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A NEW APPROACH FOR SOLVING OF LINEAR TIME
VARYING CONTROL SYSTEMS

ALI VAHIDIAN KAMYAD 1 AND MEHRAN MAZANDARANI 2

Abstract. This paper is concerned with the solution of Linear Time Varying

[LTV] control systems. The concept of a solution for LTV systems is defined

on the basis of finding the fundamental matrix corresponding to LTV control

systems. There are some numerical methods such as Euler method and Taylor

method for obtaining approximate solution of LTV system [LTVs], each of them

has some limitations. In the recent years, other kinds of constructive approaches

for the solution of LTVs are presented limited to the particular cases of it. In this

paper, we introduced a new approach that we call it AVK approach to obtain a

global optimal approximation of the fundamental matrix of LTVs, by introducing

a problem in calculus of variations corresponding to our LTVs problem. A global

optimal approximate solution (general solution of LTV systems) by using linear

programming is considered.

1. Introduction

Linear Time Varying [LTV] systems are of great importance because they are
very frequently used to represent the dynamical behavior of the physical systems
encountered in engineering practice [6]. We are going to make use of a new approach
to obtain an approximation of the fundamental matrix of linear time varying system
[LTVs] to obtain a general solution to the initial-value problem for LTV control
systems. Until now, a number of constructive theories for the solution of LTV
systems have been available [1], [4], [8], [11], [12]. Some limitations of previous
methods are: Euler method [2] has not acceptable accuracy; Taylor method [2],
[9] involves computation of coefficients high order derivatives so it cannot be used
for LTVs with non-smooth coefficients; in Runge-Kutta method [5], [7], [10] error
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control is possible when the coefficients of system are smooth, and otherwise it does
not guarantee solution to be accurate and other kinds of constructive approaches
for the solution of LTVs are presented limited to the particular cases of it [5]. AVK
approach substitutes the LTVs with an equivalent problem in the field of calculus
of variations. Using this approach, we found an approximate optimal solution of
the new problem by solving a Linear Programming [LP] problem and obtained an
approximate solution for the LTVs with controlled error, even when the coefficients
of system are non-smooth.

2. Preliminaries

Definition 2.1. Let (T1, T2) be an open interval (which may be all of R or a set
{t : t > T1} ,etc).Let U(t) be a piecewise continuous function on (T1, T2) to Rn and
let A(t) be a continuous function from (T1, T2) into the set M(n, n) of all n × n

matrix then the system of equations

(2.1) Ẋ(t) = A(t)X(t) + U(t)

Or,equivalently

(2.2) ẋi(t) =
n∑

j=1

aij(t)xj(t) + ui(t)

For i = 1, ..., n, where A(t) = [aij(t)] that aij(t) are the entries of the matrix A(t)
and ui(t) is the component of the vector U(t) [we assume some or all of the entries
functions aij(t) or ui(t) may be non-smooth functions], is called a linear system with
forcing function U(t). The system of equations

Ẋ(t) = A(t)X(t)

Is often called the homogeneous or unforced part of the LTVs, if A(t) is a constant
matrix then we say that the linear system is time-invariant.

Theorem 2.2. Let s denote the set of all solutions of the homogeneous LTVs (2.1),
in other words,

s = {X(·) : Ẋ(t) = A(t)X(t) for t ∈ (T1, T2)}

Where X(·) is a function defined on (T1, T2) as follow:

X(·) : (T1, T2) → Rn

Then s is in C1(T1, T2), the continuous differentiable functions on (T1, T2), and a
basis {X1(t), ..., Xn(t)} of s may be obtained by letting Xj(·) ∈ Rn be the (unique)
element of s which satisfies the condition
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(2.3)

{
Ẋj(t) = A(t)Xj(t)

Xj(t0) = ej

Where ej = (0, ..., 1, 0, ..., 0)T is a vector whose jth component value is 1 and the
other components are zero [3].

Definition 2.3. Let Φ(t, t0) be the n × n matrix function whose jth column is
the vector function Xj(t), with Xj(t0) = ej that j = 1, ..., n. In other words, the
columns of Φ(t, t0) as defined below, are the solutions of the homogeneous part of
the LTVs (2.1) satisfying the initial condition Xj(t0) = ej . We say that Φ(t, t0) is
the fundamental, or transition matrix of the system (2.1). Then

(2.4) Φ(t, t0) =


x1

1(t) . . . xn
1 (t)

...
. . .

...
x1

n(t) . . . xn
n(t)


Where xj

i (t) is the ith component of Xj(t) , and we note that

(2.5) Φ(t0, t0) =


1 0 . . . 0

0
. . . 0

...
. . .

...
0 0 . . . 1

 = I

Where I is the identity matrix.

3. A NEW APPROACH TO APPROXIMATE SOLUTION OF ODE

PROBLEMS

We want to obtain an approximate solution of the following ODE problem:

(3.1)

{
Ẋ∗(t) = A(t)X∗(t) t ∈ [a, b]

X∗(a) = X∗
0

Definition 3.1. First, consider LTVs (2.1), we define the following functional
E(X∗(·)) on the space of continuous functions C[a, b] that we may call it the to-
tal error functional of ODE problem (3.1) in L1 space:

(3.2) E(X∗(·)) =
∫ b

a

∥∥Ẋ∗(t)−A(t)X∗(t)
∥∥

l1
dt

Where A(t) = [aij(t)], aij(t) are in general measurable functions on [a, b] and the
integral is the Lebesgue integral,
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(3.3) X∗(t) =


x1

1(t) . . . xn
1 (t)

...
. . .

...
x1

n(t) . . . xn
n(t)

 , ‖(xj
i (t))n×n‖l1 =

n∑
i,j=1

|xj
i (t)|

Theorem 3.2. If h(t) is a real nonlinear continuous function on [a, b] and non-
negative, h(t) ≥ 0 , then the necessary and sufficient condition for

∫ b
a h(t)dt = 0 is

h(t)=0 on [a, b] [6].

Proof. Let assume
∫ b
a h(t)dt = 0 but h(t) 6= 0 at a point t1 on [a, b], by continuity

of h(t) on [a, b] there exists some neighborhood of t1 such that h(t) > 0 for all
t1 ∈ (t1−ε, t1+ε) that ε is a positive number. Therefore

∫ b
a h(t)dt ≥

∫ t1+ε
t1−ε h(t)dt > 0

i.e.
∫ b
a h(t)dt > 0, which is a contradiction to our assumption. Thus h(t) must be

zero on [a, b]. On the other hand, if h(t) = 0 on [a, b] then obviously
∫ b
a h(t)dt = 0

[6].
�

Theorem 3.3. The necessary and sufficient condition for X∗(t) = (X1, ..., Xn) be
a solution of the following problem

{
Ẋ∗(t) = A(t)X∗(t) t ∈ [a, b]

X∗(a) = I

is

E(X∗(·)) = 0

Where A(t) is a known continuous function on [a, b] and I is the identity matrix.

Proof. We define h(t) in theorem 3.2 as follows: h(t) =
∥∥Ẋ∗(t) − A(t)X∗(t)

∥∥
l1

,
t ∈ [a, b] and Since

∥∥ · ∥∥
l1

is a norm function on Rn and is non-negative and A(t) is
also a continuous function, then h(t) is a continuous non-negative function on [a, b]
then by theorem 3.2 we conclude

∫ b
a

∥∥Ẋ∗(t) − A(t)X∗(t)
∥∥

l1
dt = 0 is equivalent to∥∥Ẋ∗(t)−A(t)X∗(t)

∥∥
l1

= 0 for all t ∈ [a, b] or Ẋ∗ = A(t)X(t)∗. �

Remark 3.4. Without the loss of generality, we may assume a = 0 and b = 1 by
applying the following bijective function:

[a, b]
f(x)⇐⇒ [0, 1] f(x) =

x− a

x− b
∀x ∈ [a, b]

Thus, the interval [a, b] is converted to [0, 1] equivalently.
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4. A NEW APPROACH FOR OBTAINING FUNDAMENTAL MATRIX

WE CALL IT AVK APPROACH

Let our problem be the following problem in calculus of variations:

Minimize
X∗ E(X∗(·)) =

∫ 1

0

∥∥Ẋ∗(t)−A(t)X∗(t)
∥∥

l1
dt(4.1)

s.t. X∗(0) = I (identity matrix)

Or, equivalently

Minimize
xj

i
E(X∗(·)) =

∫ 1

0

n∑
i=1

n∑
j=1

∣∣ẋj
i (t)−

n∑
k=1

aik(t)x
j
k(t)

∣∣dt(4.2)

s.t. xj(0) = ej j = 1, ..., n

Where {e1, ..., en} is the natural basis of the linear space Rn.
We assume the optimal solution of problem (4.2) to be X∗(t), then according to

theorem 3.2 and theorem 3.3, X∗(t) is a solution of the following LTVs{
Ẋ(t) = A(t)X(t) t ∈ [0, 1]

X(0) = I

if and only if: E(X∗(·)) = 0 or,{
ẋ∗ji (t) =

∑n
k=1 aik(t)x

∗j
k (t) i, j = 1, ..., n

x∗j(0) = ej

So, with respect to theorem 2.2 and definition 2.3, X∗(t) is the fundamental
matrix for LTVs (2.1) whose jth column is the vector x∗j , then in general, for
solving LTVs (2.1) we may solve the minimization problem (4.2) and we may write
Φ(t, 0) = X∗(t). References [4], [7] show using this fundamental matrix, the solution
of problem {

Ẋ(t) = A(t)X(t) + U(t) t ∈ [0, 1]
X(0) = X0

is

(4.3) X(t) = Φ(t, 0)
(

X0 +
∫ 1

0
Φ−1(τ, 0)U(τ)dτ

)
or,we have

(4.4) X(t) = X∗(t)
(

X0 +
∫ 1

0
X∗−1(τ)U(τ)dτ

)
Since the analytic solution for the fundamental matrix generally is unknown, so

we try to obtain an approximate solution of problem (4.2) which is an approximation
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of the fundamental matrix, we partition the interval [0,1] to m equal subintervals,
where m is an arbitrary positive integer, by using this partition from (4.2) we have:

Minimize
xj

i
E(X∗(·)) =

m∑
l=1

∫ l
m

l−1
m

n∑
i=1

n∑
j=1

∣∣ẋ∗ji (t)−
n∑

k=1

aik(t)x
∗j
k (t)

∣∣dt(4.5)

s.t. x∗ji (0) = ei
j

Here, x∗ji denotes an element of the ith row and the jth column of the fundamental
matrix.

Theorem 4.1. If S =
∑∞

n=1 an for an ≥ 0 (n ∈ N), then S = sup{
∑n

k=1 ak : n ∈
N}.

Proof. Suppose that Sn =
∑n

k=1 ak. Since Sn is an increasing sequence (i.e. Sn ≤
Sn+1 ∀n ∈ N) and lim

n→∞Sn = S we have Sn ≤ S . In other hand lim
n→∞Sn = S, so

there exist some m ∈ N such that for every n ≥ m we have S − ε ≤ Sn; therefore
S = sup{

∑n
k=1 ak : n ∈ N} . �

By theorem 4.1 the bigger m for the partition cause convergence of the approxi-
mate solution to the exact solution. Let h = 1

m , we have:

ẋ∗(tl) '
x∗(tl + h)− x∗(tl − h)

2h
(4.6)

tl =
l

m
l = 1, ...,m− 1

The bigger m for the approximate value the nearer exact derivative of x∗(tl).So
we substitute the above fraction instead of ẋ∗(t) in problem (4.5) and we have the
following optimization problem which is an approximation of the problem (4.5):

Minimize
x∗j

i
E(X∗(·)) =

m∑
l=1

∫ l
m

l−1
m

n∑
i=1

n∑
j=1

∣∣∣∣m2 (
x∗ji (t + h)− x∗ji (t− h)

)
−

n∑
k=1

aik(t)x
∗j
k (t)

∣∣∣∣dt

s.t. x∗ji (0) = ei
j(4.7)

For the beginning and the end of the interval, respectively t = 0, t = 1 we use these
x∗(t+h)−x∗(t)

h , x∗(t−h)−x∗(t)
−h as an approximation for ẋ∗(t).

We know the approximate value of
∫ a+ε
a h(t)dt is h(a)+h(a+ε)

2 ε where ε is a positive
number. Now, we approximate

∫ l
m

l−1
m

n∑
i=1

n∑
j=1

∣∣∣∣m2 (
x∗ji (t + h)− x∗ji (t− h)

)
−

n∑
k=1

aik(t)x
∗j
k (t)

∣∣∣∣dt(4.8)
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to

1
2m

{ n∑
i=1

n∑
j=1

∣∣∣∣m2 (
x∗ji (

l

m
)− x∗ji (

l − 2
m

)
)
−

n∑
k=1

aik(
l − 1
m

)x∗jk (
l − 1
m

)
∣∣∣∣

+
n∑

i=1

n∑
j=1

∣∣∣∣m2 (
x∗ji (

l + 1
m

)− x∗ji (
l − 1
m

)
)
−

n∑
k=1

aik(
l

m
)x∗jk (

l

m
)
∣∣∣∣}(4.9)

And finally, the approximate minimization problem (4.7) is transformed to the fol-
lowing problem:

Minimize
x∗j

i

m∑
l=1

1
2m

{ n∑
i=1

n∑
j=1

∣∣∣∣m2 (
x∗ji (tl)− x∗ji (tl−2)

)
−

n∑
k=1

aik(tl−1)x
∗j
k (tl−1)

∣∣∣∣
+

n∑
i=1

n∑
j=1

∣∣∣∣m2 (
x∗ji (tl+1)− x∗ji (tl−1)

)
−

n∑
k=1

aik(tl)x
∗j
k (tl)

∣∣∣∣}
s.t. x∗ji (0) = ei

j(4.10)

Where, ei
j = δi

j in which δi
j is Kronecker delta, δi

j =

{
1 i = j

0 i 6= j
.

For simplification we define x∗ijl
∆= x∗ji (tl), aikl

∆= aik(tl).
Thus, we simplify obtain the discretized problem (4.10) in the following form:

Minimize
x∗ijl

m∑
l=1

( n∑
i=1

n∑
j=1

∣∣∣∣m2 (
x∗ijl − x∗ijl−2)

)
−

n∑
k=1

aikl−1x
∗
kjl−1)

∣∣∣∣
+

n∑
i=1

n∑
j=1

∣∣∣∣m2 (
x∗ijl+1 − x∗ijl−1)

)
−

n∑
k=1

aiklx
∗
kjl)

∣∣∣∣)
s.t. x∗ij0 = δi

j(4.11)

In the problem (4.11) the factor 1
2m is omitted because of having no effect on

the solution of it. Now, the problem (4.11) is a nonlinear programming (NLP)
problem. By solving this problem where x∗ijl as unknown real numbers, we obtain an
approximation of the functions x∗ji (t) , t ∈ [0, 1] so we obtain the value of functions
x∗ji (tl) for all l = 0, ...,m. We may transform the NLP problem (4.11) to an LP
problem by below assumption:

|a| = v + u , a = v − u , v ≥ 0 , u ≥ 0

Where a is any real number. Now, the NLP problem (4.11) is transformed to the
LP problem (4.12):
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Minimize
m∑

l=1

n∑
k=1

n∑
i=1

vikl + uikl + rikl + sikl

s.t.

m

2
(x∗ijl − x∗ijl−2)−

n∑
k=1

aikl−1x
∗
kjl−1 = vikl − uikl

m

2
(x∗ijl+1 − x∗ijl−1)−

n∑
k=1

aiklx
∗
kjl = rikl − sikl

x∗ij0 = δi
j vikl, uikl, rikl, sikl ≥ 0(4.12)

5. conclusion

In this paper, we have introduced a new approach to obtain an approximate
solution(general solution) of LTV control systems, for an LTVs, while the total error
to be controlled. The interests of such an approach are: Simplicity: obtaining the
global optimal approximate solution by solving an LP or NLP, High Performance:
solving a new LTVs instead of a set of LTV systems, even when coefficients of systems
are non-smooth, Computation: by selecting the refinement of domain’s partition in
discretizing, the solution will converge to the analytical solution and Flexibility:
finding the global optimal approximate solution (general solution) for a Nonlinear
Time Varying system by solving of an NLP.
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