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Abstract

Under mild conditions on the covariance structure of the sample, we estimate densi
function of negatively associated random variables based on kernel estimator and pros
exponential rates for this estimator with a uniform version, over compact sets. The pro
uses a block decomposition of the sums to allow an approximation to independence. Sor
examples supposing exponential but also polynomial rates on the covariances that fulf
our assumptions are presented in the last section.
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1. Introduction

There exist several versions available in the literature for independent sequences (
variables with assumptions of uniform boundedness or some, quite relaxed, control on the
(centered or noncentered) moments. This independence assumption was eventual
replaced by some kind of control on the dependence structure of the sample upon which th
estimation is carried. There was various estimation methods proposed, among which w
will be interested in the nonparametric kernel estimator. For an account of results a
literature we refer the reader to Bosq [5].

One of the dependence structures that has attracted the interest of probabilists all
statisticians is negative association. Some definitions and applications as introduced b
Alam and Saxena [1] and carefully studied by Joag-Dev and Proschan [8] and Block et a
[4]. The significance of exponential inequalities toward several probability and statistic:
applications is well known. The consistency of the kernel estimator under associate
sampling was proved by Bagai and Prakasa Rao [3] which returned to the problem in Bag
and Prakasa Rao [2] proving a uniform consistency result. Independently, Roussas [10] als
proved a consistency result for the kernel estimator under associated sampling. Henriqu{
and Oliveira [7] obtained exponential convergence rates for the kernel estimator of tg
density function under associated sampling. To the best of our knowledge, asymptoti
behavior of kernel density function and exponential rates for its estimation under Ni
random variables, are not available in the literature.
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The remaining sections of the article are organized as follows: in the next section,
definitions and the necessary notation and terminology are introduced before the
preliminary result. In addition to the basic assumption of negative association, the condition
required is that the underlying random variables are strictly stationary with bounded and
continuous density function. In Section 3, we introduce some preliminary results. Actually,
all preliminary results needed are taken care of in the same section. The proof of the main
theorems rests on Lemma 4.1 and 4.2, which are formulated and proved in Section 4. In the
final section we will present some examples of covariance structures that fulfill the
assumptions used in this article. In this section, we will provide an example of polynomial
increase rate on the covariance structure that still verifies the conditions under which the

general results hold. Another example is based on geometrically rate on the covariance
Structure.

2. Definitions, assumptions and some lemmas

Let {X,,n>1} be a sequence of random variables with the same common unknown
density function £,
Definition 2.1: Let X be a fixed probability density and h, a sequence of nonnegative real

- numbers converging to zero. Then, the kernel estimator of the density function £ is
- defined as

o (5= X— X
£(x)=— L,
=-S5

- h
L n =l n
- which is well known to be asymptotically unbiased, if there exists a bounded and
~ continuous version of the density. Under these assumptions on £, the convergence of

: E[£(X)] to f(x) is uniform on compact sets.

finition 2.2: Two random variables X and Yare negatively quadrant dependent (NQD)
for every x ye R we have

P(X<xY<S )<SP(XSHP(YS Y.

lion 2.3: A finite family of random variables {X,1 <7< n} is said to be negatively
ciated (NA) if for every pair of disjoint subsets A and B of f1a,.., n},

Cou(g (X, ie A), g,(X,, je B)<0,
I g and g, are coordinatewise increasing and such that the covariance exists. An
family of random variables is NA if every finite subfamily is NA.

chnical problem arises when dealing with ;f,(x) for negatively associated variables.
fact, association is only preserved under monotone transformations, which means that, in

‘the variables K(X;X'],K{X;XZ J,...are not associated. This problem is

n

Ved, as usual, by supposing the kernel K to be bounded variation.
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Now, we introduce a set of assumptions that need to prove the main results.

Al.{X,,,nz l} is strictly stationary and negatively associated random variables with
common continuous density function £ which is bounded by a positive constant
M,, that is M, =sup f{x)].

A2.The kernel function K is a probability density of bounded variation such
that ‘[KE(U)G’U(DO; further, if K= K, - K, where K, and K, are nondecreasing
functions, the derivatives K| and K exist and are integrable.

Remark 1. Under A1, we have that
Fy.x,(1,8) = Fy (D).Fy ()| < M|CoV" (X, X))|, r,seR, @.1)

where F, , and F, represent the distribution functions of (X, X,) and X,
X5, X

respectively, and M, =2Max(2/7x*,45M,) (see corollary of Theorem 1 in Sadikova [11]
and relation (21) in Newman [9] for details). This inequality provides an upper bound for

h

n

X— X,
the covariances between the variables K{;( 4 } g=12. j=12...

Lemma 2.1. Supposel/and Vare NQD random variables with finite variance and
& &, are complex valued functions on R' with g/ and £, bounded. Then

|Con g, (1), &,(V)| < | &l &, Conr, ),

where || denotes the sup norm on R'; in particular, for any real z, s,

E(c”“”“'v)--- E(c""” )E(e"‘y] < —M]s{ Cou U, V).

Proof. Define :
H(r,5)= P(U<u,V<v)-P(U<u)P(V< ).
By Hoeffding lemma, .

Cov(U, V)= [ [ H(u, v)dudv .
This equation can be easily generalized to yield
Con g (), &;(V) = [ [ &i(u).g, (0 H(u, Vdud;
Since Uand V are NQD random variables H(u, v) < 0, thus
|Covgi @), &; (V)| = [ [ |t (| (V]| H(w, v|dudv

<&, |£l. coxv, v,
as desired. a

Lemma 2.2. Suppose {Xn,n 2 1} satisfy A1 and the kernel function satisfy A2. Then,

x- X x- X,
COP(KQ[ bﬂ ], K‘?[ bu ))

Proof. Just notice that

< M([K(def |cov® (X, X, g=12.
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Cov(Kq[X-bX] ]’ Kq(X;Xj})

n n

;lz_ 111{;[:— "}K;(%E](Fm.xj (r,8)— Fx (r).Fx}_(s))ldrds

n n n

and apply (2.1). o

Lemma 2.3. Let X|,.., X,be NA random variables bounded by a constant 5. Then, for
everyA >0,

B 5 - TTE(™)

=1

<-Ae™f Y Con X, X)).

Isi< f&n

Proof. By Lemma 2.1 for A >0 we have
|Cone™, e )| s 2| Cou X, V).

The results follow by induction and using the fact that if X, Yand Z are NA then so are X
and Y+ 2 as they are increasing functions of NA random variables. o

We quote next a general lemma used to control some of the terms appearing in the course
of proof.

Lemma 2.4. (Devroye, [6]). Let X be a central random variable. If there exist a,be R
such that P.(a < X< b) =1, then, for every 4 > 0,

E(e*) < exp(’l—u(b—;i)—) :

For the formulation of the assumptions to be made in this paper, the introduction of some
notation is required. Given A2, define '

2 n . == ‘n — ki
f;,n(X) 52 El-—z KI[X 5 ;]’ f;'n(x) = ;;—“z Kz[x - J),

- n n Sl
so that ?;(x) = };n(x) - };Ln(x). Foreach ne N, j=l,..,nand g=12, let
e Xf]~EK [X“ ij). 22)
h, g
Note that, all these variables are monotone transformations of the initial variables X,

then, they are NA.
Consider a sequence of natural numbers p, such that, for each n21, p, < n/2 and let

?:?:J'.'” = b‘;l (Kq[

r, be the greatest integer less or equal to n/2 p,. Define then, for ¢=1,2 and j=L,...,2r,

4
= f Tiga- (23)

k=(j=1) py+1
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sfies A2, the functions K, and K, may be chosen

Note that, if the kernel K sati
is bounded by 2 p”h;‘nK q“%, where || represents the

bounded so that each variable }':;,j.u

supremum norm.
Finally, for each g=1,2 and n2> 1, define

Ty

Zq,:r,od = 2 Y;.l j~Ln? Zq..r!.r.‘v = Z };.Ej.n = (24)
=

J=1

With these definitions, if n=2r, p, We have £, ,(x)—El £, .(X]= Lo nod ¥ 2 iald
n

3. Some preliminary results

In this section we prove two elementary lemmas that are provided the way to the proof of

the main result.
It is obvious that l}f?_j‘”l22;)";‘1,'}"“1{‘;“_ , for j=l,.,r, and g=12. Then, we can use

Lemma 2.4 to control the Laplace transform of these v
lemma produces the following upper bounds.

ariables. A simple application of this

Lemma 3.1. Let X, X, e DE random variables and suppose that A2 is satisfied. If }"M"‘,

g=12, j=1..,2r,are defined by (2.3) then, for everyA >0,

T 2ol
11 E(e" “"'") < exp 2 ;Lz o , =12
J=1 n
o - } y-.'-l fot /12 Pn“ K:; li
Ij}b(c ) £ exp —E— . g=12

Lemma 3.2. Suppose Al and A2 are satisfied. On account of (2.2), (2.3) and (2.4), and for

everyA >0,

izq £ T "':y“}_ . P2 A K‘ (2r.-1) p,
E{{:D g )—1—1E(C" z ? ) < exp _“ fl a0 ZC(}V(?:?.LH’ Tt‘}._,f',ﬂ)’ q: 1,2 (3‘1)
X 2n h, P

and analogously for the term corresponding to Z_, .-
Proof. The variables defined in (2.2) are negatively associated. According to (2.3), we
have, from direct application of Lemma 2:3

i e S R K
\h(e” ) ._HE(E” ) S —;Eexp{ .____ql.l“"_ ZCUV( XI.ZJ'-L::" K’;.l_r‘—i,n)
J=1 ol

gt
n
n h, 1S j< j<r,

1< j< j5r,

2 MK
< —%cxp[ib—q“-"’—} ZCm{ ¥ sr Yajutn)® (by2r,p, < n)
(3.2)

Using the stationary of the variables it follows that:
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ry=l
ZCO‘{ .2 j~l,n? ql; I.rj Z("n j)COP(Yln, §.2 j- In)' (33)
12 j< j' Iy f=|
And,
2/-Lp,
COI‘( 1/1 2 Jr—l.n) = C()I/( }:;.l,n‘ Z q kn
k=(2 j-2) p,+1
(2/=1p,
:pn ZCOL( q.l,a? qkn
k=(2 j-2) p,+1
(2 j+1) p,
2 Jon ZCD‘{ q.l,n? qi n (34}
k=(2j-1) p,+2

Then, by inserting this into (3.3) and remind again that r, p, < n/2, we find

-1 (2j+)p,

30 e R R R T T

1= j< f<r, _,r'=lk—("_;—|]p +2
2r, -1} p,
pn ZCOI'( ql,n? qkra)
'(,_p”_‘_'j
e H“f,. ) p, .
2> FOML L)
k=p,+2

Inserting this into (3.2), lemma follows.

4, Main results

Now, we prove in position an exponential inequality for the sum of odd indexed or even
indexed terms and then for the estimator. For this goal, we assumed that r and p, are

sequences such that

5 -——> 1. We will need to choose these sequences conveniently to
}:’Jpﬂ

prove our results.

Lemma 4.1. Suppose Al and A2 are satisfied. Further assume that

”h ) ZCO‘{ ql.n? q; n) S C < 90 (41)
n Iur.r S=pat+2
Then, for every ¢ (O,min(”K, and g=1,2
1), 25
P(=|Z,,.d> &)<+ Cepl=e sy (4.2)
n K

and similarly for Z

q.mev’

Proof. Using Markov’s inequality and Lemma 3.1 we find that, for every 1 >0,




Papers in 8" Seminar on Probability and Stochastic Processes

iz"”"‘" -:l'nad L ii;h_.n fn .".’yz o
Lo ‘ qun,0d >6)<E[€ 1 ' {E(c" ~T1ECe ™) +|[ 1ECc" ™ )ie
J=1 =

1 2

K
"“E(c ")~ HE(c ")+ exp —‘{%q“*t—,lg (4.3)
JH

z
Optimum value of A in the exponent of the last term of (4.3) is—‘h— so that thi§
2p|K

exponent becomes equal to — e n} — . From Lemma 3.2 it follows, using (4.1), that

4 HK I

L(e"'”' )-[’]L(e"” i

Then, by replacing optimum value of A into the first term of the upper bound of (4.3), we
have

_&'nh &’ nh’
.>5]<C exp| — PoRp T

P(— ~7
2p, 4p,

g, mod

- w‘:

anfgf)

In order to state the main result we have to deal with the terms in £, ,(x) that are notis

<(1+ G))exp| -

(7 nod  Zyne) - But these are, as expected, negligible. For easier reference, define

1

R X) F]- fi} ﬂ'( X ] n( q.m, od + Zq,n,r:v) i q T ]'52 (4'4)

g, n 55 1:*.::{
Lemma 4.2. Let R be defined by (4.4) for g= 1,2. Suppose that A1 and A2 are satisfieds

and

L (43).
Py
Then, for every £ > 0 and n large enough, we have
g=12

A

Proof. Write R, , = Z it . As the functions K, g= 1,2 are bounded, it follows that

J 20y Pyt
sl

RJs2 2] <22
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Now P(R,

K|, > nhg). According to (4.5) and h,——0 the lemma

follows for n large enough. (u]

Now, it remains to collect the partial results in order to obtain the exponential rate for
kernel estimator centered at its mean.

Theorem 4.1. Suppose Al, AZ and (4.5) are satisfied and that
A S Co X, X)) < G <. (4.6)

ﬁ pﬂ J=pytl

Then, for every & € (0,6 min(”K,IL,l|K1Hi,[|KZ||m,HKZﬂi}) and n large enough,

2 .32

> £) < Dexp(— 1&'4452‘;

where C=min{K|_.|K].), D= 2[2 + Mq[([K;(u)du)’ ¥ (jK;(u)du)z)].
Prooi‘._We have 5 3 ¥
70— B E01=(1,0 - B £,00)+ (5,00~ H 5,(9)

¥
i ln(z,n,ad * Z,n,cr) + ;(Zz.n,od i ZZ o, ev) - }q n i RZ a*

-5

to concentrate only on the first terms. By applying Lemma 4.1 we must check that (4.1) is
verified. For this purpose according to Lemma 2.1, we have

= - X, ‘ /3
|eout,,,, w,,)l —|Co y{K(thX!}Kq[»X_}:A]) s;lfM(IK;(u)du)zlcw (X, X))|-

As K and K, are assumed integrable, it follows that (4.6) implies (4.1). Applying then
. Lemma 4.1, we find for ¢g=1,2

1 : ZHhI
Pr(zlzq'n'm’l > -‘E—) < {l+ M,C, (IK‘,(u)du)Z }exp( m}

and similarly for Z, from where the result follows. 0

g mev ?

) (4.7)

According to Lemma 4.2 for n large enough,

] 0. So we need

Now, we use a decomposition of a compact interval to derive a uniform exponential rate
for the centered estimator.

Theorem 4.2. Suppose Al, A2 and (4.6) are satisfied, the kernel K is Lipschtzian and
= pif —>+0. Then, for every ¢ € (0, Gmm(nlq“ Ardimi4n "Kz“w}) n large enough
and each interval [a, b],
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. A = . b-a £ '__‘E'g_
£,(x) L[fn(x)]‘>s}£D - h; exP[ 5?6%], (4.8)

f { sup
xela,b
where C and D are defined as in Theorem 4.1.

Proof. Let [a, b| be a fixed interval and decompose {a,b]:UL[zn__j—r Z ¥ tn] into &,

n? om
intervals of length 2¢,. Then, obviously,
sup‘l 4,09 - EL 5,01 max| 7z, )~ H £z, )]

xe|a,b
+max _ sup
Is jss, xe{z,”—:a.zﬂ__ﬁ t,

If we suppose the kernel K to be Lipschitzian, it follows that there exits a constant € >0
such that

£(x)- };(zﬂu,) ~ H £(x)- }.;(Zn,j)]"

s 55 2= = Glx— o 26t
|50~ £(2,) - BL® - 4(z,)] < zlﬂbz—” <t

A correct choice of the sequence of radii will verify ~2——0. Supposing this condition
n

satisfied, it follows then that

R{ supJ },;(.X) ~ B };(X)]‘ = 5} e ﬁ{]rga;:(

xc[a.b

” - 201,
f,,(_zn,j) = F[ f;;(zn;)]\ G fl‘i }

< 5, max E{\ ’}}"(z}1 A };(z” ’.)]1 > f’:}.
1< j€s, * i 2
Thus, under the assumptions of Theorem 4.1, as the upper bound derived is independent of

: e t ;
x, for K Lipschitzian and sequences s, and ¢,such that b—a =25, and 1—"1~—-)0, it
h

[ "

follows -,

~ ~ &' nlt .
Plsup | £(x0)— H £(X]>¢et < Ds,exp| ————— |, 49
'{m[ﬂj (9~ FLE9] } 2 p[ 576Cp, 4
where C and D are defined as in Theorem 4.1.

Now, choose ¢, = A, to which corresponds s, = éu—f and use (4.9). It is easy to check that

n

(4.5) holds and that this choice for the sequence ¢, verifies all the assumptions made. O

Note that there are other possible choices for the sequences. Making these explicit would
mean some more precise expressions for &, and p,. These will be referred in the next
section.

5. Some examples

In the preceding, we derived some sufficient conditions in order to prove an exponential
rate for the kernel estimator for the density. We will now verify that these conditions are
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not void by constructing examples of covariance structures and choices of the sequences /4,
and p, (which determinesr,) that is verified the two assumptions involving these

quantities: (4.5) and (4.6). In these examples, we see that there is a tradeoff between the
b | covariance structure and the bandwidth.

Example 5.1. Suppose that covariances increase geometrically, namely Co¥ X, X,)= p,0",
for some 0< p<1,and p, <0. Then

Pat?
ZCO‘}”(X;’X) ;Oé” TER
f’pﬂ+2 l p
so that (4.6) becomes
2. 13
_%exp{ b,,+p,,3 2logp}£q_ o0
p\l=p 28 ;

Theorem 5.1. Suppose Al, A2 and (4.5) are satisfied and CoW( X, X,) = pop", for some

0<p<l,and p, <0.If sup " < B<o and pe(0,¢7?), then inequality (4.7) holds.

neN pn
Proof. The exponent in (5.1) should be bounded, which is equivalent to
log,oSB—A~ -H%, for some AeR.As p,——+o and nﬁ; is bounded, it is enough
pﬂ pﬂ pﬂ
nlt
that log p < 3 B. Finally, note that — < Bh,——0, so it is bounded. o

n

Example 5.2. Suppose that the covariances increase at the polynomial rate, that is
Col X, X,)=a,n ", for some 2>3 and 4, <0.Then
3
S Cov (X, X))~ 8 (p,+2) >
J=pa+2
Inserting this into (4.6) we find a term that behaves like

4 35”6){13{%—(3_3)1% pﬂ},
ﬂ P, 3

as w ~ 1. If this term is to be bounded, we may have, for some A>0
og p,

i 5 P 2

+— ¥ log P, (5:2)
n 3

} Theorem 5.2. Suppose Al, A2 and (4.5) are satisfied, Cou( X, X;)=a,n , for some

a>3, a,<0, and P N sup—ﬂ—b”m—s B<w and a>3B+3, then inequality
n N p,log p,
(4.7) holds.
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Proof. From the assumptions made it follows easily that 4, < B2 10g P,» 50 (5.2) holds:
n

A!} a-3h

On the other hand, u h 24— —n]og p,—0, for S0me

P R
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