
Neurocomputing 74 (2011) 2062–2071
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

n Corr

E-m

pakdam
journal homepage: www.elsevier.com/locate/neucom
Unsupervised kernel least mean square algorithm for solving ordinary
differential equations
Hadi Sadoghi Yazdi a,n, Morteza Pakdaman b, Hamed Modaghegh a

a Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
b Sama Technical and Vocational Training College, Islamic Azad University, Mashhad Branch, Mashhad, Iran
a r t i c l e i n f o

Article history:

Received 17 February 2010

Received in revised form

12 December 2010

Accepted 17 December 2010
Communicated by N.T. Nguyen
approaches in literature to solve ODEs but the new approach has more advantages such as simple
Available online 7 April 2011

Keywords:

Unsupervised learning

Kernel least mean square

Ordinary differential equation

Neuro-fuzzy approach
12/$ - see front matter Crown Copyright & 2

016/j.neucom.2010.12.026

esponding author.

ail addresses: h-sadoghi@um.ac.ir (H. Sadogh

an.m@gmail.com (M. Pakdaman).
a b s t r a c t

In this paper a novel method is introduced based on the use of an unsupervised version of kernel least

mean square (KLMS) algorithm for solving ordinary differential equations (ODEs). The algorithm is

unsupervised because here no desired signal needs to be determined by user and the output of the

model is generated by iterating the algorithm progressively. However, there are several new

implementation, fast convergence and also little error. Furthermore, it is also a KLMS with obvious

characteristics. In this paper the ability of KLMS is used to estimate the answer of ODE. First a trial

solution of ODE is written as a sum of two parts, the first part satisfies the initial condition and the

second part is trained using the KLMS algorithm so as the trial solution solves the ODE. The accuracy of

the method is illustrated by solving several problems. Also the sensitivity of the convergence is

analyzed by changing the step size parameters and kernel functions. Finally, the proposed method is

compared with neuro-fuzzy [21] approach.

Crown Copyright & 2011 Published by Elsevier B.V. All rights reserved.
1. Introduction

Differential equations are basic structure in representation of
engineering problems. Many problems in science and engineering
can be reduced to a set of differential equations (DEs) through a
process of mathematical modeling. In most cases it is not easy to
obtain the exact solutions of DEs, so numerical methods must be
applied. There are a lot of mathematical methods to solve DEs,
such as the finite difference method (FDM) and the finite element
method (FEM). These methods require the definition of a mesh
(domain discretization) where the functions are approximated
locally. The construction of a mesh in two or more dimensions is
not a simple problem. Usually, in practice, only low-order approx-
imations are employed resulting in a continuous approximation of
the function across the mesh but not its partial derivatives. The
discontinuity of the approximation of the derivative can adversely
affect the stability of the solution. While higher-order schemes are
necessary for more accurate approximations of the spatial deriva-
tives, they usually involve additional computational cost. To
increase the accuracy of the low-order schemes, it is required that
the computational mesh refined with a higher density of elements
011 Published by Elsevier B.V. All

i Yazdi),
in the regions near the contours. This, however, is also achieved at
the expense of increased computational cost, thus although these
methods have been highly successful, they require time-consum-
ing procedures to build numerous volumetric elements and solve
large-size linear systems of equations (see [19]).

In recent years, researches tried to find new methods. The main
new proposed method was based on the use of neural network
models. Neural network methods in comparison with other numerical
methods have more advantages. Most other techniques offer a discrete
solution (for example predictor–corrector, or Runge–Kutta methods)
or a solution of limited differentiability (for example finite elements)
while the solution of DE in neural network methods are differentiable
and continuous. The methods which are based on the use of neural
network can be realized in hardware and hence offers the opportunity
to tackle in real time difficult differential equation problems arising in
many engineering applications (e. g. see [10,17,22]).

The least mean squares (LMS) algorithm which is used in
adaptive supervised learning immensely (from system identification
to channel equalization) was introduced by Widrow and Hoff in
1959 [1]. The LMS algostochastic gradient instead of the determi-
nistic gradient used in the method of steepest descent. On the other
hand in recent years, kernel methods are applied successfully in
classification, regression problems and generally machine learning
(support vector machines (SVM) [2], regularization networks [3],
kernel principal component analysis (K-PCA) [4], kernel independent
component analysis (K-ICA) [5]). Kernel methods have been used to
rights reserved.

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2010.12.026
mailto:h-sadoghi@um.ac.ir
mailto:pakdaman.m@gmail.com
dx.doi.org/10.1016/j.neucom.2010.12.026


H. Sadoghi Yazdi et al. / Neurocomputing 74 (2011) 2062–2071 2063
extend linear adaptive filters expressed in inner products to non-
linear algorithms [6,2]. Pokharel et al. [6] and Liu et al. [7] have
applied this ‘‘kernel trick’’ [2] to the least mean square (LMS)
algorithm [8,9] to attain a nonlinear adaptive filter in reproducing
kernel Hilbert spaces (RKHS), which they have coined kernel least
mean square (KLMS). Modaghegh et al. [29] introduced normalized
kernel least mean square (NKLMS) algorithm which has applications
in system modeling and pattern recognition. Their method
improved the convergence speed of KLMS and system tracking.
Furthermore, they applied the proposed algorithm to channel
modeling. Ghafarian and Sadoghi Yazdi [30] used kernel least mean
square features for HMM-based signal recognition. Kivinen et al.
[32] considered online learning in a reproducing kernel Hilbert
space. By considering classical stochastic gradient descent within a
feature space and the use of some straightforward tricks, they
developed simple and computationally efficient algorithms for a
wide range of problems such as classification, regression, and
novelty detection. There are some other applications of KLMS (e.g.
[33,34]). Yang and Cui [31] introduced a new algorithm for giving
the approximate solution of a class of nonlinear integro-differential
equations in the reproducing kernel space. Considering KLMS
algorithm as a learning approach guides us to use it similar to
neural networks and neuro-fuzzy systems however, with kernel
capacities. In the previous work [21] we used an unsupervised
version of adaptive neuro-fuzzy inference system (ANFIS) for solving
differential equations. In this paper we propose a new unsupervised
algorithm to solve DEs by the use of KLMS algorithm.

1.1. Related works in neural networks

In recent years, several approaches are proposed to solve
ordinary differential equations (ODEs) as well as partial differ-
ential equations (PDEs). We consider a general differential equa-
tion which is given by (1)

G x,yðxÞ,ryðxÞ,r2yðxÞ,. . .
� �

¼ 0, xADDRn, ð1Þ

where y(x) denotes the solution, G is the function that defines the
structure of the differential equation, r is some differential
operator, and D is the problem domain. The basic idea, called
collocation method, is to discretize the domain D over a finite set
of points D. Thus (1) becomes a system of equations. An approx-
imation of the solution y(x) is given by the trial solution yt(x). As a
measure for the degree of fulfillment of the original differential
equation (1) an error function similar to the mean squared error is
defined:

E¼
1

Dj j

X
xi AD

Gðxi,yt ,ryt ,r
2yt ,. . .Þ

h i2
ð2Þ

Therefore, finding an approximation of the solution of (1) is
equal to finding a function which minimizes the error E. Since
multilayer feed forward neural networks are universal approx-
imators [11] the trial solution yt(x) can be represented by such an
artificial neural network as (3) (see [11])

ytðxÞ ¼ AðxÞþFðx,Nðx,pÞÞ ð3Þ

where A(x) contains no adjustable parameters and satisfies the
boundary conditions and F(x,N(x,p)) is a single output feed
forward neural network with input vector x and adjustable
parameters p. Thus the problem is reduced to finding a config-
uration of weights, corresponding to the neural network archi-
tecture, that minimizes (2). As E is differentiable with respect to
the weights for most differential equations, efficient, gradient-
based learning algorithms for artificial neural networks can be
employed to minimize (2). In recent years, neural network based
approaches are presented to solve differential equation as follows.
Lagaris et al. [10] used neural networks to solve ODEs and
PDEs. They used multilayer perceptron in their network archi-
tecture. Shekari Beidokhti and Malek [22] proposed a hybrid
method based on artificial neural networks, minimization tech-
niques and collocation methods to solve a general system of time
dependent partial differential equations. They also applied the
method to solve high order differential equations [17]. Another
hybrid method which creates trial solutions in neural network
form using a scheme based on grammatical evolution was
proposed by Tsoulos [23]. Multilayer perceptron and radial basis
function (RBF) neural networks with a new unsupervised training
method proposed in [24] for numerical solution of partial differ-
ential equations. Smaoui and Al-Enezi analyzed dynamics of two
nonlinear partial differential equations known as the Kuramoto–
Sivashinsky (K–S) equation and the two-dimensional Navier–
Stokes (N–S) equations using Karhunen–Loeve (K–L) decomposi-
tion and artificial neural networks [12]. In [13], Brause used
differential equations for modeling of biochemical pathways and
these equations were solved using neural networks. In [14], Hea
et al. used feed forward neural network with the extended back
propagation algorithm to solve a class of first-order partial
differential equations for input-to-state linearizable or approx-
imate linearizable systems. The use of neural networks not only
limited to solve ODEs but also extended to solve fuzzy differential
equations. The authors of the current paper, applied a mulilayer
perceptron to solve fuzzy differential equations in [25]. Also
Manevitz et al. [15] presented basic learning algorithms and the
neural network model to the problem of mesh adaptation for the
finite-element method to solve time-dependent partial differen-
tial equations. Time-series prediction via the neural network
methodology was used to predict the areas of ‘‘interest’’ in order
to obtain an effective mesh refinement at the appropriate times.
Leephakpreeda [16] presented fuzzy linguistic model in neural
network to solve differential equations and applied it as universal
approximators for any nonlinear continuous functions. In another
work, Mai-Duy and Tran-Cong [18] presented mesh-free proce-
dures to solve linear differential equations, ordinary differential
equations and elliptic partial differential equations based on
multi-quadric radial basis function networks. Also Jianyu et al.
[19] described a neural network to solve partial differential
equations which the activation functions of the hidden nodes
were the radial basis functions (RBF) whose parameters were
learnt by a two-stage gradient descent strategy (see [28]). Also
solving differential equation using neural network was applied to
real problems such as a non-steady fixed bed non-catalytic solid/
gas reactor [20].

The new proposed method against the past that are based on
neural networks and also our previous work [21] which was
based on neuro-fuzzy algorithm, uses unsupervised KLMS
(UKLMS) to solve differential equations. In the end of this paper,
we compare the results of this paper with the results in [21].

1.2. Motivation

KLMS is a new algorithm, which was proposed in 2007 with
high ability in learning area, but for solving DE we need an
unsupervised version of KLMS which we present it in this work.
Also KLMS can be described as an ideal ANFIS (which it is not
possible to implement practically), furthermore, the use of unsu-
pervised KLMS (UKLMS) is a new concept in solving DEs such that,
it can be implemented easily with a fast convergence. Some of the
main advantages of the new proposed method are as follows:
�
 Simple implementation.

�
 As it can be observed in Section 3 the method has a fat

convergence.



H. Sadoghi Yazdi et al. / Neurocomputing 74 (2011) 2062–20712064
�
 The algorithm is unsupervised because no desired signals need
to be determined by user.

�
 In comparison with mathematical methods, the new method

has the advantages that the solution of DE is differentiable and
continuous such that we can calculate the answer at every
point in the training interval.

�
 In comparison with the neural network based methods, which

need an optimization step to improve the corresponding
weights of the network, the new method does not need an
optimization step and the parameters of the KLMS algorithm
are improved via a recursive scheme.

The paper is organized as follows. The basic requirements of
KLMS and the formulation of the new method are presented in
Section 2. Experimental results and error analysis are discussed in
Section 3 and finally Section 4 contains concluding remarks.
2. Unsupervised kernel least mean square (UKLMS) in DE
solving

In this section, first we introduce the LMS and KLMS algo-
rithms, and then describe the new proposed UKLMS algorithm.

2.1. The KLMS algorithm

In 1959, the LMS algorithm was introduced as a simple way of
training a linear adaptive system with mean square error mini-
mization. An unknown system – K(n) – is to be identified and the
LMS algorithm attempts to adapt the filter K̂ðnÞ to make it as close
as possible to K(n). The algorithm uses x(n) as the input, d(n) as
desired output and e(n) as calculated error.

LMS uses steepest-descent algorithm to update the weight
vector so that the weight vector converges to optimum Wiener
solution. Updating weight vector is applied based on the follow-
ing rule:

wðnþ1Þ ¼wðnÞ�m0 � rwe2ðnÞ ð4aÞ

where w(n) is the weight vector, m0 is the step size, x(n) is the
input vector and e(n)¼d(n)�K(n), thus considering the filter
output K by K(n)¼w� x(n) then (4a) can be rewritten as

wðnþ1Þ ¼wðnÞþ2m0 � eðnÞ � xðnÞ ð4bÞ

Successive corrections of the weight vector eventually leads to
the minimum value of the mean squared error. You can find
further information about LMS in [1]. On the other hand, Kernel
methods are applied to map the input data into a high dimen-
sional space (HDS). In HDS a variety of methods can be used to
find linear relations in the data. Mapping procedure is handled by
F functions (Fig. 1).

Kernel functions help the algorithm to handle the converted
input data in the HDS ever without knowing the coordinates of
Fig. 1. Kernel estimation system.
data in that space; simply by computing the kernel of input data
instead of calculating the inner products between images of all
pairs of data in HDS. This method is called the kernel trick.

As presented in [7] estimation and prediction of some time-
series could be optimized with a new approach, named KLMS. The
basic idea is to perform the linear LMS algorithm in the kernel
space

Oðnþ1Þ ¼OðnÞþm� eðnÞ �jðxðnÞÞ ð5Þ

where O(n) is weight vector in the HDS and for simplicity m¼2m0.
The estimated output K(n) will be calculated by

KðnÞ ¼/OðnÞ,jðxðnÞS ð6Þ

Fig. 1 shows the input vector x(n) being transformed to the
infinite feature vector ^(x(n)), whose components are then
linearly combined by the infinite dimensional weight vector.
Non-recursive type of Eq. (5) can be written as

OðnÞ ¼Oð0Þþm
Xn�1

i ¼ 0

eðiÞFðxðiÞÞ ð7aÞ

By choosing O(0)¼0

OðnÞ ¼ m
Xn�1

i ¼ 0

eðiÞFðxðiÞÞ ð7bÞ

Based on Eqs. (6) and (7b):

KðnÞ ¼/OðnÞ �FðxðnÞÞS

¼/m
Xn�1

i ¼ 0

eðiÞFðxðiÞÞ,FðxðnÞÞS

¼ m
Xn�1

i ¼ 0

eðiÞ/FðxðiÞÞ,FðxðnÞÞS ð8Þ

We can use kernel trick here to calculate K(n). Kernel functions
help the algorithm to handle the converted input data in the HDS
ever without knowing the coordinates of data in that space;
simply by computing the kernel of input data instead of calculat-
ing the inner products between images of all pairs of data in HDS.
This method is called the kernel trick

KðnÞ ¼ m
Xn�1

i ¼ 0

eðiÞkerðxðiÞ,xðnÞÞ ð9Þ

and (9) is the main equation in Kernel LMS algorithm. As error of
system reduces by time, we can ignore the e(n) after x sample and
predict new data with previous error:

KðnÞ ¼ m
Xx
i ¼ 0

eðiÞkerðxðiÞ,xðnÞÞ ð10Þ

This change decreases the complexity of algorithm. After that,
we can train the model of system with fewer numbers of data and
use it to predict new data. Now if we rewrite (10) with finite
training data then we will have

Kðx,PÞ ¼ Kðx,ðE1�z,X1�zÞÞ ¼ m
Xx
i ¼ 0

eðiÞkerðxðiÞ,xðnÞÞ ð10aÞ

where P is the parameter of KLMS model that includes
(E1� z,X1� z) and x is the new input data. E is error vector which
can be obtained after training the model with x input data, and X

is the vector of input learning. By using (10a) we can calculate the
output of KLMS for each input data x.



H. Sadoghi Yazdi et al. / Neurocomputing 74 (2011) 2062–2071 2065
2.2. Proposed UKLMS algorithm for solving DEs

A linear differential equation (DE) with constant coefficients
can be expressed in the following form:

an
dnyðxÞ

dxn
þan�1

dn�1yðxÞ

dxn�1
þ � � � þa0yðxÞ ¼ voðxÞ, xA a,b

� �
ð11Þ

where an,y,a0 are constant coefficients and [a,b] is the problem
domain. The n�1 necessary initial or boundary conditions for
solving above DE are

yð0Þ ¼ y0
0, yð1Þð0Þ ¼ yð1Þ0 ,. . .,yðn�1Þð0Þ ¼ yðn�1Þ

0

or

yðx0Þ ¼ yx0
, yðx1Þ ¼ yx1

,. . .,yðxnÞ ¼ yxn ð12Þ

As have been pointed in (3), a trial solution (3) is like (13)

ypðxÞ ¼ f ðx,yð0Þ0 ,yð1Þ0 ,. . .,yðn�1Þ
0 Þþg h,Kðx,PÞð Þ

¼ f ðx,CÞþg h,Kðx,PÞð Þ ð13Þ

where f(x,C) is a function for satisfaction of initial/boundary
conditions, C describes the initial conditions and g(h,K(x,P)) is a
function which is zero in initial points and is K(x,P) in other points.
K(x,P) is the out put of KLMS algorithm and plays a high important
role, principally K(x,P) is the main answer without contemplate of
initial points. h is used to suppress the g(h,K(x,P)) term in initial/
boundary points. Hence an easy and suitable form of g(h,K(x,P)) is
h�K(x,P). f(x,C) and h take different forms depending on the
initial/boundary conditions and the order of differential equation
and there is no clear procedure to choose the most appropriate
ones. The selection of f(x,C) and h for several types of DEs is
explained in [17]; however, we repeat some ordinary differential
equations here to make it easy for the readers to follow the
procedure of solving DE using KLMS algorithm.

Consider the first order DE in (14)

dyðxÞ

dx
¼ voðy,xÞ, xA 0,1½ �, yð0Þ ¼ A ð14Þ

hence

f ðx,CÞ ¼ A, h¼ x) ypðxÞ ¼ AþxKðx,PÞ ð15Þ

It is easy to check that yp(x), which is the trial solution of (14),
satisfies the initial condition.

Now consider the following second order DE:

d2yðxÞ

dx2
¼ vo

dy

dx
,y,x

� �
, xA 0,1½ � ð16Þ

The trial solution of this DE is written in two cases. In the first
case these initial conditions are considered as: y(0)¼A and (dy/dx)
(0)¼A0. Thus

f ðx,CÞ ¼ AþA0x, h¼ x2 ) ypðxÞ ¼ AþA0xþx2Kðx,PÞ ð17Þ

In the second case these boundary conditions are considered
as: y(0)¼A and y(1)¼B. Therefore

f x,Cð Þ ¼ Að1�xÞþBx,h¼ xð1�xÞ ) ypðxÞ ¼ Að1�xÞþBxþxð1�xÞKðx,PÞ

ð18Þ

The same procedure can be performed to find the trial solution
of higher order ordinary differential equations.

Pursuing the procedure of solving DE, (13) is substituted in
(11) and we can write:

an
dnypðxÞ

dxn
þan�1

dn�1ypðxÞ

dxn�1
þ � � � þa0ypðxÞ ¼ voðxÞ ð19Þ

Then putting yp(x)¼ f(x,C)þh�K(x,P) (19) becomes

f̂ ðx,CÞþbn
dnKðx,PÞ

dxn
þbn�1

dn�1Kðx,PÞ

dxn�1
þ � � � þb0Kðx,PÞ ¼ voðxÞ ð20Þ
where f̂ ðx,CÞ ¼ anðdnf ðx,CÞ=dxnÞþan�1ðd
n�1f ðx,CÞ=dxn�1Þþ � � � þ

a0f ðx,CÞ, bi are coefficients which are functions of x and are
related to the effect of h. Also P is the parameter of KLMS Model
that includes error vector E and learning data xi. Finally, we can
obtain desired output of K(x,P) from (20) for learning of KLMS as
follows:

Kðx,PÞ ¼ �
1

b0
voðxÞ� f̂ ðx,CÞþbn

dnKðx,PÞ

dxn
þbn�1

dn�1Kðx,PÞ

dxn�1
þ � � �

� �� �

ð21Þ

Already, we have acquired an equation that can be used to
calculate the desired outputs for random inputs. These input–
output pairs are finally used in KLMS. This process is explained in
details below.

Given a differential equation, f(x,C) and h should be deter-
mined as explained above as well as K(x,P) using (21). Then we
must acquire some learning samples to train UKLMS, therefore an
input vector (X) is generated so that it covers the problem domain
uniformly with step length (dx). Since the implemented UKLMS is
unsupervised, the output vector (K) to the random input must be
calculated automatically. We have utilized an iterative algorithm
to calculate the referred outputs. To do so, K0 is initialized
randomly and is updated using (22)

Kiþ1 ¼�
1

b0
voðxÞ� f̂ ðx,CÞþbn

dnKi

dxn
þbn�1

dn�1Ki

dxn�1
þ � � �

� �� �
: ð22Þ

The algorithm is unsupervised because; here no desired signal
is required to be determined by user and thus the output of the
model is generated by iterating the algorithm progressively. The
derivatives of K in (22) are calculated numerically; the first
derivative is the first order difference of K divided by dx, the
second derivative is the second order difference of K divided by
dx2 and so on.

The iteration is stopped when the stopping criteria is met. The
criteria includes a small difference between Kiþ1 and Ki or a large
number of iteration. Hereby some input–output pairs are gener-
ated and in the next step, UKLMS is generated and trained
according to the available learning samples. The final result is
achieved by combining UKLMS (K), f(x,C) and h according to (13).

Now, we can complete the proposed unsupervised KLMS for
solving differential equations by the following algorithm:

Comment: Unsupervised KLMS Algorithm to solve differential
equations

Initialize:
x: Resolution
x: Input vector includes x points in [a,b].
K1: initial random parameters of KLMS Model.
KOld¼K1;
While IterationoMax iteration or Criteriaothreshold
1: [b, f_hat ]¼Call DF_Equ_Parameter; Comment: calculation

of bi, f̂ with regard to ODE.
2: [dK]¼Call Ndifference; Comment: calculation of numer-

ical derivative of Ki (K ðnÞi ,. . .,K ð1Þi )
3: Desired_Output¼Calculate of (22);
4: [Piþ1]¼Call learning the KLMS with (x, Desired_Output)
5: Kiþ1¼Call KLMS (x,P); Comment: calculate the output of

new KLMS Model
6: Criteria¼Abs(Kiþ1�Kold);
7: Kold¼Kiþ1;
End While
8:Display (13)

In the above algorithm, firstly, step initialization is performed
which includes determination of number of points for analysis (x).



–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0

K

H. Sadoghi Yazdi et al. / Neurocomputing 74 (2011) 2062–20712066
For the first time we cannot calculate difference of K in line
2 algorithm so before While we have generated an initial K. For
this purpose, we can use an arbitrary random data.

A loop is necessary to receive the convergence condition which
includes the maximum number of iterations or small change to K

in two consecutive iterations. Hands down we see if K have no
considerable change, and then it satisfies (21) thus (K(x,P)) can be
used as the answer of ODE in (13). After that we can easily
calculate the answer of ODE at any arbitrary point xA[a,b].

Remainder of algorithm includes line 1 to obtain bi and f̂ , line
2 to compute K ðnÞ,. . .,K ð1Þ for substitution in (22), line 3 to
calculate (22), line 4 to learn KLMS model, line 5 to calculate
the output of model and line 6 is the measurement of stop
criteria.

To show that how the method works (in details) we describe it
by solving six problems in Section 3.
0 2 4 6 8 10
–0.7

x

Fig. 3. The output of KLMS after convergence for Example 1.

0 5 10
–2

0

2

x

Y p
(x

)

0 5 10
0

0.5

1

x

Y p
(x

)

0 5 10
0

0.5

1

x

Y p
(x

)

0 5 10
0

0.5

1

x

Y p
(x

)

0 5 10
0

0.5

1

x

Y p
(x

)

0 5 10
0

0.5

1

x

Y p
(x

)

Fig. 4. Convergence of answer for Example 1 in selected six numbers of iterations.
3. Numerical simulations

In this section, to illustrate the method applicability, six
problems are solved. For each example there is a discussion about
the amount of step size parameters and the kernel function used.

Example 1. Consider the following ordinary differential equation:

d

dx
yðxÞþ2yðxÞ ¼ 1, yð0Þ ¼ 1 ð23Þ

We can write the corresponding trial solution in the following

form:

ypðxÞ ¼ 1þðx�0ÞKðx,PÞ ð24Þ

It is easy to check that (24) satisfies the initial condition in (23).

If we substitute (24) in (23) desired answer will be obtained:

Kðx,PÞ ¼
�1�xðd=dxÞKðx,PÞ

1þ2x
ð25Þ

Now we can apply the KLMS algorithm. Analytical solution and

the solution which is obtained with KLMS algorithm (yp(x)) are

shown in Fig. 2 (for xA[0,10]). Note that in this problem, the

interval [0,10] discretized into 50 equal parts.
0 2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1

x

Y
p(

x)

Analytical Method
KLMS Model

Fig. 2. Solution of Example 1.
The output of KLMS algorithm (K), which can be calculated by

(21), is shown in Fig. 3.

To show the convergent behavior of the method we have

selected six numbers of iterations which can be observed in Fig. 4.

Finally, the error (difference between output of algorithm and

analytic answer of ODE) is plotted in Fig. 5.

Example 2. Consider the following first order differential equa-
tion with sinusoidal excitation:

d

dx
yðxÞþ2yðxÞ ¼ sinðxÞ, yð0Þ ¼ 1 ð26Þ

Desired response of KLMS algorithm (Kp) can be found as

follows:

Kðx,PÞ ¼
sinðxÞ�xðd=dxÞKðx,PÞ�2

1þ2x
ð27Þ

Analytical solution and obtained solution via KLMS algorithm

are compared in Fig. 6. The output of KLMS algorithm (K) is shown

in Fig. 7. To show the convergent behavior of the method we have



0 2 4 6 8 10
–0.5

0

0.5

1

x

Y
p(

x)

Analytical Method
KLMS Model

Fig. 6. Solution of Example 2.

0 2 4 6 8 10
–1.4

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

x

K

Fig. 7. Convergence of the out put of KLMS for Example 2.

0 2 4 6 8 10
–2

–1.5

–1

–0.5

0

0.5

1

x

E
rr

or

Fig. 5. Error function (difference between output of algorithm and analytic

answer of ODE) for Example 1.

H. Sadoghi Yazdi et al. / Neurocomputing 74 (2011) 2062–2071 2067
selected six numbers of iterations which can be observed in Fig. 8.

Finally, the error is plotted in Fig. 9. Note that in this problem, the

interval [0,10] discretized into 50 equal parts.

Example 3. Consider the following first order differential equa-
tion with nonlinear sinusoidal excitation:

d

dx
yðxÞþ2yðxÞ ¼ x3 sin

1

2
x

� �
, yð0Þ ¼ 1 ð28Þ

Analytical solution and obtained solution via KLMS algorithm

are compared in Fig. 10. The output of KLMS algorithm (K) is

shown in Fig. 11. To show the convergent behavior of the method

we have selected six numbers of iterations which can be observed

in Fig. 12. Finally, the error is plotted in Fig. 13. Note that in this

problem, the interval [0,10] discretized in to 100 equal parts.

Example 4. Consider the second order differential equation with
time-varying input signal. This example shows the case of vari-
able-time input signal.

d2

dx2
yðxÞþyðxÞ ¼ 2þ2sinð4xÞcosð3xÞ

yð0Þ ¼ 1, yð1Þ ¼ 0 ð29Þ
0 5 10
–2

0

2

x

Y p
(x

)

0 5 10
–1

0

1

x

Y p
(x

)

0 5 10
–1

0

1

x

Y p
(x

)

0 5 10
–1

0

1

x
Y p

(x
)

0 5 10
–1

0

1

x

Y p
(x

)

0 5 10
–1

0

1

x

Y p
(x

)

Fig. 8. Convergence of answer for Example 2 in selected six numbers of iterations.

0 2 4 6 8 10
–2.5

–2

–1.5

–1

–0.5

0

0.5

x

E
rr

or

Fig. 9. Errors function for Example 2.



0 2 4 6 8 10
–200

–150

–100

–50

0

50

x

Y p
(x

)

Analytical Method
KLMS Model

Fig. 10. Solution of Example 3.

0 2 4 6 8 10
–40

–35

–30

–25

–20

–15

–10

–5

0

5

10

x

K

Fig. 11. Convergence of KLMS in different iterations for Example 3.

0 5 10
–500

0

500

x

Y p
(x

)

0 5 10
–500

0

500

x

Y p
(x

)

0 5 10
–500

0

500

x

Y p
(x

)

0 5 10
–500

0

500

x

Y p
(x

)

0 5 10
–500

0

500

x

Y p
(x

)

0 5 10
–500

0

500

x

Y p
(x

)

Fig. 12. Convergence of answer for Example 3 in selected six numbers of

iterations.

0 2 4 6 8 10
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

x

E
rr

or

Fig. 13. Errors function for Example 3.

0 0.2 0.4 0.6 0.8 1
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

Y p
(x

)

Analytical Method
KLMS Model

Fig. 14. Solution of Example 4.

H. Sadoghi Yazdi et al. / Neurocomputing 74 (2011) 2062–20712068
Desired response of KLMS algorithm (K) easily can be found.

Here we can write the trial solution of (29) in the following form:

ypðxÞ ¼ xðx�1ÞKðx,PÞþ1�x ð30Þ

Analytical solution and obtained solution via KLMS algorithm

are compared in Fig. 14. The output of KLMS algorithm (K) is

shown in Fig. 15. To show the convergent behavior of the method

we have selected six numbers of iterations which can be observed

in Fig. 16. Finally, the error is plotted in Fig. 17. Note that in this

problem, the interval [0,1] discretized in to 100 equal parts.

Example 5. Consider the following second order differential
equation with constant excitation:

d2

dx2
yðxÞþyðxÞ ¼ 2, yð0Þ ¼ 1, yð1Þ ¼ 0 ð31Þ

The related trial function would be in the following form if

y(x0)¼y0, y(x1)¼y1

ypðtÞ ¼
x1y0þx0y1

x1�x0
þ

y1�y0

x1�x0
xþðx�x0Þðx�x1ÞKðx,PÞ ð32Þ

This solution satisfies the boundary condition. Analytical solu-

tion and obtained solution via KLMS algorithm are compared in



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

K

Fig. 15. KLMS output after convergence for Example 4.

0 0.5 1
–1

0

1

x

Y p
(x

)

0 0.5 1
–1

0

1

x

Y p
(x

)

0 0.5 1
–1

0

1

x

Y p
(x

)

0 0.5 1
–1

0

1

x

Y p
(x

)

0 0.5 1
–1

0

1

x

Y p
(x

)

0 0.5 1
–1

0

1

x

Y p
(x

)

Fig. 16. Convergence of answer for Example 4 in selected six numbers of

iterations.

0 0.2 0.4 0.6 0.8 1
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

x

E
rr

or

Fig. 17. Errors function for Example 4.

H. Sadoghi Yazdi et al. / Neurocomputing 74 (2011) 2062–2071 2069
Fig. 18. The output of KLMS algorithm (K) is shown in Fig. 19. To

show the convergent behavior of the method we have selected six

numbers of iterations which can be observed in Fig. 20. Finally,

the error is plotted in Fig. 21. Note that in this problem, the

interval [0,1] discretized into 50 equal parts.
3.1. Comparison by UANFIS (see [21])

To show that the new current method is more accurate, we
compare the obtained results in the above examples by the
results in [21]. Table 1 shows the comparison results.

It is straightforward to see that the new results by KLMS
algorithm are more accurate.

Example 6. Consider the following differential equation which
has no analytical solution:

dyðxÞ

dx
¼ y2ðxÞþx2, yð0Þ ¼ 1 ð33Þ

We solved this problem for tA[0,0.2]. Fig. 22 shows the

comparison between the numerical method and the KLMS output.
0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Y p
(x

)
Analytical Method
KLMS Model

Fig. 18. Solution of Example 5.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

K

Fig. 19. KLMS output after convergence for Example 5.



0 0.2 0.4 0.6 0.8 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

x

E
rr

or

Fig. 21. Errors function for Example 5.

Table 1
Comparing error in KLMS and ANFIS.

Example 1 Example 2 Example 3 Example 4 Example 5

UKLMS 0.0024 0.0064 0.0605 0.0098 0.0356

UANFIS 0.0155 0.0252 0.0958 0.0556 0.0967

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

Y p
(x

)

Numerical Method
KLMS Model

Fig. 22. Results for Example 6.

Table 2
The amount of Diebold–Mariano statistical test S1 for each example.

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6

S1 0.9416 1.8678 0.1702 0.6741 0.4494 1.4411

0 0.5 1
–1

0

1

x

Y p
(x

)

0 0.5 1
–1

0

1

x

Y p
(x

)
0 0.5 1

0

0.5

1

x

Y p
(x

)

0 0.5 1
0

0.5

1

x

Y p
(x

)

0 0.5 1
0

0.5

1

x

Y p
(x

)

0 0.5 1
0

0.5

1

x

Y p
(x

)

Fig. 20. Convergence of answer for Example 5 in selected six numbers of iterations.

H. Sadoghi Yazdi et al. / Neurocomputing 74 (2011) 2062–20712070
Note that in this example, we applied the KLMS for xA[0,0.2];

we can apply the method for each subintervals to obtain more

accurate results. Note that in this problem, the interval [0,0.2]

discretized into 100 equal parts.
3.2. Error analysis

In this subsection, to illustrate the reliability of the method,
following [26,27] we calculated the amount of the variance and
mean values of the errors for each example. By use of the
Diebold–Mariano statistical test S1 (for more details see [26,27])
it can be inferred that the errors of solved problems has an
asymptotic standard normal distribution. Table 2 shows the
amount of S1 for each solved problems.

According to the values of S1 (which are between �1.96 and
1.96) it can be inferred that the errors of six solved problems has
an asymptotic standard normal distribution.
4. Concluding remarks and future works

This paper presented a novel approach to solve ordinary
differential equations by the use of an unsupervised version of
kernel least mean square (KLMS) algorithm. The accuracy of the
proposed method was examined by solving first-order and
second-order differential equations with input excitation signal
in both constant and time-varying formats. The achieved results
demonstrate that the accuracy and fast convergence of the novel
approach, which takes advantages of KLMS algorithm in its initial
form. The results are comparable with the results of similar
approaches that use neural networks. Furthermore, implementing
the KLMS algorithm is very simple; and also the trial solution is in
a close and differentiable form and satisfies the boundary/initial
conditions. The results were compared by ANFIS method in [21].
Also we solved a DE which had no analytical solution. The main
advantage of the method is that the algorithm is unsupervised,
because no desired signal is required to be determined by user
and the output of the model is generated by iterating the
algorithm progressively.

In the future, we will develop our method to solve nonlinear
and partial differential equations. If the capability of solving
partial differential equation is added to this method, it would be
easily extended to solve high-dimensional problems. Moreover, to
achieve more accurate results, we can apply KLMS in subintervals
distinctly.



H. Sadoghi Yazdi et al. / Neurocomputing 74 (2011) 2062–2071 2071
References

[1] B. Widrow, Adaptive Filters I. Fundamentals (TR 6764-6), Technical Report.
Stanford Electronics Laboratories, Stanford, CA, 1966.

[2] V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York,
1995.

[3] F. Girosi, M. Jones, T. Poggio, Regularization theory and neural networks
architectures, Neural Computation 7 (2) (1995) 219–269.

[4] B. Scholkopf, A. Smola, K.R. Muller, Nonlinear component analysis as a kernel
eigenvalue problem, Neural Computation 10 (1998) 1299–1319.

[5] F.R. Bach, M.I. Jordan, Kernel independent component analysis, Journal of
Machine Learning Research 3 (2002) 1–48.

[6] P. Pokharel, W. Liu, J.C. Principe, Kernel lms, in: Proceedings of the Interna-
tional Conference on Acoustics, Speech and Signal Processing, 2007.

[7] W. Liu, P. Pokharel, J.C. Principe, The kernel least mean square algorithm, IEEE
Transactions on Signal Processing 56 (2008) 543–554.

[8] B. Widrow, J.R. Glover, J.M. McCool, J. Kaunitz, C.S. Williams, R.H. Hearn,
J.R. Zeidler, E. Dong, R.C. Goodlin, Adaptive noise cancelling: principles and
applications, Proceedings of the IEEE 63 (1975) 1692–1716.

[9] A. Gunduz, J.-P. Kwon, J.C. Sanchez, J.C. Principe, Decoding hand trajectories
from ECoG recordings via kernel least-mean-square algorithm, in: Proceed-
ings of the 4th International IEEE EMBS Conference on Neural Engineering,
Antalya, Turkey, April 29–May 2, 2009.

[10] I.E. Lagaris, A. Likas, D.I. Fotiadis, Artificial neural network for solving
ordinary and partial differential equations, IEEE Transactions on Neural
Networks 9 (5) (1998) 987–1000.

[11] K. Hornik, Multilayer feedforward networks are universal approximators,
Neural Networks 2 (1989) 359–366.

[12] N. Smaoui, S. Al-Enezi, Modeling the dynamics of nonlinear partial differ-
ential equations using neural networks, Journal of Computational and
Applied Mathematics 170 (2004) 27–58.

[13] R. Brause, Adaptive modeling of biochemical pathways, in: Proceedings of the
15th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI’03), 2003.

[14] S. Hea, K. Reif, R. Unbehauen, Multilayer neural networks for solving a class of
partial differential equations, Neural Networks 13 (2000) 385–396.

[15] L. Manevitz, A. Bitar, D. Givoli, Neural network time series forecasting of
finite-element mesh adaptation, Neurocomputing 63 (2005) 447–463.

[16] T. Leephakpreeda, Novel determination of differential-equation solutions:
universal approximation method, Journal of Computational and Applied
Mathematics 146 (2002) 443–457.

[17] A. Malek, R.Shekari Beidokhti, Numerical solution for high order differential
equations using a hybrid neural network—optimization method, Applied
Mathematics and Computation 183 (2006) 260–271.

[18] N. Mai-Duy, T. Tran-Cong, Numerical solution of differential equations using
multi quadric radial basis function networks, Neural Networks 14 (2001)
185–199.

[19] L. Jianyu, L. Siwei, Q. Yingjian, H. Yaping, Numerical solution of elliptic partial
differential equation using radial basis function neural networks, Neural
Networks 16 (2003) 729–734.

[20] D.R. Parisi, M.C. Mariani, M.A. Laborde, Solving differential equations with
unsupervised neural networks, Chemical Engineering and Processing 42
(2003) 715–721.

[21] Hadi Sadoghi Yazdi, R. Pourreza, Unsupervised adaptive neural-fuzzy infer-
ence system for solving differential equations, Applied Soft Computing 10
(2010) 267–275.

[22] R. Shekari Beidokhti, A. Malek, Solving initial-boundary value problems
for systems of partial differential equations using neural networks and
optimization techniques, Journal of the Franklin Institute 346 (2009)
898–913.

[23] Tsoulos Ioannis G., Dimitris Gavrilis, Euripidis Glavas, Solving differential equa-
tions with constructed neural networks, Neurocomputing 72 (2009) 2385–2391.

[24] Yazdan Shirvany, Mohsen Hayati, Rostam Moradian, Multilayer perceptron
neural networks with novel unsupervised training method for numerical
solution of the partial differential equations, Applied Soft Computing 9
(2009) 20–29.

[25] Sohrab Effati, Morteza Pakdaman, Artificial neural network approach for
solving fuzzy differential equations, Information Sciences 180 (2010)
1434–1457.

[26] D. Harvey, S. Leybourne, P. Newbold, Testing the equality of prediction
mean squared errors, International Journal of Forecasting 13 (1997)
281–291.
[27] Francis X. Diebold, Roberto S. Mariano, Comparing predictive accuracy,
Journal of Business and Economic Statistics 13 (1995) 253–265.

[28] J. Li, S. Luo, Y. Qi, Y. Huang, Numerical solution of elliptic partial differential
equation by growing radial basis function neural networks, in: IEEE Proceed-
ings of the International Joint Conference on Neural Networks, vol. 1, Issue
date: 20–24 July 2003, pp. 85–90.

[29] H. Modaghegh, H. Khosravi, R.S. Ahoon Manesh, H. Sadoghi Yazdi, A new
modeling algorithm—normalized kernel least mean square, in: IEEE 6th
International Conference on Innovations in Information Technology, Innova-
tions’09, December 2009, pp. 120–124.

[30] S.H. Ghafarian, H. Sadoghi Yazdi, H. Baradaran Kashani, Kernel least mean
square features For HMM-based signal recognition, International Journal of
Computer Theory and Engineering 2 (2) (2010) 1793–8201.

[31] L. Yang, M. Cui, New algorithm for a class of nonlinear integro-differential
equations in the reproducing kernel space, Applied Mathematics and Com-
putation 174 (2006) 942–960.

[32] J. Kivinen, A. Lexander, J. Smola, R.C. Williamson, Online Learning with
Kernels, IEEE Transactions on Signal Processing 52 (8) (2004) 2165–2176.

[33] H. Bao, I. Panahi,Active noise control based on kernel least-mean-square
algorithm, IEEE Record of the Forty-Third Asilomar Conference on Signals,
Systems and Computers, 2009, pp. 642–644.

[34] A. Gunduz, J. Kwon, J.C. Sanchez, J.C. Principe, Decoding hand trajectories
from ECoG recordings via kernel least-mean-square algorithm, in: 4th
international IEEE/EMBS Conference on Neural Engineering, vol. 9, 2009,
pp. 267–270.
Hadi Sadoghi Yazdi received the B.S. degree in electrical
engineering from Ferdowsi University of Mashhad in
1994, and then he received to the M.S. and Ph.D. degrees
in electrical engineering from Tarbiat Modarres Univer-
sity of Tehran, Iran, in 1996 and 2005, respectively. He
works in Computer Department as an associate profes-
sor at Ferdowsi University of Mashhad. His research
interests include pattern recognition and optimization
in signal processing. Email: h-sadoghi@um.ac.ir
Morteza Pakdaman was born in Mashhad, Iran. In
2004 he received the B.Sc. in applied mathematics
from Ferdowsi University of Mashhad and the M.Sc. in
optimization from Tarbiat Moallem University of Sab-
zevar. His current research intrests include operations
research, and applications of neural networks and
fuzzy systems in optimization. Email: pakdaman.m@
gmail.com, pakdaman@mshdiau.ac.ir
Hamed Modaghegh was born in Mashhad, Iran. In
2005 he received the B.Sc. in Electrical Engineering
from Iran University of Science and Technology and
the M.Sc. in Communication from Sharif University of
Technology in 2007 and he is Ph.D student in commu-
nication in Ferdowsi University of Mashhad now.
His current research intrests include signal processing
and data hiding. Email: hamed.modaghegh@stu-mail.
um.ac.ir


	Unsupervised kernel least mean square algorithm for solving ordinary differential equations
	Introduction
	Related works in neural networks
	Motivation

	Unsupervised kernel least mean square (UKLMS) in DE solving
	The KLMS algorithm
	Proposed UKLMS algorithm for solving DEs

	Numerical simulations
	Comparison by UANFIS (see [21])
	Error analysis

	Concluding remarks and future works
	References




