functions and nonlinear input mappings. Finally, conclusion is presented in Sect. 4.

2 Preliminaries

In this section, conventional neuron architecture is presented and the way that a network with
combination of conventional neurons solves a classification problem is discussed. Figure 1
shows a conventional neuron structure, which is used in MLP neural networks. Generally, in
MLP neural networks, a neuron can be decomposed into two fundamental parts: aggregation
mapping and activation function.

Aggregation mapping is a mathematical transformation that takes the input vector and
maps it into the net input. Let X = [x1, x2, . . . , xm]T is the input sample; the net input of
hidden unit is given by:

n =
m∑

i=0

ωi xi = W X + b (1)

where W = [W1, W2, . . . , Wm]T is a constant weight matrix, ω0 = b is called the bias,
and x0 = 1. n is called the hidden basis function. After the aggregation mapping, the neuron
produces an output using an activation function. This activation function transforms the value
produced by the aggregation mapping to the neuron output, as formulated in Eq. (2).

y = f (n) = f (W X + b) (2)
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Fig. 2 Conventional monotonic activation functions (Left hard-limiter as a nonsmooth case, Right Sigmoid
as a smooth case)

Fig. 3 Conventional neuron as a binary classifier

As mentioned in Sect. 1, in most of conventional applications, f is a monotonic function
(or semi-monotonic for discontinuous functions) such as sigmoid and hard-limiter functions
(Hagan et al.) as shown in Fig. 2.

Now, let us consider how a conventional neuron solves a classification problem. Equation
W X + b = 0, which is obtained from setting basis function of hidden unit equal to zero,
is a hyper plane over an m-dimensional input space. It is well known that a hidden neuron
with monotonic activation functions generate a single hyperplane, which divides the input
space into two regions. As an example, consider a hyperplane (line) shown in Fig. 3a over
a 2-dimensional input space. As Fig. 3 indicates, the input samples are located either at the
positive side of the hyperplane or at the negative side of the hyperplane. The vector of a
hyperplane, W , points to the positive side. So, regarding Fig. 3a and Eq. (1), for the samples
located at the positive side, we have n > 0, and for the samples located at the negative side,
we have n < 0. Thus, given an input vector X a conventional neuron can easily classify it by
considering the sign of basis function, n. When the net input of a pattern fell to the positive
side of hyperplane, the output of neuron is positive, while patterns that fell to the negative
side results in a negative output.

So, an activation function such as the ones of Fig. 2 is used to detect the sign of n. As
a result, a conventional neuron can be used for binary classification problems if the given
patterns can be classified by only one line (hyper plane) such as Fig. 3b.
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A general insight into the effect of neuron structure on classification 139

Fig. 4 Solving XOR problem using 3 conventional neurons as a 2-2-1 MLP network

The combination of several of these hyperplanes can give rise to complex classifications.
For example, consider XOR problem that cannot be solved by a single conventional neuron.
In other words, XOR problem is not separable by a single line, while a conventional neuron
only provides a single line. Thus, more than one neuron must be used. Figure 4 shows a
two-layer MLP with two neurons in the hidden layer and one neuron at the output layer. The
hard-limit function as a monotonic activation function is used in this case. In fact, this is the
smallest MLP neural network that can be constructed by conventional neurons for solving
XOR problem. The two neurons of the hidden layer create two lines in the input space, which
classify the input space into three parts. These three parts are characterized by vector [a1, a2]T

as [0, 1]T , [0, 0]T and [1, 0]T. In other words, the hidden layer plays the role of a nonlinear
mapping that maps [x1, x2]T (input space) to [a1, a2]T (new space). Now, in the new space,
the set of patterns

{(
[0, 1]T , 1

)
,
(
[1, 0]T , 1

)
,
(
[0, 0]T , 0

)}
are linearly separable. Figure 4b

indicates how the single conventional neuron (single line) of output layer can easily classify
these patterns. We can see that three conventional neurons are required to solve XOR prob-
lems. This implies that 9 unknown parameters of the network must be determined through
learning since each conventional neuron has 3 unknown parameters. In the next section, we
discuss how a powerful neuron structure called high power neuron (HPN) is able to solve
XOR problem singly.
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Fig. 5 HPN structure

3 The proposed high power neuron (HPN)

Figure 5 indicates HPN structure, where in contrast to conventional structure, the aggre-
gation mapping and activation functions are allowed to be nonlinear and nonmonotonic,
respectively. In the following, first, the importance of nonmonotonic activation functions
and nonlinear aggregation is described, separately. Then, the combination of nonmonotonic
activation function and nonlinear aggregation is described.

3.1 Nonmonotonic activation functions

Regarding Figs. 1 and 2, activation function of a conventional neuron is usually a monotonic
function, such as hard-limit or sigmoid functions. As discussed in the former section, a hid-
den neuron with monotonic activation functions generates a single hyperplane that divides
the input space into two regions discriminated by the sign of basis function of neuron, n.
In conventional neuron, only this property of basis function is usually considered, while it
is very important to note that for a given input sample, the value of basis function, n, also
determines the distance of the given input sample from the hyperplane. Thus, how can we
divide the space into more than two regions by exploit this significant property?

Suppose, we use fsqu(n) defined by Eq. (3) instead of the monotonic functions of Fig. 2.

fsqu(n) =
⎧
⎨

⎩

1 n ∈ (0, a1) ∪ (a2, a3) ∪ (
â2, â1

) ∪ . . .

0 n = . . . , â1, 0, a1, a2, . . .

−1 n ∈ (
â1, 0

) ∪ (a1, a2) ∪ (a3, a4) ∪ .

(3)

Figure 6a displays fsqu(n). Regarding this figure, this nonmonotonic function fsqu(n) is not
only sensitive to the sign of basis function, while the value of basis function (distance from
the line) is severely considered in this function. For example, fsqu(n)is +1 in intervals of
0 < 0 < a1, a2 < n < a3, â2 < n < â1... and is −1 in â1 < n < 0, a1 < n < a2. If
fsqu(n) is used as the activation function of the neuron of Fig. 1, then using this new neuron,
the input space is divided into more than two parts as shown in Fig. 6b. Regarding this figure,
it seems that the HPN creates a family of parallel lines instead of a single line. This set of
parallel lines is obtained from solving the following equation:

fsqu(n0) = 0
more than one root⇒ n0 ∈ . . . ,

�
a1, 0, a1, a2, . . . (4)

Since n0 is not unique, according to W X + b = n0, different parallel lines are created
only by using a nonmonotonic activation function instead of monotonic ones. It should
be noted that various nonmonotonic activation functions with interesting properties can be
defined. The discontinuous behavior of fsqu versus n is similar to hard-limiter. In contrast,
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A general insight into the effect of neuron structure on classification 141

Fig. 6 fsqu(n) as a nonmonotonic activation function defined by Eq. (3)

various nonmonotonic activation functions can be used such as sinusoidal functions (periodic
nonmonotonic activation functions), Gaussian functions, polynomial functions, which have
continuous behavior versus n as similar as sigmoidal activation functions.

Now, we return to XOR problem and solve it by a single neuron with nonmonotonic acti-
vation function. Consider a single neuron of Fig. 1 when the activation function is a special
case of fsqu(n) represented by fpulse(n) and defined as follows:

fpulse(n) =
⎧
⎨

⎩

1 n < −1
0 − 1 ≤ n ≤ 1
−1 n > 1 . . .

(5)

So, using the above discussions, two parallel lines can be achieved as later:

w1x1 + w2x2 = −1 and w1x1 + w2x2 = 1 (6)

By choosing W = [2, 2] and b = −2 and regarding Fig. 7, this neuron can singly solve XOR
problem. Now, we can see that XOR problem can be solved by only one neuron instead of
three conventional neurons. Note that many other functions can be used instead of fpulse(n)

like periodic version of fsqu(n) represented by fpulse(n) and defined as later:

fpsqu(n) =
+∞∑

k=−∞
fpulse(n − 3k) (7)

In the following, we consider three further simulation examples that are much more complex
than XOR problem.

3.1.1 Example 1: two rings of points classification problem

Consider a data set composed of two rings of points as in Fig. 8. An MLP classifier must
create separation hyperplanes among two classes to classify them. This example shows the
importance of choosing the type of activation functions. First, we discuss how a neural net-
work with hard-limit activation functions, as a monotonic activation function can solve this
problem. Hence, assume that we use hard-limit activation functions in both hidden and output
nodes. For the neurons with hard-limiter activation function, the hyperplanes given by the
hidden basis functions with values 0 (n = 0) are the decision boundaries, and the decision
regions have no change when all of the weights and biases change in same proportion ([4]).
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Fig. 7 Solving XOR problem by only one neuron with the nonmonotonic activation function of fpulse(n)

Fig. 8 Two rings of points
classification problem

So, it may seem that we can separate two classes by using three hidden neurons to create
three separation hyperplanes in the input space among two classes. We aim to recognize
whether this problem can be solved by a 2-3-1 MLP with hard-limit activation functions or
not. Figure 9 shows the best possible response obtained from this MLP.

It is obvious that the three hyperplanes shown in Fig. 9, which are the decision boundaries
created by this activation function, cannot correctly classify these two classes. If we use a
2-4-1 perceptron, instead, this problem still cannot be solved. As we expect, the four hidden
neuron create four decision hyperplanes in the input space that can separate two classes in
the input space, but the two classes are still nonlinearly separable in the spaces spanned by
the hidden responses. In fact, the number of neuron in hidden layer is not sufficient to make
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Fig. 9 This problem cannot be
solved by any 2-3-1 MLP with
hard-limit activation functions

Fig. 10 MLP with fpulse(n),
activation function to solve two
rings of points classification
problem

two classes linearly separable in the spaces spanned by the hidden responses. By increasing
the number of hidden neurons into 6, these two classes separate linearly by output neuron
and this classification problem can be solved.

Now, consider MLPs with nonmonotonic activation function, fpulse(n), described in
Sect. 3, to solve this problem. Then, we will show that an MLP network with two hidden
neurons and one output neuron can classify these two classes. Figure 10 shows a 2-2-1 MLP
with fpulse(n) activation function, which is used to solve two rings of points classification
problem.

Figure 11 shows how this network classifies them. Each activation functions create two
hyperplane in the input space, and pattern whose net input is within two hyperplanes will
give positive output, while all others give a negative output.

It is obvious that the input space transformed into a two-dimensional space where two
classes are linearly separable in this space. The same results can be obtained by using sinu-
soidal activation functions. If the activation functions are sinusoidal, the number of regions is
infinite, but there are only finite regions that patterns are located. In these regions, the outputs
neurons are completely similar to the fpulse(n), activation functions described by Eq. (5).

Consequently, if nonmonotonic activation functions such as those described by Eq. (5)
and sinusoidal activation functions are used, an MLP with two hidden nodes and one output
node can easily solve this problem. On the other hands, if monotonic activation functions
such as hard-limit and sigmoid one are used, we must use an MLP with a larger structure.
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Fig. 11 Solving two rings of points classification problem by a 2-2-1 MLP with the nonmonotonic activation
function of fpulse(n)

Table 1 Comparing the
architectural details of the
networks needed for classifying
two rings of points classification
problem

Hard-limit fpulse(n) Sinusoidal

No. of hidden neurons 6 2 2

No. of adjustable parameters 25 9 9

Fig. 12 Solving four classes classification problem by an MLP with two nonmonotonic activation functions
of type fpulse(n)

Table 1 compares the structure of MLPs for these activation functions in terms of number of
hidden nodes and number of parameters needed to be updated.

3.1.2 Example 2: a multi-class classification problem

Consider data set shown in Fig. 12. There are four Gaussian distributed classes of patterns.
An MLP classifier must create separation hyperplanes among four classes to classify them.
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Fig. 13 MLP with
nonmonotonic activation function
of type fpulse(n) for solving a
four-class classification problem

Table 2 Comparing the
architectural details of the
networks needed for four classes
classification problem

Hard-limit fpulse(n) Sinusoidal

No. of neurons 6 2 2

No. of adjustable parameters 17 6 6

It may seem that we can separate two classes by using three hidden nodes to creating four
separation hyperplanes in the input space between two classes. An MLP of 2-4-2 structure
can successfully classify these four classes.

Now, we want to solve this problem using an MLP with nonmonotonic activation func-
tions. Then, we will show that a network with only two neurons without any need to hidden
neuron can classify these two classes. Figure 13 shows MLP with activation function of
fsqu(n), which is used to solve this problem.

Figure 12 shows how two neurons separate the input space into regions. Table 2 shows
the output of each neuron in each of four regions where each region is candidate of a class.
It confirms that these two neurons can easily solve this problem.

3.1.3 Example 3: HPN in the output layer

As discussed in Sect. 2, hidden layer(s) can be totally considered as a mapping that maps the
input space to a new space called hidden space. In other words, by this mapping, new patterns
called hidden patterns in the hidden space are achieved from the original patters in the input
space. Then, the output layer must solve a new classification problem including classifying
of hidden patterns. In most previous researches that the authors use nonmonotonic activation
functions, they only use nonmonotonic functions in the hidden neuron. But in some classi-
fication problems, using a nonmonotonic activation function in the output layer reduces the
required number of hidden neuron to solve the problem and consequently decreases the com-
plexity of network. Suppose the binary classification problem depicted in Fig. 14. Suppose,
we use a neural network with two hidden neurons with hard-limit activation function and
one output neuron. Figure 15a shows that the patterns in the hidden space, which obtained
from hidden layer mapping, are not linearly separable. If we use a neuron with hard-limiter
activation function at the output layer, hidden patterns must be separable by only one line.
Because of this limitation, we need to increase the number of neurons of the hidden layer
until the hidden patterns can be separated by only one line. This limitation is not desirable
since the complexity of training process significantly increases by adding neurons to hidden
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Fig. 14 A binary classification
problem

layer. In contrast to conventional neuron, if the proposed neuron is used in the output layer,
then the hidden patterns do not need to be separable by only one line since some nonlinear
classification problems can be solved by only one HPN. For the problem in hand, it is clear
that the patterns in the hidden space are like an XOR problem that can be easily separable
by one HPN, and there is no need to increase the number of neurons in the hidden layer.
Figure 15b shows the architecture of this network.

3.2 Nonlinear aggregation

In the previous section, we considered the positive role of using nonmonotonic activation
functions in comparison with monotonic activation functions. Now, we aim to improve the
structure of conventional neuron more by analyzing the effect of nonlinear aggregation map-
ping that can be compared with that of linear aggregation. As already discussed, aggregation
mapping is a transformation over input vector and net input n. In the conventional neuron,
aggregation is the linear mapping of Eq. (1). Consider the classification problems of Fig. 16.
It is obvious that these problems cannot be classified using a single line. In other words,
the conventional neuron of Fig. 1 cannot individually solve this problem, and a network of
conventional neuron is required. In the following, a special nonlinear aggregation mapping is
proposed to solve a special class of classification problems. Note that several nonlinear aggre-
gation mapping can be presented, but we consider only one of them for analyzing the effect
of nonlinear input mapping in forming the decision boundaries in classification problems.

Now, consider the neuron of Fig. 17 with the following nonlinear aggregation mapping
(Eq. (8)) and hard-limiter activation function:

n = a1xn1
1 + a2xn2

2 + b (8)

Where n1, n2, a1, a2 and b are adjustable parameters of mapping and can be real numbers.
By changing the values of parameters of this mapping, various interesting and applied deci-
sion boundaries can be created that some of them are displayed in Fig. 18. Figure 16 shows
some examples of nonlinear classification problems, which can be individually solved by
neuron of Fig. 17.

It should be noted that, in addition to the values of parameters, the type of atomic func-
tions, e.g., sin(.), exp(.), (.)r , . . ., and composite operators (e.g., +, −,×,÷) which form the
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Fig. 15 a The patterns in the hidden space which obtained from hidden layer mapping are not linearly
separable (similar to XOR problem). b HPN in the output layer

aggregation mapping can also be considered as decision variables and optimally determined
through the training process.

3.3 HPN with nonlinear aggregation and nonmonotonic activation functions

In the previous two sections, we separately discussed the advantages of nonlinear aggrega-
tion mappings and nonmonotonic activation functions. The examples of previous sections
demonstrate that if a neuron is equipped by each of these components, a powerful neuron
is created that can individually solve many nonlinear classification problems that cannot be
solved even by a network of conventional neurons if the number of neurons is not large
enough. For more complex problems, combining nonlinear aggregation and nonmonotonic
activation functions leads to creation of a more powerful neuron that benefits the advantages
of both of these components, and thus, more complex classification problems can be solved.
An example of this neuron is shown in Fig. 19. Using a nonlinear aggregation mapping and
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Fig. 16 The neuron of Fig. 17 can singly solve many nonlinear classification problems

Fig. 17 Neuron with nonlinear
aggregation mapping of Eq. (8)
and hard-limiter activation
function

a nonmonotonic activation function, a set of open or closed curves can be created. Figure 20
shows sample nonlinear classification problems that can be individually solved by the neuron
of Fig. 19.

3.4 Evolutionary learning rule

In previous sections, we discuss the superiority of the proposed HPN, without any explanation
of how we can find the weights of HPN. Generally, we can use any learning rule used for con-
ventional neural network. Gradient descents are the most elegant and precise methods to learn
neural network. However, gradient descent methods have the possibility of getting trapped at
local optimum. Population-based search algorithms such as genetic algorithms (GA) ([15])
are found to have a better global perspective than the traditional methods in complex opti-
mization problems. Among the advantages of GA in learning of neural networks are: (1) the
objective function’s gradient is not required. So, it can be used for nonderivative activation
function, such as hard-limit and those introduced by Eq. (5); (2) it is not sensitive to starting
point, and (3) it usually does not get stuck into so-called local optima. Based on these advan-
tages, one can use GA to learn HPN neural networks. Implementation of the GA to determine
the weights of the neural network has three basic stages: fitness evaluation, selection, and
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Fig. 18 By changing the values of parameters of nonlinear aggregation mapping of Eq. (8), various interesting
and applied decision boundaries can be created

Fig. 19 Neuron with
aggregation mapping of Eq. (8)
and nonmonotonic activation
function of Fig 6

breeding. Fitness evaluation needs the evaluating of the performance of all individuals in
the population. Here, an individual is considered to be a separate set of network weights,
with the fitness of the individual being a measure of the network’s performance when these
weights are being used for classification task. The population then consists of a collection
of these individuals. Selection involves killing a given proportion of the population based
on probabilistic “survival of the fittest”. Killed individuals are replaced by children, who are
created by breeding the remaining individuals in the population. For each child produced,
breeding first requires probabilistic selection of two parent individuals, getting a more chance
to fitter individuals to be chosen. Then, by applying of the crossover and mutation operators
on the parent pair produces the new child. The crossover operator combines the information
contained in two parent strings (i.e., two sets of network weights) by probabilistic copying
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Fig. 20 The neuron of Fig. 19 can singly solve many nonlinear classification problems

of information from either parent to each corresponding string element of the child being
produced. Mutation gives the algorithm a random search capability by random alterations of
the network weights. GA iteratively improved the set of tentative solutions by applying the
aforementioned stages to find a good solution.

3.5 Solving Iris data classification problem

While the main idea behind this paper is to show how the neuron structure in an MLP can
affect the ability of neurons to deal with classification, it was shown in the previous sections
by some 2-dimensional examples to visualize how the number of neurons can be reduced by
choosing an appropriate neuron structure; however, in this section, in order to demonstrate
the efficiency of the proposed approach in solving real-word problems, the well-known Iris
data classification problem is considered. Iris is a benchmark data set first adopted by Fisher,
a well-known statistics, to his discriminant experiment in 1936, and having been used by a
lot of researchers for evaluating the performances of various classification methods. The Iris
flower data consists of 50 samples from each of three species of Iris flowers as Iris setosa,
Iris virginica, and Iris versicolor. Four features were measured from each sample including
the length and the width of sepal and petal (UCI Machine Learning Repository). We take the
first 25 patterns of every class (75 in all), to form the training set, and the others form the
test set, in the same way as Daqia and Genxinga [3]. In the study by Daqia and Genxinga
[3], the Iris classification problem is solved with an MLP network of size 4-3-3 with two
well-known types of different activation functions, namely the hyperbolic tangent tanh (x)

and the sigmoid (1+exp(−x))−1. The classification correction rates of both networks for the
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Fig. 21 Nonmonotonic
activation function used in the
MLP of Fig. 22

Fig. 22 The MLP which is used for solving Iris classification problem using the nonmonotonic activation
function of Fig. 21

training set were 100% and for the testing set were 93.33. Now, we use an MLP network with
nonmonotonic activation function presented in Fig. 21, to solve this classification problem.
Figure 22 shows the MLP that can solve Iris classification problem. The network has only
two hidden neurons. All activation functions are same and nonmonotonic as introduced in
Fig. 21. GA algorithm described in the previous section is used to find the weights and biases
of the MLP of Fig. 22. The optimal values of weights and biases found by GA are listed
in Table 3. The result is shown in Table 3. Using these optimal values, the MLP of Fig. 22
can correctly recognize all of 75 samples of training set and 70 samples of 75 samples of
testing set. This means a recognition rate of 100% for training set and 93.33% for testing set.
Comparing the results obtained by HPN with that of the hyperbolic tangent and the sigmoid
activation functions, this example demonstrates HPN can decrease the complexity of MLP
while preserving the performance.

4 Conclusion

A general neuron structure that involves a more sophisticated architecture, including possi-
ble nonlinear aggregations in neuron input mapping and nonmonotonic activation functions,
was proposed. The examples, to visualize how the number of neurons, can be reduced by
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Table 3 Optimal values of weights and biases of the MLP of Fig. 22

w1 w2 w3 w4 w5 w6 w7 w8

0.1383 −0.4601 0.6460 −0.5833 0.3732 0.2545 −0.4780 −0.6181

w9 w10 w11 w12 b1 b2 b3 b4

−0.5522 0.7304 −0.1264 0.4139 0.5292 0.3940 0.4441 −0.1043

choosing an appropriate neuron structure, and some 2-dimensional examples were provided
and solved manually. Moreover, to show the efficiency of the proposed scheme in solving
real-world classification problems, the Iris data classification problem was solved using an
MLP whose neurons are equipped by nonmonotonic activation functions. The presented sim-
ulation examples and our solution to Iris data classification problem demonstrated that how
the proposed general neuron structure can often improve the ability of neurons to deal with
classification problems.
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