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from theBacillussp. KR-8104
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Abstract

Bacillussp. KR-8104 was selected from a set of 18 bacteria strains isolated from soil samples and screened for production of amylase. The
maximum productivity obtained at pH 5–6 and 60–65 h after cultivation in production medium. New extracellular Ca-independent�-amylase
was highly purified using ion exchange and hydrophobic interaction chromatography, which showed a single band with an apparent molecular
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eight of 59 kDa by SDS-PAGE. This enzyme is active in a wide pH range with its maximum activity at low pH values (4.0–6.0) an
0% of its maximum activity at pH 3.5. The�-amylase is optimally active at 75–80◦C. The presence or absence of Ca2+ and EDTA did no
ffect enzyme activity and thermal stability.
2005 Elsevier Inc. All rights reserved.
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. Introduction

�-Amylases are among the most important industrial en-
ymes[1,2] which can be obtained from several sources[3].
owever, they are usually produced by bacteria belonging

o the genusBacillus for industrial applications such asB.
icheniformis, B. amyloliquefaciens, B. stearothemophilus,
ndB. subtilis[4]. �-Amylases have potential application in
ide number of industrial processes such as food, fermenta-

ion, textile, paper, detergent, and pharmaceutical industries
4–6]. The properties of each�-amylase such as thermosta-
ility, pH profile, pH stability, and Ca-independency must be
atched to its application. For example,�-amylases used in

tarch industry must be active and stable at low pH but in
etergent industry at high pH values[7,8]. The diversity in

he applications and properties encourage us to take special
ttempts to search for new�-amylases.

Most of the bacterial�-amylases have pH optima at around
.5 and generally stabilized by Ca2+ ions and destabilized

∗ Corresponding author. Tel.: +98 21 8009730; fax: +98 21 8009730.
E-mail address:naderman@modares.ac.ir (H. Naderi-Manesh).

and/or inhibited by chelating agents such as EDTA[9]. In the
present study, we report purification, and partial chara
ization of a Ca-independent�-amylase produced byBacil-
lus sp. KR-8104 isolated from the soil. This enzyme ha
broad range of pH activity with the maximum activity at
4.0–6.0 that makes it very attractive for further investigat
and studies.

2. Materials and methods

2.1. Chemical

�-Amylase fromBacillus amyloliquefaciens(BAA), 3,5-
dinitrosalicylic acid (DNS), and Tris were purchased fr
Sigma (St. Louis, MO, USA). DEAE-Sepharose and phe
Sepharose were provided by Pharmacia (Uppsala,
den).ρ-Nitrophenyl�-d-moltoheptaoside-4-6-O-ethylidene
(blocked EPS) and�-glucosidase were obtained fro
Boehringer Mannheim (Mannheim, Germany) and all o
chemicals were from Merck (Darmstadt, Germany) and w
reagent grade.
141-0229/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
oi:10.1016/j.enzmictec.2004.11.003



R.H. Sajedi et al. / Enzyme and Microbial Technology 36 (2005) 666–671 667

2.2. Isolation and identification of microorganisms

Soil samples of rhizospher and rhizoplane zone of potato
were collected from Karaj and Hamadan in Iran. Twenty
grams of an air-dried soil samples were added to 100 ml ster-
ile water in an Erlenmeyer flask. The container was heated
in a water bath for 10 min at 80◦C while the content was
agitated. Subsequently, 1 ml of this suspension was added to
9 ml of sterile distilled water and a serial dilution (10−1 to
10−9) was prepared. About 1 ml of each dilution was added
and distributed on an isolation medium containing: potato
starch 10 g, meat extract 5 g, and 1000 ml of distilled wa-
ter. Plates were incubated at 37◦C for 24–48 h and different
types of colonies were chosen and purified. Starch hydrolysis
of the isolated strains was checked on nutrient agar supple-
mented with 10 g/l soluble starch. Hydrolysis was examined
by flooding plates with lugol’s iodine solution and recorded
when clear zone appeared around the margin of growth. The
promising strains were further examined for morphological,
physiological and biochemical characteristics with reference
to Bergey’s manual of systematic bacteriology[10] and color
atlas ofBacillussp.[11].

2.3. Production of�-amylase
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405 nm. Protein concentration was determined by the Brad-
ford method[15].

2.5. Purification procedures of�-amylase

After 48 h of cultivation in production medium, the cul-
ture medium was centrifuged at 3000×g for 10 min at 4◦C,
and the supernatant was collected and adjusted to 1 mM
PMSF (phenylmethylsulfonyl fluoride). Ammonium sulfate
was added to the crude culture supernatant to 85% satura-
tion at 4◦C for 2 h. The precipitates were centrifuged at
10,000×g for 15 min at 4◦C and the pellets were dissolved in
minimum volume of 20 mM Tris buffer, pH 7.4. The concen-
trated enzyme was dialyzed against the same buffer overnight
at 4◦C. This solution was applied to DEAE-Sepharose col-
umn (10 mm× 100 mm) at a flow rate of 1 ml/min, previously
equilibrated with 20 mM Tris, pH 7.4. Proteins were eluted
with a linear gradient of 0–0.5 M NaCl in the same buffer
and flow rate. The active fractions were combined and ap-
plied to the next step of the purification onto HiPrepTM16/10
phenyl FF (high sub) phenyl-Sepharose column (Amersham
biosciences, Uppsala, Sweden), previously equilibrated with
20 mM Tris, pH 7.4 containing 0.4 M ammonium sulfate. The
enzyme solution was also adjusted to 0.4 M ammonium sul-
fate before it was applied. The column was washed with a lin-
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Prior to the cultivation of isolated strains on product
edium, a loopful of each strain was cultivated on precu
edium containing (g/l): nutrient broth 8; meat extract

oyameal peptone 10; potato starch 10; and NaCl 0.5. In
ion was carried out at 37◦C, in an orbital incubator, with sti
ing at 160 rpm for 18 h. Subsequently, they were transfe
o the production medium aseptically at 5% of the produc
edium containing (g/l): potato starch 10; soyameal pep
; meat extract 3; CaCl2·H2O 0.5; MgSO4·7H2O 0.3; and
2HPO4 1, and incubated at the same condition as pre

ure medium. The production of the amylase was exam
n various times of cultivation to determine the optimum t
f the enzyme production. The effect of various pH va
3.0–9.0) on the amylase production was also studied.

.4. Determination of enzyme activity and protein
oncentration

�-Amylase activity was determined at room tempera
n a 1.0 ml reaction mixture that contained 0.5 ml of a 1
w/v) potato starch solution in 20 mM Tris–HCl, pH 7
he concentration of reducing sugars obtained from the
lyzed reaction for 3 min was measured by the dinitro
ylic acid method according to Bernfeld[12]. One unit o
-amylase is defined as the amount of the enzyme that
tes 1.0�mol of reducing sugar/min with maltose as a s
ard.�-Amylase was also assayed usingρ-nitrophenyl�-d-
oltoheptaoside-4-6-O-ethylidene as the absolutely spec

ubstrate for�-amylase and the excess of�-glucosidase as
oupling enzyme in the same conditions[13,14]. The release
-nitrophenol was recorded by monitoring the absorptio
ar gradient of 0.4–0 M ammonium sulfate in the same b
t flow rate of 1 ml/min. The active fractions were poo
nd concentrated by ultrafiltration (Amicon, Beverly, M
SA). During these experiments we used an AKTA FP
ystem (Amersham biosciences, Uppsala, Sweden) with
EAE- and phenyl-Sepharose columns.

.6. Polyacrylamide gel electrophoresis

SDS-PAGE was carried out using a 12% polyacrylam
el by the method of Laemmli[16], and protein bands we
etected by coomassie brilliant blue R250.

.7. Activity and stability studies on purified�-amylase

The pH profile and pH optima were determined at ro
emperature in various pH of 25 mM phosphate-glyc
uffer. The pH stability was studied for the purified�-
mylase by incubation of the enzyme in 25 mM phosph
lycine buffer, pH 3.5 for a series of time intervals
oom temperature, and then reached to pH 7.0 using 50
hosphate-glycine buffer and finally the residual activity
etermined under assay conditions.

The activity of purified�-amylase was determined at s
ral temperatures (from 20 to 80◦C) in 20 mM Tris, pH 7.4
o determine the thermal stability, the purified�-amylase wa

ncubated at 70◦C in the same buffer in the presence and
ence of 10 mM CaCl2 and 5 mM EDTA, for a series of tim
ntervals, then cooled on ice, and finally the residual act
as determined under assay conditions. The purified en
as also dialyzed twice against 20 mM Tris, pH 7.4 cont
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Fig. 1. Effect of time (a) and pH (b) on amylase production.

ing 10 mM EDTA and then aforementioned experiment was
carried out at this buffer.

3. Results and discussions

3.1. Identification of bacteria

All strains were spore forming, Gram positive, rod shaped
and identified asBacillus species. They were screened for
the�-amylase activity at various pH and temperatures. From
a large collection, six strains from Karaj including KR-
8101–8106 and 12 strains from Hamadan including HS-01-
12 were selected for the further experimental works. Finally
theBacillussp. KR-8104 strain was selected as the best po-
tent producer of�-amylase. It was catalase and oxidase pos-
itive. This strain was able to use sodium citrate and sodium
propionate. Furthermore, it was also able to grow on 7%
NaCl and its lecitinase activity test and indol productions

were negative. It was facultative anaerobic and anaerobically
broke down L(+) arginine. It was also able to grow at 45, 50
and 55◦C and acid compounds were produced from glucose,
mannitol, xylose and arabinose. These combinations of mor-
phological, physiological, and biochemical data suggest that
the KR-8104 strain is aBacillusspecies.

3.2. �-Amylase production and purification

Total amylase production byBacillussp. KR-8104 started
from about 20 h after inoculating of the production medium.
The maximum production was obtained at 60–65 h and
pH 5.0–6.0 (Fig. 1). After the concentration of crude cul-
ture medium, Anion-exchange chromatography on DEAE-
Sepharose was used. The fractions of the largest peak from
the elution profile (Fig. 2a) that had amylase activity were
pooled, adjusted to 0.4 M ammonium sulphate, and applied to
phenyl-Sepharose column. After the elution, the second peak
that eluted immediately at the end of the ammonium sulphate

F ose (a
p e purifi
L pharos sing
p

ig. 2. Elution profiles of strain KR-8104�-amylase on DEAE-Sephar
eaks are indicated. (c) SDS-PAGE illustrates different steps of�-amylas
ane 2 (2.5�g), after ion exchange chromatography using DEAE-Se

henyl-Sepharose column (purified enzyme); and Lane 4, molecular size ma
) and phenyl-Sepharose (b) column as described under Section2. The active
cation. Lane 1 (30�g), crude enzyme after precipitated with (NH4)2SO4;
e column; Lane 3 (1�g), after hydrophobic interaction chromatography u

rkers.
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Fig. 3. (a) Effect of pH on activity ofBacillussp. KR-8104�-amylase, (b) pH stability at pH 3.5 for�-amylase fromBacillussp. KR-8104 (�) and BAA (�).

gradient showed�-amylase activity (Fig. 2b) and thus there
is no need to desalting extra step by the dialysis or the gel
filtration chromatography. The fraction corresponding to the
active peak that combined and concentrated by the ultrafi-
tration showed homogeneity and appeared as a single band
on SDS-PAGE (Fig. 2c). The specific activity was improved
from 11 U/mg in the concentrated crude culture enzyme to
330 U/mg in purified enzyme (30-fold). The apparent molec-
ular weight of the purified enzyme was also estimated to be
59 kDa by SDS-PAGE (Fig. 2c).

Since the blocking group prevents hydrolysis of the
blocked EPS substrate by the exo-acting enzymes such as
�-amylase,�-glucosidase, and amyloglucosidase[14] and
purified�-amylase fromBacillussp. KR-8104 is able to act
on this substrate, therefore, we can suggest that this is an
�-amylase.

3.3. Effect of pH on�-amylase activity and stability

The influence of pH on the enzyme activity (pH profile) is
shown inFig. 3a. The pH profile of this enzyme shows a very
broad pH range of the activity at room temperature, so that
it has the 90% of its maximum activity in the range of pH
3.5–7.0 with its optimum pHs at pH 4.0–6.0. The reported
�-amylases produced by several bacterial sources, including
B tiv-
i ange
o -
l ,
s

Lactobacillus manihotivoransLMG 18010T [24], there are
few reports on�-amylases which have the maximum activity
at pH lower than 4.0. For example, the�-amylase produced
by Alicyclobacillus acidocaldariushas the maximum activ-
ity at pH 3.0[25] and one byPyrococcus furiosushas about
70% of its maximum activity at pH 3.5 without a wide pH
profile [26].

On the other hand, the pH stability of this enzyme was
measured at pH 3.5, as shown inFig. 3b. These results reveal
that our enzyme retained its full activity after 30 min and 80%
of its original activity after 1 h at pH 3.5, while the residual
activity of BAA at the same condition is nearly 25% after
60 min (Fig. 3b).

The broad range of pH activity profile and its optimum
activity at lower pH values make this enzyme highly attrac-
tive for both the basic research studies and the industrial
processes. Currently, there are several industrial applications
which take place at low pH and consequently there is a great
deal of interest to improve low pH activity for�-amylases.
Achieving this goal is very difficult task at the present time
[27].

The maximum activity of the enzyme at low pH values
with a good stability at pH 3.5 is very important from the
application point of view. Majority of the�-amylases are
unstable at low pH[28] and on the other hand the liquefaction
s erate
a
a teps
t d
a teps,

F lase, (b
a e of 5 m inst
1

acillussp., has a variety of pH profiles. The maximum ac
ty of the most of these earlier reported enzymes is in the r
f pH 6.0–8.0[17–19]or pH 5.0–7.0[20–22]. In spite of ear

ier reports on the activity at low pH for some�-amylases
uch as those produced byBacillus subtilisX-23 [23] and

ig. 4. (a) Effect of temperature on activity ofBacillussp. KR-8104�-amy
nd 5 mM EDTA (�), in the presence of 10 mM Ca2+ (�), in the presenc
0 mM Tris, pH 7.4 containing 10 mM EDTA (©).
tep in the starch process is currently constrained to op
t pH 5.8–6.2, which is around the optimum pH of the�-
mylase in use[8]. Since both the prior and post process s

ake place at pH 4.5, therefore, if the�-amylase is stable an
ctive at low pH values one can omit the pH adjustment s

) thermal stability of this�-amylase at 70◦C in the absence of 10 mM Ca2+

M EDTA (�), and in the presence of 10 mM EDTA after dialyzing aga



670 R.H. Sajedi et al. / Enzyme and Microbial Technology 36 (2005) 666–671

which is very important in the processing. Consequently, the
need for low pH�-amylase is very clear.

3.4. Effect of temperature and Ca2+ on�-amylase
activity and stability

The influence of temperature on the enzyme activity is
shown inFig. 4a. The optimum activity temperature is be-
tween 70 and 75◦C and the enzyme activity will decline
sharply at 80◦C. The temperature activity profile of this en-
zyme is similar to that of BAA.

The irreversible thermoinactivation of the enzyme at 70◦C
was recorded in four conditions: the absence of Ca2+ and
EDTA, the presence of 10 mM Ca2+, the presence of 5 mM
EDTA, and after dialysis against 10 mM EDTA. The thermal
stability of this enzyme is not influenced by the addition of
Ca2+ and EDTA as shown inFig. 4b. EDTA and chloride salts
of Ca2+, Mg2+, K+, and Na+ at 5 mM have no effect on this
�-amylase activity (data not shown). Thus,Bacillussp. KR-
8104�-amylase does not require Ca2+ ions for its activity and
thermostability and both of them are Ca-independent. Ca2+

ion generally alters activity and/or thermal stability in the
�-amylases as mentioned in earlier reports[29,30]and ther-
mal stability is usually increased in the presence of Ca2+ ion
[17,31]. There are few reports for�-amylases of non-Bacillus
s
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understand the mechanism of its activity at low pH and its
Ca-independent features. This has been the focus of many
research groups in this field in last 5 years.
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