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Abstract. In this paper, linear quadratic optimal control problems are solved by applying

least square method based on Bézier control points. We divide the interval which includes t ,

into k subintervals and approximate the trajectory and control functions by Bézier curves. We

have chosen the Bézier curves as piacewise polynomials of degree three, and determined Bézier

curves on any subinterval by four control points. By using least square method, we introduce

an optimization problem and compute the control points by solving this optimization problem.

Numerical experiments are presented to illustrate the proposed method.
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1 Introduction

Optimal control problems arise in a wide variety of disciplines. Apart from tra-

ditional areas such as aerospace engineering, robotics and chemical engineering,

optimal control theory has also been used with great success in areas as diverse

as economics to biomedicine. In particular, finding the analytical solution of

optimal control problems are difficult. Thus, numerical methods are needed for

the solution of these problems.

The linear quadratic optimal control problems are a class of optimal control

and there is an extensive literature on them. There are many papers which their
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authors have given methods for solving linear quadratic optimal control prob-

lems. For example, spectral method [10], time-domain decomposition iterative

method [16], and etc.

This paper aims at minimizing quadratic cost functionals over solutions of time

varying linear systems of the form

min I =
1

2
xT (t f )H(t f )x(t f ) +

∫ t f

t0

(xT Px + uT Qu + K x + Ru)dt,

s.t. :

ẋ = A(t)x + B(t)u + F(t),

x(t0) = x0,

(1)

where t0 and t f are given constants and x(t) = (x1(t), . . . , xn(t))T ∈ Rn , u(t) =

(u1(t), . . . , um(t))T ∈ Rm are unknown vectors functions. Also, we assume

H(t) = [hi j (t)]n×n , P(t) = [pi j (t)]n×n , Q(t) = [qi j (t)]n×m , A(t) = [ai j (t)]n×n

and B(t) = [bi j (t)]n×m are matrices functions and K (t) = (k1(t), . . . , kn(t))T ,

R(t) = (r1(t), . . . , rm(t))T and F(t) = ( f1(t), . . . , fn(t))T are vectors func-

tions, which their all elements are polynomial in [t0, t f ]. Also, x0 is finite con-

stant vectors and t f is fixed constant. If x(t f ) = x f be given, the first term of

the objective function will be converted to a constant and can be omitted.

If A and B independent of t , the problem (1) will be called time-invariant [3],

and otherwise it called time varying problem, [7], [11], and [21].

Lots of papers and books exist dealing with the Bézier curves or surfaces tech-

niques that are applied to different contexts. Harada [14] and Nürnberger [6]

have used the Bézier control points in approximate data and functions. Zheng

[13] proposed the use of control points of the Bernstein-Bézier form for solv-

ing differential equations numerically and also Evrenosoglu [15] have used this

approach for solving singularity perturbed two points boundary value problems.

The Bézier curves are used in partial differential equations. For example, the

Wave and Heat equations are solved in Bézier form, [1, 2, 12, 18]. Other appli-

cations of the Bézier functions and control points are found in [4, 9, 19, 22], that

are used in computer aided geometric design and image compression.

We suggest a technique similar to what is in [13] and [15], for solving of linear

quadratic optimal control problems.
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2 Least square method

We divide the interval t0 ≤ t ≤ t f into a set of grid points such that

t j = t0 + jh, j = 0, 1, ∙ ∙ ∙ , 2k,

where h = t f −t0
2k , and k is a positive integer. Let Sj = [t2 j−2, t2 j ] for j =

1, 2, ∙ ∙ ∙ , k, the control problem (1) will be defined piecewise as

min I j = C j +
∫ t2 j

t2 j−2

(xT
j Px j + uT

j Qu j + K x j + Ru j )dt,

s.t. :

ẋ j = A(t)x j + B(t)u j + F(t), t ∈ Sj ,

x j (t2 j−2) = μ j−1, x j (t2 j ) = μ j ,

(2)

where μ0 = x0 is known, μ1, μ2, . . . , μk−1, μk are unknown, μk = x f and

C j =

{
1
2 xT

k (t f )H(t f )xk(t f ), j = k,

0, j 6= k.

Our strategy is to divide the interval Sj into two subintervals and then using

a Bézier spline curve to approximate the solutions x j (t) and u j (t) by v j (t) and

w j (t), respectively where v j (t) and w j (t) are given below. Individual Bézier

curves that are defined over the subintervals are joined together to form the

Bézier spline curve. Let the Bézier segment over [t2 j−2+`, t2 j−1+`] be

[
v2 j−1+`(t)

w2 j−1+`(t)

]

=
3∑

r=0

[
a2 j−1+`

r

b2 j−1+`
r

]

B3
r

(
t − t2 j−2+`

h

)
, ` = 0, 1, (3)

where

B3
r

(
t − t2 j−2+`

h

)
=

(
3

r

)
1

h3
(t2 j−1+` − t)3−r (t − t2 j−2+`)

r ,

are the Bernstein polynomials of degree 3 over the interval [t2 j−2+`, t2 j−1+`]

and

[
a2 j−1+`

r

b2 j−1+`
r

]

are vectors of the control points. Now, by substituting (3) into
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differential equation of problem (2), we define the piecewise residual functions

E1,2 j−1+`(t) and E2,2 j−1+`(t) for t ∈ [t2 j−2+`, t2 j−1+`] and ` = 0, 1 , by

E1,2 j−1+`(t) = v̇2 j−1+`(t) − A(t)v2 j−1+`(t) − B(t)w2 j−1+`(t) − F(t),

E2,2 j−1+`(t) = vT
2 j−1+` P(t)v2 j−1+` + wT

2 j−1+`Q(t)w2 j−1+` + R(t)w2 j−1+`.

The boundary conditions should be applied to the first and last Bézier segments,

i.e.,

v2 j−1(t2 j−2) = μ j−1, v2 j (t2 j ) = μ j .

Beside the boundary conditions, there are also continuity constraints imposed

on each successive pair of Bézier segments. Since the differential equation is

of first order, the continuity of the first derivative of x (or v) is required and

this gives

v(s)
2 j−1(t2 j−1) = v(s)

2 j (t2 j−1), s = 0, 1, j = 1, 2, . . . , k.

Thus the control points a2 j−1+`
r must satisfy

a2 j−1
0 = μ j−1,

a2 j
3 = μ j ,

a2 j
0 = a2 j−1

3 ,

a2 j
1 = 2a2 j−1

3 − a2 j−1
2 .

(4)

If we consider the continuity of w, the following constraints will be added to

constraints (4),

b2 j
0 = b2 j−1

3 ,

b2 j
1 = 2b2 j−1

3 − b2 j−1
2 .

Now, for each j = 1, 2, ∙ ∙ ∙ , k we define residual function as follows

E j = ‖C j‖
2 +

1∑

`=0

∫ t2 j−1+`

t2 j−2+`

(M‖E1,2 j−1+`(t)‖
2 + E2,2 j−1+`(t))dt, (5)

where ‖.‖ is L2 norm and M is a big enough number. Our goal is to minimize the

residual function over Sj . Taking the derivative of E j with respect to component

of the unknown control points

a2 j−1
1 , a2 j−1

2 , a2 j−1
3 , a2 j

2 , b2 j−1
0 , b2 j−1

1 , b2 j−1
2 , b2 j−1

3 , b2 j
2 and b2 j

3
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reduces the problem (5) to solve a linear system include 4n + 6m equations

and unknowns where n and m are dimensions of x and u, respectively. Solving

this system, we have the solution in terms of μi , i = 1, . . . , k − 1. From the

continuity of the first derivative of the solutions, we have

v′
2 j (t2 j ) = v′

2 j+1(t2 j ), j = 1, . . . , k − 1,

which gives a linear equation system of k − 1 equations with k − 1 unknowns

μ1, . . . , μk−1. Substituting the minimum solution back into (4) we derive the

approximate solution of the quadratic optimal control problem.

Note 1: For j = k, we consider a2k
3 = μk as unknown in (5), and we compute

derivative of Ek with respect to component of a2k
3 .

Note 2: In problem (1), if x(t f ) be known, then we set Ck = 0 and μk = x(t f )

will be known.

Note 3: We can use this method for solving a problem of calculus of variation

as follows

min I =
∫ t f

t0

(ẋT P ẋ + xT Qx + K ẋ + Rx)dt,

with the conditions x(t0) = x0 and x(t f ) = x f .

3 Numerical examples

In this section, numerical experiments are conducted to validate the proposed

method. We have solved two following problems. First, an optimal control

problem and then a problem in calculus of variation and in each example, we

show the graphs of trajectories and optimal control functions.

Example 1. We consider the problem of minimizing the performance index

[8]:

I =
1

2

∫ 1

0
u2dt,
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on trajectories of the systems

ẋ1 = x2 + u,

0 = −x2 + u,

which satisfy the boundary values

x1(0) = 1, x1

(
1

2

)
= x1(1) = 0.

We solve this problem with k = 1 and the continuity of x2 is omitted. We obtain
the solution of the considered problem:

x1(t) =






8
(

1
2 − t

)3
+ 16.02400

(
1
2 − t

)2
t + 7.97601

(
1
2 − t

)
t2, 0 ≤ t ≤ 1

2 ,

0, 1
2 ≤ t ≤ 1,

x2(t) =






−7.97601
(

1
2 − t

)3
− 24.07199

(
1
2 − t

)2
t

−24.07199
(

1
2 − t

)
t2 − 7.97601t3, 0 ≤ t ≤ 1

2 ,

0, 1
2 ≤ t ≤ 1,

u(t) =






−7.976003
(

1
2 − t

)3
− 24.07198

(
1
2 − t

)2
t

−24.07198
(

1
2 − t

)
t2 − 7.97601t3, 0 ≤ t ≤ 1

2 ,

0, 1
2 ≤ t ≤ 1,

Min I = 0.2500003248.

The exact trajectories and control functions are obtained by Kurina, [8] as

follows:

x∗
1 (t) =

{
−2t + 1, 0 ≤ t ≤ 1

2 ,

0, 1
2 ≤ t ≤ 1,

, x∗
2 (t) = u∗(t) =

{
−1, 0 ≤ t ≤ 1

2 ,

0, 1
2 ≤ t ≤ 1,

Min I = I ∗ =
1

4
.

The graphs of trajectories and control functions which we obtain, are shown in

Figures 1-3.
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Figure 1 – Graph of trajectory x1(t).

Figure 2 – Graph of trajectory x2(t).
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Figure 3 – Graph of control u(t).

Example 2. In second example, we consider a variational problem. We want

to find two functions x1(t) and x2(t) which minimize the following objective

function, [5]-page 223,

I =
∫ π

2

0
(ẋ2

1 + ẋ2
2 + 2x1x2)dt,

subject to:
x1(0) = 0, x1

(
π
2

)
= 1,

x2(0) = 0, x2
(

π
2

)
= 1.

This problem is solved by k = 1 and we have obtained x1(t) = x2(t) and
Min I = 2.180665422 for objective function. The approximate solutions of the
problem are obtained as:

x1(t) = x2(t) =






0.70632t
(

π
4 − t

)2 + 1.40387t2
(

π
4 − t

)

+0.77943t3, 0 ≤ t ≤ π
4 ,

0.77943
(

π
2 − t

)3 + 3.27272
(

π
2 − t

)2 (
t − π

4

)

+4.43014
(

π
2 − t

) (
t − π

4

)2 + 2.06410
(
t − π

4

)3
, π

4 ≤ t ≤ π
2 .
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The exact solution of problem and it’s value of objective function are:

x∗
1 (t) = x∗

2 (t) =
e− π

2 (et − e−t)

(1 − e−π)
, 0 ≤ t ≤

π

2
,

Min I = I ∗ =
2(eπ + 1)

eπ − 1
= 2.180662822.

The graphs of x1 and error function are shown in Figures 4-5.

Figure 4 – Graph of trajectory x1(t) = x2(t).

Example 3. As a last example, consider a time varying quadratic optimal control

problem which is a model of aerospace trajectory control, [20]. The system data

is given as follows:

A(t) =

[
2t 1

0 t + 1

]

, B(t) =

[
1

2t+2
2t+3

]

,

P(t) = I, Q(t) = 1, x0 = (1, 1)T ,

H(t) = K (t) = R(t) = F(t) = 0, t ∈ [0, 4].

We solve this problem by proposed method and obtain the approximate solu-

tions of the problem. For k = 4, the minimum of the objective function is

Comp. Appl. Math., Vol. 30, N. 2, 2011
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Figure 5 – Graph of error.

6.573994915. Note that, the five terms of Taylor series of b21 at t = 2 is used

instead it. The graphs of x1, x2 and u are shown in figures 6-8. The asymp-

totic behaviors of trajectories of the system are discussed in [17] and we see this

behaviors in figures.

4 Conclusions

We have used least squares methods for numerical solutions of linear quadratic

optimal control problems and problems of calculus of variation in quadratic

form using Bézier control points instead of computing integrals or performing

discretization. The computation is simple and intuitive. The control point struc-

ture provides a bound on the residual function. Numerical examples show that

the approximate functions are satisfactory for large h. Clearly, if we could solve

systems of nonlinear equations, this technique will be quite general and can

be easily extended to solve other problems, for example, nonlinear quadratic

optimal control problems, general problems of calculus of variation.
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Figure 6 – Graph of trajectory x1(t).

Figure 7 – Graph of trajectory x2(t).
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Figure 8 – Graph of control u(t).
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