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Abstract

It is known that the anomalous Dp-brane Chern–Simons couplings are not consistent with the standard
rules of T-duality. Using compatibility of these couplings with the linear T-duality transformations, the
B-field gauge transformations and the general coordinate transformations as guiding principles we find new
couplings at order O(α′2) for C(p−3), C(p−1), C(p+1) and C(p+3).
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamics of the D-branes of type II superstring theories is well-approximated by the
effective world-volume field theory which consists of the Dirac–Born–Infeld (DBI) and the
Chern–Simons (CS) actions. The DBI action describes the dynamics of the brane in the pres-
ence of NS–NS background fields. For constant fields, this action can be found by requiring its
consistency with the nonlinear T-duality [1,2], i.e.,

SDBI = −Tp

∫
dp+1x e−φ

√
−det

(
Gab + Bab + 2πα′fab

)
(1)

where Gab and Bab are the pull-back of the bulk fields Gμν and Bμν onto the world-volume of
D-brane.1 The curvature corrections to this action have been found in [3] by requiring the con-
sistency of the effective action with the O(α′2) terms of the corresponding disk-level scattering

E-mail address: garousi@ferdowsi.um.ac.ir.
1 Our index convention is that the Greek letters (μ, ν, . . .) are the indices of the space–time coordinates, the Latin

letters (a, d, c, . . .) are the world-volume indices and the letters (i, j, k, . . .) are the normal bundle indices.
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amplitude [4,5]. The B-field corrections at this order have been found in [6] by requiring the
consistency of the curvature couplings with the linear T-duality transformations.

On the other hand, the CS part describes the coupling of D-branes to the R–R potential. For
constant fields it is given by [7,8]

SCS = Tp

∫
Mp+1

eBC (2)

where Mp+1 represents the world-volume of the Dp-brane, C is meant to represent a sum over
all appropriate R–R forms and the multiplication rule is the wedge product. The abelian gauge
field can be added to the action as B → B + 2πα′f . Curvature correction to this action has
been found in [9–11] by requiring that the chiral anomaly on the world-volume of intersecting
D-branes (I-brane) cancels the anomalous variation of the CS action. This correction is

SCS = Tp

∫
Mp+1

C
( A(4π2α′RT )

A(4π2α′RN)

)1/2

(3)

where C = eBC and A(RT,N ) is the Dirac roof genus of the tangent and normal bundle curva-
tures, respectively,√

A(4π2α′RT )

A(4π2α′RN)
= 1 + π2α′2

24

(
trR2

T − trR2
N

) + · · · (4)

For totally-geodesic embeddings of the world-volume in the ambient space–time, RT,N are the
pull-back curvature 2-forms of the tangent and normal bundles, respectively (see the appendix in
Ref. [3] for more details).

It was shown in [16] that at order O(α′2) the CS action (3) must include additional linear
couplings to the NS–NS fields. These couplings were found by studying the S-matrix element of
one R–R and one NS–NS vertex operator at order O(α′2) [4]. In the string frame, they take the
form [16]2:

SCS ⊃ π2α′2Tp

∫
dp+1x εa0···ap

(
1

2!(p − 1)!
[
F

(p)
ia2···ap,aHa0a1

a,i − F
(p)
aa2···ap,iHa0a1

i,a
]

+ 2

p!
[

1

2!F
(p+2)
ia1···apj,aRa

a0
ij − 1

p + 1
F

(p+2)
a0···apj,i

(R̂ij − φ ,ij
)]

− 1

3!(p + 1)!F
(p+4)
ia0···apjk,aH

ijk,a

)
(5)

2 Using the on-shell relations, the standard definition of the curvature tensor R̂ij has been changed in [16] to R̂ij ≡
1
2 (Ria

a
j − Rik

k
j ). With this tensor the coupling F

(p+2)
a0···apj,i

R̂ij is then invariant under linear T-duality [16]. If one

uses the standard definition R̂ij ≡ Ria
a
j , then the second term in the second line of (5) can be written at the linear

order as F
(p+2)
a0···ap

j,i (hij,aa + haa,ij − hia,aj − hja,ai − 2φ,ij )/2(p + 1) where h is the metric perturbation. Under

T-duality along the world-volume direction y, the R–R factor F
(p+2)
a0···ap

j,i/(p + 1) which includes the Killing index y,

transforms to F
(p+1)
a0···ap−1

j,i . The latter, however, does not include the Killing index. Hence, the indices i, j in the T-dual

theory do not include the Killing index y. Using this observation, one can easily verify that the metric/dilaton factor
(hij,aa + haa,ij − hia,aj − hja,ai − 2φ,ij ) is invariant under the linear T-duality. Hence, the second term in the second
line of (5) is invariant under the T-duality.
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where R is the linearized Riemann curvature tensor of the background metric, F (n) = dC(n−1),
and commas are used to denote partial differentiation. Since these couplings have been found by
the S-matrix method, there is an on-shell ambiguity in defining these terms [17,18]. The above
couplings are consistent with the T-duality transformations at a linearized level and are invariant
under the B-field gauge transformations. In particular, the sum of the second term in the first
line and the last two terms in the second line form a T-duality invariant set of terms, and the
remaining terms form another T-duality invariant set. We call each of these a T-dual multiplet.

One may extend (5) to the nonlinear couplings by replacing C with C = eBC and by replacing
the ordinary derivatives with their covariant counter parts. In fact the first replacement is required
for consistency of the above couplings with the nonlinear T-duality transformations [4]. When
the R–R potential carries one transverse index, this replacement produces the following couplings
for C(p−3):

π2α′2Tp

2!(p − 4)!
∫

dp+1x εa0a1···ap

(
1

2!C
(p−3)
ia2···ap−3,ap−2

Bap−1ap

− 1

3!C
(p−3)
a2···ap−3i

Hap−2ap−1ap

)
,a

Ha0a1
a,i

The first term breaks the B-field gauge symmetry. However, it can be restored by the standard re-
placement of Bap−1ap with (Bap−1ap + 2πα′fap−1ap ). It has been shown in [12] that the S-matrix
element of one R–R potential and two B-field vertex operators reproduce exactly the above cou-
plings. When the R–R potential carries only the world-volume indices, the above replacement
does not restore the gauge symmetry in many terms. The non-gauge invariant terms, however,
are invariant under the linear T-duality at the level of two B-fields, so it is consistent with the
linear T-duality to remove them. On the other hand, the S-matrix calculations produce only the
gauge invariant couplings [26].

It has been pointed out in [13] that the anomalous CS couplings (3) must be incomplete
for non-constant B-field as they are not compatible with the T-duality. T-duality exchanges the
components of the metric and the B-field whereas the couplings (3) involve only the metric
through the curvature terms. A systematic approach for including the B-field in a theory might
be provided by the ‘double field theory’ formalism in which the fields depend both on the usual
space–time coordinates and on the winding coordinates [14]. In this paper, however, we use the
method that was used in [13] to find the Myers terms in the non-abelian CS action at order
O(α′0). That is, we add new couplings to the CS action at order O(α′2) to make it compatible
with T-duality. The T-dual multiplet that we find includes the R–R potentials C(p−3), C(p−1)

and C(p+1). These couplings have been also found in [15]. They are, however, neither covariant
nor invariant under the B-field gauge transformations.

The disk-level S-matrix element of one R–R potential C(p−3) and two B-field vertex operators
produces not only the C(p−3) component of the above T-dual multiplet, but also produces some
other contact terms as well as massless poles at order O(α′2) [26]. Consistency of the amplitude
with linear T-duality then requires one to extend the latter contributions to contact-term and the
massless-pole T-dual multiplets. More generally, one may extend the S-matrix element to a set
of S-matrix elements which are invariant under the linear T-duality transformations. We call this
set the S-matrix T-dual multiplet.

Having both the contact-term as well as the massless-pole T-dual multiplets at order
O(α′2), it raises the question of how they come together to produce explicit covariant/gauge-
invariant results. One may expect that these multiplets can be combined separately to become
covariant/gauge-invariant. However, as we will show the S-matrix calculation indicates that some
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of the terms in a contact-term multiplet combine with the massless-pole multiplets to produce the
covariant and gauge-invariant results. We will show that such terms must be proportional to the
Mandelstam variables. This phenomenon does not appear in the T-dual multiplets in (5) because
the S-matrix element of two closed string vertex operators at order O(α′2) has only contact
terms [4].

The outline of the paper is as follows: We begin in Section 2 by reviewing the T-duality trans-
formations and the method for finding the T-dual completion of a coupling. In Section 3.1, we
show that the standard CS coupling (3) is not consistent with the linear T-duality transformations
and add new couplings at order O(α′2) to find its corresponding T-dual multiplet. The C(p−3)

component of this CS multiplet, however, is not invariant under the B-field gauge transforma-
tions. In Sections 3.2, by adding another T-dual multiplet, we write the C(p−3) component of the
combined multiplet in a T-dual and gauge-invariant form (see Eq. (24)). In Section 3.3, we argue
that the contact terms in an S-matrix T-dual multiplet which are proportional to the Mandel-
stam variables, may combine with the massless poles to produce covariant and gauge-invariant
results. Since we are not considering the massless poles of the S-matrix multiplet in this paper,
we will not attempt to make such contact terms to be covariant/gauge-invariant. Adding three
contact-term T-dual multiplets to the CS multiplet, we then write the C(p−1) component of these
multiplets in a covariant and gauge-invariant form (see Eq. (34)). In Section 3.4, by adding one
more T-dual multiplet to the list, we write the C(p+1) components in a covariant and gauge-
invariant form (see Eq. (36)). Finally, we show in Section 3.5 that the C(p+3) components of the
above multiplets are covariant and gauge-invariant (see Eq. (37)).

2. T-duality

The full set of nonlinear T-duality transformations for massless R–R and NS–NS fields have
been found in [19–23]. The nonlinear T-duality transformations of the fields C and B are such
that the expression C = eBC transforms linearly under T-duality [24]. When the T-duality trans-
formation acts along the Killing coordinate y, the massless NS–NS fields and C become

e2φ̃ = e2φ

Gyy

G̃yy = 1

Gyy

G̃μy = Bμy

Gyy

G̃μν = Gμν − GμyGνy − BμyBνy

Gyy

B̃μy = Gμy

Gyy

B̃μν = Bμν − BμyGνy − GμyBνy

Gyy

C̃(n)
μ···νy = C(n−1)

μ···ν
C̃(n)

μ···ν = C(n+1)
μ···νy (6)
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where μ,ν �= y. In above transformation the metric is given in the string frame. If y is identified
on a circle of radius R, i.e., y ∼ y + 2πR, then after T-duality the radius becomes R̃ = α′/R.
The string coupling is also shifted as g̃ = g

√
α′/R. We would like to study the consistency of

the CS couplings (3) with the linear T-duality transformations. Assuming that the NS–NS fields
are small perturbations around the flat space, the above transformations take the following linear
form:

φ̃ = φ − 1

2
hyy, h̃yy = −hyy, h̃μy = Bμy, B̃μy = hμy, h̃μν = hμν

B̃μν = Bμν, C̃(n)
μ···νy = C(n−1)

μ···ν , C̃(n)
μ···ν = C(n+1)

μ···νy (7)

The strategy to find T-duality invariant couplings is given in [6]. Let us review it here. Sup-
pose we are implementing T-duality along a world-volume direction y of a Dp-brane. First,
we separate the world-volume indices along and orthogonal to y direction and then apply the
T-duality transformations. The orthogonal indices are the complete world-volume indices of the
T-dual Dp−1-brane. However, y in the T-dual theory, which is a normal bundle index, is not com-
plete. On the other hand, the normal bundle indices of the original theory are not complete in the
T-dual Dp−1-brane. They do not include the y index. In a T-duality invariant theory, y must be
combined with the incomplete normal bundle indices to make them complete. If a theory is not
invariant under the T-duality, one should then add new terms to it to have the complete indices
in the T-dual theory. In this way one makes the theory to be T-duality invariant by adding new
couplings.

One may also implement T-duality along a transverse direction y of a Dp-brane. In this
case, we separate the transverse indices along and orthogonal to y direction and then apply
the T-duality transformations. The latter indices are complete in the dual Dp+1-brane. However,
the complete world-volume indices of the original Dp-brane are not complete in the dual Dp+1-
brane. They must include the y index to be complete. In a T-duality invariant theory, y, which is
a world-volume index in the dual theory, must be combined with the incomplete world-volume
indices of the dual Dp+1-brane to become complete.

Let us apply the above method to the DBI action. Expansion of the DBI action (1) produces
the following terms at order O(α′0):

SDBI = −Tp

∫
dp+1x

[
1 − φ + 1

2
ha

a + 1

8

(
ha

a
)2 − 1

4
ha

bhb
a − 1

4
Ba

bBb
a

+ 1

2
φ2 − 1

2
φha

a + · · ·
]

where we have considered perturbations around flat space. The metric takes the form Gμν =
ημν + hμν where hμν is a small perturbation. We want to implement T-duality along a world-
volume direction. So we write the linear terms above in the following form:

−φ + 1

2
ha

a = −φ + 1

2
hã

ã + 1

2
hyy

where the world-volume index ã does not include y. Under the linear T-duality transformations
(7), it transforms to −φ + 1

2hã
ã . Since there is no incomplete index, one concludes that the linear

terms in the DBI action are invariant under the linear T-duality transformations. Doing the same
steps, one finds that the quadratic terms transform under the linear T-duality transformations
as
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1

8

(
hã

ã
)2 − 1

4
(hyy)

2 − 1

4
hã

b̃h
b̃
ã − 1

4
Bã

b̃B
b̃
ã + 1

2
hã

yhy
ã + 1

2
Bã

yBy
ã

+ 1

2
φ2 − 1

2
hã

ãφ (8)

This expression includes terms with the y index. However, one should not conclude that the
quadratic terms are not invariant under the T-duality transformations. One has to add the non-
linear T-duality transformations of the linear terms −φ + ha

a/2, which include the following
quadratic terms:

1

4
(hyy)

2 − 1

2
hã

yhy
ã − 1

2
Bã

yBy
ã

to the above couplings. This will cancel the terms in (8) which have y index. Hence, according
to our expectations, the quadratic order terms in the DBI action are invariant under the T-duality
transformations.

3. New couplings

It is known that the anomalous CS couplings of D-branes to space–time curvature are incom-
plete, as they are inconsistent with T-duality. We will construct a form of the couplings which
are consistent with the linear T-duality. We are interested in the O(α′2) terms in (4). The world-
volume curvature RT and the field strength RN are related to the pull-back of the space–time
Riemann tensor and the second fundamental form though the Gauss–Codazzi equation:

(RT )abcd = Rabcd + δij

(
Ωi

acΩ
j
bd − Ωi

adΩ
j
bc

)
(RN)ab

ij = −Rij
ab + Gcd

(
Ωi

acΩ
j
bd − Ω

j
acΩ

i
bd

)
where Ω is the second fundamental form (see the appendix in [3]). For totally-geodesic embed-
ding, Ω is zero. In the static gauge, that we are going to use in this paper, the second fundamental
form is non-zero. Hence, at order O(α′2) there are three different terms: Terms with two Rie-
mann tensors, terms with one Riemann tensor and two fundamental forms, and terms with four
fundamental forms. At the linearized level, the Riemann curvature tensor is the second deriva-
tive of the fluctuation of the space–time metric and the second fundamental form is the second
derivative of the massless transverse scalar fields on the D-brane. In this paper we are interested
in studying the T-duality transformation of the two Riemann curvature terms. Hence, we consider
the following CS couplings in (3):

Tp

2!2!(p − 3)!
∫

dp+1x εa0···ap−4abcdC(p−3)
a0···ap−4

[
Rab

ef Rcdf e − Rab
klRcdlk

]
(9)

where we have employed the static gauge. That is, first we have used the space–time diffeo-
morphisms to define the Dp-brane world-volume as xi = 0, where i = p + 1, . . . ,9, and then
with the world-volume diffeomorphisms, we matched the internal coordinates with the remain-
ing space–time coordinates on the surface: σa = xa for a = 0,1, . . . , p. We have also ignored
the pull-back operations, i.e., we work only with the restriction of the Riemann tensor to the
appropriate subspace.

To find the T-dual completion of the above couplings at the linearized level, we will consider
perturbation around flat space where the metric takes the form Gμν = ημν + hμν , where hμν is
a small perturbation. We denote the Riemann tensor to linear order in h by Rμνρλ. This linear
Riemann tensor is
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Rμνρλ = 1

2
(hμλ,νρ + hνρ,μλ − hμρ,νλ − hνλ,μρ) (10)

The coupling (9) at the linearized level is then

Tp

2!(p − 3)!
∫

dp+1x εa0···ap−4abcdC(p−3)
a0···ap−4

[
ha

f
,b

e(hce,df − hcf,de)

− ha
l
,b

k(hck,dl − hcl,dk)
]

(11)

The indices that are contracted with the volume form are totally antisymmetric so we do not use
the antisymmetric notation for them. The above couplings have been verified by the S-matrix
element of one R–R and two graviton vertex operators in [25]. We will examine the expression
(11) under the linear T-duality transformations (7), and find its corresponding T-dual multiplet.
We call this multiplet, which has the Chern–Simons couplings in its first component, the Chern–
Simons multiplet.

3.1. Chern–Simons multiplet

We begin by implementing T-duality along a world-volume direction of Dp-brane, which is
denoted by y. From the contraction with the world-volume form, one of the indices a0, . . . , ap−4
of the R–R potential3 or the indices a, c of the metric fluctuation in (11) must include y. So there
are two cases to consider: First when the R–R potential C(p−3) carries the y index and second
when the metric carries the y index. In the former case, we write (11) as

Tp

2!(p − 4)!
∫

dp+1x εa0···ap−4yabccC(p−3)
a0···ap−5y

[
ha

f
,b

e(hce,df − hcf,de)

− ha
l
,b

k(hck,dl − hcl,dk)
]

(12)

The indices e and f include the Killing coordinate y which is a world-volume coordinate.
However, in the T-dual theory, y is a transverse coordinate. To be able to use the T-duality
transformation rules (7), we separate y from e,f . Hence, we write the above equation as

Tp

2!(p − 4)!
∫

dp+1x εa0···ap−4yabccC(p−3)
a0···ap−5y

[
ha

f̃
,b

ẽ(h
cẽ,df̃

− h
cf̃ ,dẽ

)

− ha
y
,b

ẽhcy,dẽ − ha
l
,b

k(hck,dl − hcl,dk)
]

where the “tilde” over the world-volume indices e,f means they do not include the Killing
direction y. Now, the above equation transforms under (7) to the following couplings of Dp−1-
brane:

Tp−1

2!(p − 4)!
∫

dpx εa0···ap−4abcdC(p−4)
a0···ap−5

[
ha

f
,b

e(hce,df − hcf,de) − Ba
y
,b

eBcy,de

− ha
l̃
,b

k̃(h
ck̃,dl̃

− h
cl̃,dk̃

)
]

(13)

where we have used the fact that Tp ∼ 1/gs and the relation 2π
√

α′Tp = Tp−1. In the above
equation the “tilde” over the transverse indices k, l means they do not include the Killing direc-
tion y which is now a direction normal to the Dp−1-brane. The contracted indices of the second

3 In the literature, the R–R potential is C. However, in this paper we always work with C = eBC and call it R–R
potential.
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and third terms are not complete, i.e., the second term has y which does not include all other
transverse coordinates, and the last term has the index l̃ which does not include the transverse
coordinate y. This indicates that the original action (11) is not consistent with the linear T-duality.

To remedy this failure, one has to add some new couplings. These couplings must be such that
when they combine with the couplings (11), the indices in the combination must remain complete
after T-duality. Consider then the following couplings on the world-volume of the Dp-brane:

Tp

2!(p − 3)!
∫

dp+1x εa0···ap−4abcdC(p−3)
a0···ap−4

[−Ba
k
,b

eBck,de + Ba
e
,b

kBce,dk

]
(14)

Doing the same steps as we have done for the couplings (11), one finds that the above couplings
transforms to the following couplings of Dp−1-brane:

Tp−1

2!(p − 4)!
∫

dpx εa0···ap−5abcdC(p−4)
a0···ap−5

[−Ba
k̃
,b

eB
ck̃,dẽ

+ Ba
e
,b

kBce,dk + ha
y
,b

khcy,dk

]
(15)

In this equation also the index k̃ in the first and the index y in the last terms are not complete.
This indicates that the coupling (14) is not consistent with the T-duality either. However, the
sum of the first term above and the second term of (13), and the sum of the last terms above
and the last term of (13) have complete indices. Hence, the combination of actions (11) and (14)
are consistent with T-duality when y is an index on the R–R potential. That is, the following
couplings of Dp-brane:

Tp

2!(p − 3)!
∫

dp+1x εa0···ap−4abcdC(p−3)
a0···ap−4

[
ha

f
,b

e(hce,df − hcf,de) − Ba
k
,b

eBck,de

− ha
l
,b

k(hck,dl − hcl,dk) + Ba
e
,b

kBce,dk

]
(16)

are consistent with the linear T-duality transformations (7) when the R–R potential carries the
Killing index.

In order to proceed further, one observes that in the actions (16), two indices a and c, which are
carried by the metric/B-field terms, contract with the volume form. When performing T-duality
along a particular world-volume direction, either one of these or one of the indices on the R–R
potential must equal the T-dual coordinate y. We have already shown that the case, in which the
index y is carried by the R–R field, is consistent with T-duality. Now we will check the second
case where index y is carried by the metric/B-field terms. The strategy is to choose one of the two
indices to perform the T-duality and infer what extra terms must be included for the consistency.
The resulting terms will have one remaining index. So we repeat this procedure to arrive at an
action in which the metric/B-field terms have no index contracted with the volume form.

There are two ways for the metric/B-field terms in (16) to carry the Killing coordinate y, i.e.,
either a or c carries the index y. One can write the Dp-brane couplings (16) as

Tp

(p − 3)!
∫

dp+1x εa0···ap−4abydC(p−3)
a0···ap−4

[
ha

f
,b

e(hye,df − hyf,de) − Ba
k
,b

eByk,de

− ha
l
,b

k(hyk,dl − hyl,dk) + Ba
e
,b

kBye,dk

]
Mimicking the steps which are used to get (12), one finds that the transformation of the above
couplings under T-duality (7) gives the following couplings for Dp−1-brane:
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Tp−1

(p − 3)!
∫

dpx εa0···ap−4abdC(p−2)
a0···ap−4

y
[−ha

f
,b

e(Bye,df − Byf,de) + Ba
k
,b

ehyk,de

+ ha
l
,b

k(Byk,dl − Byl,dk) − Ba
e
,b

khye,dk

]
(17)

In this case the world-volume indices e,f and the transverse indices k, l are all complete. How-
ever, the y index is not a complete index. Inspired by the above couplings, one can guess that for
the Dp-brane, the couplings should be following:

Tp

(p − 2)!
∫

dp+1x εa0···ap−3abdC(p−1)
a0···ap−3

i
[−ha

f
,b

e(Bie,df − Bif,de) + Ba
k
,b

ehik,de

+ ha
l
,b

k(Bik,dl − Bil,dk) − Ba
e
,b

khie,dk

]
(18)

One can easily verify that the above couplings are invariant under the linear T-duality transfor-
mations (7) when the world-volume Killing coordinate y is carried by the R–R potential, i.e.,
the R–R potential C(p−1)

a0···ap−4y
i transforms to C(p−2)

a0···ap−4
i in which the transverse index i does not

include y, and the couplings for i = y are given by (17).
Finally, one observes that there is one possibility for the metric/B-field terms in (18) to carry

the Killing coordinate y, i.e., a carries the index y. One can write it as

Tp

(p − 2)!
∫

dp+1x εa0···ap−3ybdC(p−1)
a0···ap−3

i
[−hy

f
,b

e(Bie,df − Bif,de) + By
k
,b

ehik,de

+ hy
l
,b

k(Bik,dl − Bil,dk) − By
e
,b

khie,dk

]
Under T-duality it transforms to the following couplings for Dp−1-brane:

Tp−1

(p − 2)!
∫

dpx εa0···ap−3bdC(p)
a0···ap−3

iy
[
By

f
,b

e(Bie,df − Bif,de) − hy
k
,b

ehik,de

− By
l
,b

k(Bik,dl − Bil,dk) + hy
e
,b

khie,dk

]
(19)

where again, the world-volume indices e,f and the transverse indices k, l are all complete, but
y is not. Eq. (19) suggests the following couplings for the Dp-brane:

Tp

2!(p − 1)!
∫

dp+1x εa0···ap−2bdC(p+1)
a0···ap−2

ij
[
Bj

f
,b

e(Bie,df − Bif,de) − hj
k
,b

ehik,de

− Bj
l
,b

k(Bik,dl − Bil,dk) + hj
e
,b

khie,dk

]
(20)

One can again verify that the above couplings are invariant under T-duality when y is carried
by the R–R potential, i.e., The R–R potential C(p+1)

a0···ap−3y
ij transforms to C(p)

a0···ap−3
ij in which the

transverse indices i, j do not include y, and the couplings for i = y or j = y are given by (19).
There is no index in the B-field/metric in (20) that contracts with the volume form. Hence,

the combination of couplings (16), (18) and (20) forms a complete T-dual multiplet, i.e., the CS
multiplet. This multiplet is

Tp

∫
dp+1x

(
εa0···ap−4abcd

2!(p − 3)! C(p−3)
a0···ap−4

[
ha

f
,b

e(hce,df − hcf,de) − Ba
k
,b

eBck,de

]
+ εa0···ap−3abd

(p − 2)! C(p−1)
a0···ap−3

i
[−ha

f
,b

e(Bie,df − Bif,de) + Ba
k
,b

ehik,de

]
+ εa0···ap−2bd

2!(p − 1)! C(p+1)
a0···ap−2

ij
[
Bj

f
,b

e(Bie,df − Bif,de) − hj
k
,b

ehik,de

]) − (· · ·) (21)
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where dots refer to the similar expressions as above with the replacement of the world-volume
indices (e, f ) by the transverse indices (k, l) and (e, k) by (k, e). We call the C(p−3) couplings
the first component of the multiplet, the C(p−1) couplings are called the second component and
so on. The above couplings have been also found in [15] and verified with some of the contact
terms of the S-matrix element of one R–R and two NS–NS vertex operators. A more details study
of the S-matrix element [26], however, reveals that the string amplitude has more contact terms
than those considered in [15].

3.2. C(p−3) couplings

One can easily check that the first component of the CS multiplet (21) is not invariant under
the B-field gauge transformations. To write it in terms of field strength H , we add another T-dual
multiplet to (21). Since the gravity couplings to C(p−3) are those given by (21) [25], the first
component of the new T-dual multiplet must include only the B-field. This happens when the
indices of the R–R potential and the B-fields contract either with the volume form or with the
derivative of these fields. Consider the following couplings for C(p−3):

Tp

2!(p − 3)!
∫

dp+1x εa0···ap−4abcdC(p−3)
a0···ap−4(Bak,be − Bae,bk)Bcd

,ek (22)

As indices e and k appear in derivatives, it is easy to verify that this coupling is invariant under
linear T-duality transformations (7) when the Killing coordinate y is carried by the R–R potential.
When y is carried by the B-field, it is not invariant under T-duality. In those cases one has to add
more terms involving the higher R–R forms to arrive at a complete T-dual multiplet. Applying the
steps that are used in the previous section, one finds the following T-dual multiplet corresponding
to (22)

Tp

∫
dp+1x

(
εa0···ap−4abcd

2!(p − 3)! C(p−3)
a0···ap−4Bak,beBcd

,ek

+ εa0···ap−3abd

2!(p − 2)! C(p−1)
a0···ap−3

i
[
hik,beBad

,ek − 2Bak,behid
,ek

]
+ εa0···ap−2bd

(p − 1)! C(p+1)
a0···ap−2

ij

[
−hik,behjd

,ek + 1

2
Bdk,beBij

,ek

]
+ εa0···ap−1b

2!p! C(p+3)
a0···ap−1

ijnhie,bkBjn
,ek

)
− (· · ·) (23)

where dots refer to the expressions similar to the one in the first bracket with indices (e, k)

replaced by (k, e).
Now, the first components of the CS multiplet (21) and the above multiplet can be written in

terms of H , i.e.,

Tp

2!2!(p − 3)!
∫

dp+1x εa0···ap−4abcdCp−3
a0···ap−4

[
Rab

ef Rcdf e − Rab
klRcdlk

− 1

2
Habk,eHcd

k,e + 1

2
Habe,kHcd

e,k

]
(24)

where Hμνρ = Bμν,ρ + Bρμ,ν + Bνρ,μ. The terms in the second line are reproduced by the
S-matrix calculation [26]. Unlike the gravity couplings in the first line, the B-field couplings
are not invariant under the R–R gauge transformation.
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One may then expect that there are some other T-dual multiplets that should be included in the
action (24). As we have pointed out above, their first component must include only the B-field.
The presence of such couplings can be fixed by the S-matrix calculation. In fact the couplings
(24) as well as the following couplings are produced by the S-matrix element of one R–R and
two NS–NS vertex operators [26]:

Tp

(p − 3)!
∫

dp+1x εa0a1···ap C(p−3)
a4···ap

(
1

2!2!H
ea0a1

,ef Hf a2a3 + 1

3!H
a0a1a2

,ekH
kea3

+ 1

2!2!H
a0a1e,k

eH
a2a3

k + 1

3!H
a0a1a2

,eH
ef a3

,f + 1

3!H
a0a1a2

,kH
kea3

,e

)
(25)

The S-matrix element also produces some massless open-string/closed-string poles at order
O(α′2). The open string poles are reproduced in field theory by the DBI action (1) and the
following couplings [26]:

Tp

(p − 3)!
∫

dp+1x εa0a1···ap

(
1

2!2!C
(p−3)
a4···ap,k

(
2Ha0a1

e,k
e − Ha0a1

k,e
e

)(
Ba2a3 + 2πα′fa2a3

)
− C(p−3)

a4···ap

[
1

3!H
a0a1a2,e

ef

(
Bf a3 + 2πα′f f a3

)
+ 1

2!2!H
a0a1f,e

e

(
Ba2a3 + 2πα′f a2a3

)
,f

])
(26)

The closed string poles, on the other hand, can be reproduced by the bulk supergravity and the
D-brane couplings (5). It is shown in [26] that even though the contact terms and the massless
poles are not separately invariant under the R–R gauge transformations, their combination satis-
fies this symmetry.

3.3. C(p−1) couplings

Before making the other components to be covariant/gauge-invariant, let us digress to discuss
a subtle point in finding the field theory couplings from the corresponding string theory S-matrix
elements. It has been shown in [26] that the S-matrix element of one R–R potential C(p+5) and
two gravitons is zero, and the S-matrix element of one C(p+5) and two B-fields is non-zero.
When writing the latter amplitude in terms of field strength H , one finds that it has only massless
closed string poles at order O(α′2) (see Appendix B in [26]). On the other hand, using the steps
that are applied in Section 3.1, one finds that the T-dual multiplet corresponding to the couplings
(24) has no C(p+5) component. However, for the couplings (25), one find following component
in the T-dual multiplet:

C
(p+5)
a0···ap

ijmnBij,e
ef Bmn,k + C

(p+5)
a0···ap

ijmnBij,e
ekB

mn,k (27)

which arises from the contact terms of the S-matrix element. Similarly for the couplings (26),
T-dual multiplet has following component:

C
(p+5)
a0···ap

ijmn,kBij,e
ekB

mn − C
(p+5)
a0···ap

ijmnBij,e
ef Bmn,f (28)

which arises from the massless open string poles of the S-matrix element. The S-matrix element
also produces some massless closed string poles.

The above results indicate that the contact terms (27) and (28) must be canceled by the
massless closed string poles. To see this explicitly, we apply the same steps as we have used
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in Section 3.1 to calculate the C(p+5) component of the S-matrix element of one C(p−3) and two
B-fields [26]. The C(p+5) component of the amplitude (35) in [26] is

A ∼ p2 · V · p2

[
p3 · V · p3J3 − 1

2
p2 · V · p3J1 + 1

2
p2 · N · p3J2 − p1 · N · p3I7

]
+ 1

4
p1 · N · p2[p1 · N · p3I1 − p2 · N · p3I2 + p2 · ·p3I3] + (2 ↔ 3) (29)

The amplitude also has the overall factor of the polarization of the external states, i.e.,
εa0···apε1a0···apijmnε

ij

2 εmn
3 . In the above equation, J s and Is are functions of the Mandelstam

variables. We refer the interested reader to [26] for the notations. At low energy, the terms in the
first line produce the contact terms (27) and (28) and some massless closed string poles, whereas
the terms in the second line produce only massless closed string poles. Using the identities be-
tween J s and Is, i.e., Eq. (33) in [26], one finds that the terms in the first line add up to zero,
as anticipated above. On the other hand, the terms in the second line combine with some other
S-matrix T-dual multiplets to produce the result for the S-matrix element of one C(p+5) and two
B-fields.

This phenomenon may happen only when two derivatives in a coupling contract with each
other or, in momentum space, when a contact term is proportional to a Mandelstam variable, e.g.,
the couplings in (27) and (28). The reason is that the identities between J s and Is which arise
from the requirement that the S-matrix element must satisfy the Ward identities corresponding
to the NS–NS massless fields, have the structure of

∑
i (MiJi + NiIi ) = 0 where Mi and Ni

are at least the linear order of some Mandelstam variables. To clarify this point, suppose the
S-matrix element has the structure

∑
i (· · ·)Ji where (· · ·) refers to the polarization tensors and

the four momenta that are produced by performing the correlation between the vertex operators
[12]. Upon imposing the Ward identity corresponding to one of the NS–NS states, i.e., εμν →
εμν + pμζν ± pνζμ one finds a relation like

∑
i MiJi = 0.

These identities make the covariant/gauge-invariant form of the couplings, in which two
derivatives contract with each other, ambiguous. This ambiguity, however, is resolved when one
considers both the contact terms as well as the massless poles at order O(α′2). Hence, we will
not discuss the covariant/gauge-invariant form of such couplings, e.g., we will not consider the
C(p−1), C(p+1) and C(p+3) components of (23). Note that the first component of this multiplet
is combined with the first component of the CS multiplet to produce the gauge invariant result
(24).

We now try to make the other components of the CS multiplet to be covariant/gauge-invariant.
One can easily verify that the structure of the couplings in (25) and (26) is different from
the structure of the couplings in the CS multiplet (21). In particular, the couplings (21) are
antisymmetric under (e, f ) → (k, e) and (e, k) → (k, l) whereas the couplings (25) and (26)
do not have such antisymmetric property. So the couplings (21) cannot be combined with the
T-dual multiplets corresponding to the couplings (25) and (26) to produce the covariant/gauge-
invariant results. Therefore, there must be other T-dual multiplets to make the CS multiplet
covariant/gauge-invariant. The first component of these multiplets should be C(p−1). The strategy
for finding these multiplets is to find its first component by requiring that when they are combined
with the corresponding coupling in (21), they become covariant/gauge-invariant. Then using the
same steps as in Section 3.1, one finds all the other components of the T-dual multiplets.

There are two multiplets for making the first term in the second line of the CS multiplet (21)
to be invariant under the B-field gauge transformations. The first multiplet which has only two
components, is given by the following expression:
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αTp

∫
dp+1x

(
εa0···ap−3abd

(p − 2)! C(p−1)
a0···ap−3

i
[−ha

f
,b

eBef,id − Ba
k
,b

ehek,id

]
+ εa0···ap−2bd

(p − 1)! C(p+1)
a0···ap−2

ij
[
Bj

f
,b

eBef,id + hj
k
,b

ehek,id

]) − (· · ·) (30)

where again dots refer to the similar terms as above with (e, f ) → (k, l) and (e, k) → (k, e). The
coefficient α is a constant which we will determine shortly. Note that the first term in the first line
above is the coupling that is needed to make the corresponding coupling in (21) gauge invariant.
The other term in the first line is needed for T-duality. One can easily check that the sum of the
first term above for α = 1 and the first term in the second line of (21) can be written in terms
of H , i.e., Rab

ef Hief,d . However, the sum of the first term in the second line above for α = 1
and the first term in the third line of (21) cannot be written in a gauge invariant form.

The other multiplet is:

βTp

∫
dp+1x

(
εa0···ap−3abd

(p − 2)! C(p−1)
a0···ap−3

i
[−(

ha
f

,b
e − ha

e
,b

f
)
Bed,if − Ba

k
,b

ehdk,ie

]
+ εa0···ap−2bd

(p − 1)! C(p+1)
a0···ap−2

ij
[(

Bj
f

,b
e − Bj

e
,b

f
)
Bed,if − Bd

k
,b

eBjk,ie

− (
hb

f
,d

e − hb
e
,d

f
)
hej,if + hj

k
,b

ehdk,ie

]
+ εa0···ap−1b

p! C(p+3)
a0···ap−1

ijn
[(

Bj
f

,b
e − Bj

e
,b

f
)
hen,if + hn

k
,b

eBjk,ie

]) − (· · ·) (31)

The coefficient β is a constant. One can check that the sum of the first term above for β = 1 and
the first term in the second line of (21) can also be written in terms of H , i.e., Rab

ef Hide,f . The
sum of the first term in the second line above for β = 1 and the first term in the third line of
(21) cannot be written in a gauge invariant form. To remedy these failures, we will consider both
multiplets with

α = β = 1/2 (32)

We will see in the next section that the above choice of the constants makes it possible to write
the first term in the third line of (21) in a gauge invariant form.

The last term in the first line of (31) is proportional to the Mandelstam variable p2 · V · p3 in
the momentum space. So as argued before, we are not interested in making it covariant/gauge-
invariant. However, the last term in the first line of (30) is not proportional to a Mandelstam
variable, so there must be other T-dual multiplets to make it covariant/gauge-invariant. One can
write it in covariant form by adding the terms Ba

k
,b

e(hid,ek − hik,de − hde,ik). The first two
terms are again proportional to the Mandelstam variable p2 · V · p3 and are not relevant for our
discussion here. The last term is the C(p−1) component of the following multiplet:

αTp

∫
dp+1x

(
εa0···ap−3abd

(p − 2)! C(p−1)
a0···ap−3

i
[
Ba

k
,b

ehde,ik

]
+ εa0···ap−2bd

(p − 1)! C(p+1)
a0···ap−2

ij
[−hj

k
,b

ehde,ik

]
+ εa0···ap−1b

p! C(p+3)
a0···ap−1

ijn
[
hj

k
,b

eBne,ik

]) − (· · ·) (33)
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Now, the C(p−1) component of the above multiplet and the multiplets (31), (30) and (21) add
up to the following covariant/gauge-invariant results:

Tp

(p − 2)!
∫

dp+1x εa0···ap−3abdC(p−1)
a0···ap−3

i

[
−1

2
Rab

ef

(
Hied,f + 1

2
Hief,d

)
− RiekdHab

k,e

+ 1

2
Rab

kl

(
Hikd,l + 1

2
Hikl,d

)
+ RikedHab

e,k

]
(34)

where we have added/removed some terms which are proportional to the Mandelstam variables.
They are related to the massless-pole T-dual multiplets and we are not concerned about them in
this paper.

3.4. C(p+1) couplings

Adding the multiplets (30) and (31) to the CS multiplet (21), one finds that the B-field terms
in the C(p+1) component of the CS multiplet can be written in terms of field strength H , provided
one adds one more multiplet, i.e.,

1

2
Tp

∫
dp+1x

(
εa0···ap−2bd

(p − 1)! C(p+1)
a0···ap−2

ij
[
Bf e

,jbBed,if − hek
,jbhkd,ie

]
+ εa0···ap−1b

p! C(p+3)
a0···ap−1

ijn
[
Bf e

,jbhen,if − hek
,jbBkn,ie

]) − (· · ·) (35)

Now, the C(p+1) components of the multiplets (21), (30), (31), (33), and (35) add up to the
following covariant/gauge-invariant result:

Tp

(p − 1)!
∫

dp+1x εa0···ap−2bdC(p+1)
a0···ap−2

ij

[
1

2
Hj

f e
,bHied,f + 1

4
Rbd

ef Rijf e + Re
jb

kReidk

− 1

2
Hj

lk
,bHikd,l − 1

4
Rbd

klRij lk − Rk
jb

eRkide

]
(36)

where again we have added/removed some terms which are proportional to the Mandelstam vari-
ables. One may also add Hbd

k,eHijk,e − Hbd
e,kHije,k to the above bracket. Since this contact

term is proportional to the Mandelstam variables, our present calculation, which does not con-
sider the massless poles, cannot confirm the presence of this coupling.

3.5. C(p+3) couplings

The CS multiplet (21) does not have a C(p+3) component. However, the multiplets (31), (33)
and (35), which have made the CS multiplet covariant/gauge-invariant have such a component.
They combined to the following covariant/gauge invariant result:

Tp

p!
∫

dp+1x εa0···ap−1bC(p+3)
a0···ap−1

ijn

[
1

4
Hj

f e
,bRnif e − 1

4
Hni

e,kRjebk

− 1

4
Hj

kl
,bRnikl + 1

4
Hni

k,eRjkbe

]
(37)

There is no coupling for C(p+5) which is consistent with the S-matrix calculation [26].
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Therefore the couplings (24), (34), (36) and (37) are the T-dual multiplet corresponding to the
CS multiplet (21) which are covariant and are invariant under the B-field gauge transformations.
The T-duality of the multiplet, however, is off by some contact terms which are proportional to
the Mandelstam variables. As we argued in Section 3.3, they are related to the massless poles.
This ends our construction of making the CS multiplet (21) covariant/gauge-invariant by adding
new T-dual multiplets. One can use the same technique as we have done in this paper to find the
covariant/gauge-invariant T-dual multiplets corresponding to the couplings (25) and (26), and
then confirm the results with the S-matrix calculation.

Our studies indicate that the object that must be invariant under the T-duality is the S-matrix
element, not the low energy field theory of the D-brane. For the cases where the S-matrix element
has only contact terms at a given order of α′, the field theory is invariant under T-duality at
that order. In other cases, the combination of the D-brane contact terms and the massless poles
arising from the bulk and the brane actions, is invariant under T-duality. The same thing is true
for the R–R gauge transformation of the D-brane action at order O(α′2). One can check that the
couplings (24) and (25) are not invariant under the R–R gauge transformations. However, taking
the transformation of the massless poles at order O(α′2) into account, one recovers the R–R
gauge symmetry [26].
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