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Abstract—In this paper, a novel constructive-optimizer neural
network (CONN) is proposed for the traveling salesman problem
(TSP). CONN uses a feedback structure similar to Hopfield-type
neural networks and a competitive training algorithm similar to
the Kohonen-type self-organizing maps (K-SOMs). Consequently,
CONN is composed of a constructive part, which grows the tour
and an optimizer part to optimize it. In the training algorithm,
an initial tour is created first and introduced to CONN. Then, it
is trained in the constructive phase for adding a number of cities
to the tour. Next, the training algorithm switches to the optimizer
phase for optimizing the current tour by displacing the tour cities.
After convergence in this phase, the training algorithm switches
to the constructive phase anew and is continued until all cities
are added to the tour. Furthermore, we investigate a relationship
between the number of TSP cities and the number of cities to be
added in each constructive phase. CONN was tested on nine sets
of benchmark TSPs from TSPLIB to demonstrate its performance
and efficiency. It performed better than several typical Neural net-
works (NNs), including KNIES_TSP_Local, KNIES_TSP_Global,
Budinich’s SOM, Co-Adaptive Net, and multivalued Hopfield
network as wall as computationally comparable variants of the
simulated annealing algorithm, in terms of both CPU time and
accuracy. Furthermore, CONN converged considerably faster
than expanding SOM and evolved integrated SOM and gener-
ated shorter tours compared to KNIES_DECOMPOSE. Although
CONN is not yet comparable in terms of accuracy with some
sophisticated computationally intensive algorithms, it converges
significantly faster than they do. Generally speaking, CONN pro-
vides the best compromise between CPU time and accuracy among
currently reported NNs for TSP.

Index Terms—Constructive-optimizer neural network (CONN),
Hopfield-type neural networks (HNNs), Kohonen-type self-
organizing maps (K-SOMs), traveling salesman problem (TSP).

I. INTRODUCTION

COMBINATORIAL optimization tasks such as the trav-
eling salesman problem (TSP) belong to a family of
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NP-complete problems [1] whose computational complexity
rises exponentially by increasing the number of parameters.
Finding suboptimal solutions with a reasonable cost may be
more advantageous in many of current TSP applications such as
printed-circuit-boards manufacturing [2], [3], data transmission
in computer networks [4], power-distribution networks [5], im-
age processing and pattern recognition [6], robot navigation [7],
and data partitioning [8].

TSP consists of finding the shortest closed tour visiting
n cities. To date, several methods based on deterministic or
probabilistic heuristics have been proposed for solving TSP.
These include classical search maps [9], simulated annealing
(SA) [10], artificial neural networks (NNs) (Kohonen-type
self-organizing maps (K-SOMs) [11]–[16], Hopfield-type NNs
(HNNs) [17]–[19], Boolean NN [20], and chaotic NN [21]),
genetic algorithms (GA) [22], [23], evolutionary programming
[24], ant colony optimization (ACO) [25], [26], population-
based incremental learning [27], tabu search [28], and fine-
tuned learning [29]. Since each of the above approaches has
weak points as well as strengths, determining a superior ap-
proach is nontrivial. For example, several researchers reported
good solution quality of the evolutionary methods such as GA
for offline applications [30], while others preferred algorithms
such as ACO [25] and SA [31] for their efficiency. Although
ACO and SA may be faster than evolutionary algorithms, they
are still slower than neural approaches [14]. In fact, neural
approaches are generally considered to be fast with inferior
solution quality [32]. Therefore, developing an NN structure
that provides a good TSP solution with less computational
complexity remains a challenging endeavor.

Among the above approaches, the HNN and K-SOM are
paradigmatically similar to the proposed approach. HNN gen-
erally has a second-order energy function that determines its
structure and behavior. Moreover, it uses a negative feedback to
minimize the energy function during NN training. In spite of its
fast convergence speed, a major drawback of HNN for solving
TSP is getting caught in the local minima of the energy function
[29], [32]. A number of solutions have been proposed to avoid
local minima of the energy function in HNN. For example,
Lee and Sheu [33] addressed this problem by adding an adapt-
able corrective input to neurons.

In contrast to HNN, K-SOM has a slow convergence speed
mainly because of its competitive training algorithm [11].
Nevertheless, it attracted many research interests to explore and
enhance its capability to solve TSP due to its intuitive appeal,
relative simplicity, and promising performance [14]. Because of
its relatively poor performance, it had been previously argued
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Fig. 1. BONN for a three-city tour.

that K-SOM may not be the best benchmark to evaluate the
effectiveness of NNs for TSP optimization [32]. However,
recent improvements in K-SOM demonstrated their potential
ability for solving TSP. Generally, there are three main streams
to enhance the original SOM [11]–[13]: 1) Introducing a vari-
able structure network; 2) amending the competition criterion;
and 3) enhancing the learning rule. Recently, Leung et al. [14]
proposed an expanding learning rule [expanded self-organizing
map (ESOM)], which can generate shorter tours than several
typical K-SOMs such as convex elastic net (CEN) [15] and
Budinich’s SOM [16]. Furthermore, Jin et al. [11] developed an
integrated SOM (ISOM), which incorporates the above learning
mechanisms. They also optimized ISOM using a GA to obtain
an evolved ISOM (eISOM). Another example is Co-Adaptive
Net [34], which allows neurons to cooperate and compete
among themselves depending on their situation.

In this paper, a novel constructive-optimizer NN (CONN) is
introduced to provide the best compromise between the conver-
gence speed and solution quality. The main idea of the proposed
NN is taking advantage of HNN’s fast convergence and
K-SOM’s solution quality. For this purpose, CONN uses a feed-
back structure similar to HNN and a competitive training algo-
rithm similar to K-SOM. Consequently, CONN is composed
of a constructive part, which grows the tour and an optimizer
part to optimize it. In the training algorithm, an initial tour is
created first and introduced to CONN. We show that depending
on the number of TSP cities, one of three different algorithms
including the cheapest link, convex hull, and hull through
four outermost cities can be used to generate the initial tour.
Then, CONN is trained in the constructive phase for adding
a number of cities to the tour. Next, the training algorithm
switches to the optimizer phase for optimizing the current tour
by displacing the tour cities. After convergence in this phase,
the training algorithm switches to the constructive phase anew
and is continued until all cities are added to the tour. Finally, we
investigate a relationship between the number of TSP cities and
the number of cities to be added in each constructive phase.

This paper is organized as follows. In the next section, we
present the proposed basic optimizer NN (BONN). CONN is
presented in Section III as an extension of BONN. Section IV
is devoted to evaluate the performance of CONN compared
to a large number of its counterparts using nine sets of TSP
benchmarks. Finally, conclusions are drawn in Section V.

Notations used in this paper are fairly standard. Boldface
symbols are used for vectors (in lower case letters). We also
have the following notations:

n total number of TSP cities;
m number of cities on the tour (tour cities);
ci ith city;
D(ci, cj) distance function between city pair (ci, cj);
xl

i output vector of the ith neuron in the lth layer;
xl

i,j jth component of the output vector xl
i;

Ψk current tour in the kth step;
Ψk

j jth city on the tour in the kth step;
ek energy-function value in the kth step;
Qk set of all tour cities in the kth step;
Rk set of all nontour cities in the kth step.

II. BASIC OPTIMIZER NEURAL NETWORK

BONN [35] is considered as an elementary structure of
CONN. It is a simple optimizer NN, which uses a feedback
configuration as well as a competitive training algorithm. In
each step of its training algorithm, BONN improves the current
tour until no further improvement can be achieved (convergence
to the final solution).

A. BONN Structure

Fig. 1 illustrates the BONN structure for a three-city TSP
which includes: 1) the tour; 2) link; 3) link competitive; and
4) tour-competitive layers. Although the output of typical neu-
rons is usually a scalar, the output of each neuron in BONN is
a vector whose content is dependent on the layer. All cities in
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BONN are on the tour, i.e., m = n. This paper addresses the
symmetric TSP, where D(i, j) = D(j, i).

The first layer of BONN (the tour layer) specifies the cur-
rent tour by m neurons, in which the neuron output x1

j (j =
1, 2, . . . ,m) indicates the jth city on the tour. It means that the
current tour is determined by

ψk =
[
ψk

j

]
=
[
x1

1,x
1
2, . . . ,x

1
m

]
, j = 1, 2, . . . ,m. (1)

The tour is a closed cycle; hence, the zeroth neuron is the same
as the mth one and the (m + 1)th neuron is the same as the first
one in the layer. As will be shown later, the tour cities in the
first layer are authorized to be displaced between neurons. The
BONN energy function is simply defined as the tour length:

ek =
m∑

j=1

D
(
x1

j ,x
1
j+1

)
. (2)

In order to visit each city only once, this energy function is
minimized with the following constraint:

∀j �= i ∈ {1, 2, . . . ,m} : x1
j �= x1

i . (3)

The training algorithm minimizes the BONN energy function
constrained by (3) in two steps. First, BONN is initialized by an
initial valid tour that satisfies the constraint. Second, the initial
tour is iteratively improved (while satisfying the constraint)
until no further improvement can be achieved.

The second layer (the link layer) also contains m neurons;
each one indicates a tour link which connects two adjacent
cities on the tour. The output of the neurons in this layer is
given by

x2
j =

[
x2

j,1,x
2
j,2

]
=
[
x1

j ,x
1
j+1

]
, j = 1, 2, . . . , m. (4)

The third layer (the link-competitive layer) has n + 1 neu-
rons. One of them is a threshold neuron whose output is a vector
containing the length of the tour links:

t3 =
[
t3j
]

=
[
D
(
x2

j,1,x
2
j,2

)]
, j = 1, 2, . . . ,m. (5)

The remaining neurons in the third layer are assigned to the
cities in a one-to-one and ordered manner (hereafter, each
neuron is indicated by its corresponding city and vice versa).
In each neuron, the activation value of each link is given by

ν3
i,j = D

(
x2

j,1, ci

)
+ D(ci,x2

j,2) − t3j ,

i = 1, 2, . . . , n, j = 1, 2, . . . ,m (6)

where ν3
i,j indicates the tour length increase due to inserted city

ci between the cities in the jth link [x2
j,1,x

2
j,2]. The output of

each neuron in the third layer is a vector including the smallest
activation value and its index:

x3
i =

[
x3

i,1, x
3
i,2

]T =
[
min
j∈Pi

(
ν3

i,j

)
, arg

(
min
j∈Pi

(
ν3

i,j

))]
,

i = 1, 2, . . . , n (7)

where Pi is a set of links excluding ci

Pi =
{
j|j = 1, 2, . . . ,m; x2

j,1,x
2
j,2 �= ci

}
. (8)

In more details, in each neuron of the third layer, a competition
occurs among all of the second-layer neurons and, finally, the
winning neuron-activation value and its corresponding index
are retained as the neuron’s output.

The fourth layer (the tour-competitive layer) also has n + 1
neurons. One of them is again a threshold neuron whose output
is a vector containing the decrease in the tour length due to
removal of each city from the current tour:

t4 =
[
t4i
]
, i = 1, 2, . . . , n (9)

where

t4i=




D
(
x2

j,1,x
2
j,2

)
+D
(
x2

j+1,1,x
2
j+1,2

)
−D

(
x2

j,1,x
2
j+1,2

)
x2

j,2 =x2
j+1,1=ci∈Qk

0 ci∈Rk

(10)

where

Qk =
{
x1

i |i = 1, 2, . . . ,m
}

(11)

Rk = {ci|i = 1, 2, . . . , n} − Qk. (12)

The remaining neurons in the fourth layer are also assigned to
the cities in a one-to-one and ordered manner (hereafter, each
neuron is indicated by its corresponding city and vice versa).
The activation value of each neuron in this layer is computed
by subtracting its corresponding threshold from its input as
follows:

ν4
i = x3

i,1 − t4i , i = 1, 2, . . . , n. (13)

Indeed, the activation value of the ith neuron indicates the
tour-length increase due to displaced city ci from its current
location to the new location between cities in the link specified
by x3

i,2. A competition is then occurred among the neurons in
this layer, and the neuron with the smallest increase in the tour
length wins:

ωopt = arg
(

min
i∈Qk

(
ν4

i

))
. (14)

Finally, the outputs of all neurons except the winning one are
set to zero as follows:

x4
i = 0, i �= ωopt. (15)

If the activation value of the winning neuron is negative, its
output will indicate a new location for city ci according to (16).
Otherwise, the NN convergence is achieved and the winning
neuron’s output is set to zero as well:

x4
ωopt

= x3
ωopt,2

ϕ
(
ν4

ωopt

)
(16)

where ϕ(·) is a hard limiter function defined by

ϕ(a) =
{

1, a < 0
0, otherwise.

(17)
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TABLE I
BONN TRAINING ALGORITHM

B. BONN Training Algorithm

The BONN training algorithm is summarized in Table I.
Since at each training step only one city is displaced from its
current location, the final tour usually satisfies constraint (3)
like the initial tour. In more details, displacing a city from its
current location to another location neither creates a loop on
the tour nor changes the number of tour cities. Therefore, if the
initial tour satisfies constraint (3), it will be remained satisfied
after each displacement.

C. BONN Convergence Analysis

According to (14), in the kth step of the training algorithm,
the winning neuron ωopt gives x4

ωopt
= p as its output in the

optimizer phase. Furthermore, as stated in (19) in Table I,
the corresponding city cωopt is located in location a on the
current tour. According to (4) and (5), the threshold value
corresponding to the pth link is given by

t3p = D(x1
p,x

1
p+1). (21)

Then, using (6) and (7), the output of the neuron ωopt in the
third layer is obtained as follows:

x3
ωopt,1

= D(x1
p, cωopt) + D

(
cωopt ,x

1
p+1

)− D
(
x1

p,x
1
p+1

)
.

(22)

Similarly, the threshold value of the neuron ωopt in the fourth
layer can be computed from (4) and (10) as

t4ωopt
= D(x1

a−1, cωopt) + D(cωopt ,x
1
a+1) − D(x1

a+1,x
1
a+1).

(23)

Using (13), the activation value of the neuron ωopt in the fourth
layer is given by

ν4
ωopt

=
(
D
(
x1

p, cωopt

)
+D

(
cωopt ,x

1
p+1

)−D
(
x1

p,x
1
p+1

))
−(D(x1

a−1, cωopt)+D
(
cωopt ,x

1
a+1

)−D
(
x1

a−1,x
1
a+1

))
<0.

(24)

According to (2), the value of CONN energy function in the kth
step is given by

ek =




m∑
j=1

D
(
x1

j ,x
1
j+1

)
j �=a−1,a,p


+ D

(
x1

a−1, cωopt

)

+D
(
cωopt ,x

1
a+1

)
+ D

(
x1

p,x
1
p+1

)
. (25)

The training algorithm will displace the winning city cωopt from
its current location a to the new location between cities in the
link specified by x4

ωopt
. This will form the next tour as indicated

by (20) in Table I. Hence, the value of CONN energy function
in the next step k + 1 will be given by

ek+1 =




m∑
j=1

D
(
x1

j ,x
1
j+1

)
j �=a−1,a,p


+ D

(
x1

p, cωopt

)

+D
(
cωopt ,x

1
p+1

)
+ D

(
x1

a−1,x
1
a+1

)
. (26)

Finally, using (24)–(26), we have

ek+1 = ek + ν4
ωopt

. (27)

The above equation states that in each step of the training
algorithm, the energy-function value is updated by adding
ν4

ωopt
to its value in the previous step. According to (16), the

activation value of the winning neuron ωopt in the fourth layer
should be negative; otherwise, the NN convergence is achieved.
Consequently, we may write

ek+1 < ek. (28)

It means that the energy function decreases monotonically
during BONN training. Therefore, BONN is stable in the sense
of Lyapunov [36] and will converge to a local minimum.

D. Relation Between BONN and Typical Heuristics

As explained in the previous sections, BONN is trained by
causing a competition among the tour neurons in each step and
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Fig. 2. CONN (extended BONN) for a three-city tour among six cities.

displacing the winning city from its current location to a better
location on the tour. In this regard, BONN is algorithmically
similar to the family of 2.5-Opt heuristics [36]. However,
BONN is presented here in the context of NNs, since it uses
a feedback configuration similar to HNN and a competitive
training algorithm similar to K-SOM. Consequently, the com-
putational complexity of the proposed NN is comparable with
typical NNs for TSP. Furthermore, as will be shown in the next
section, BONN is used as an elementary structure to develop
a CONN with the ability to avoid weak local minima of the
energy function. Similar strategy has already been adopted by
other researchers [37] who presented well-known 2-Opt and
3-Opt heuristics in terms of NN. Obviously, NN is just an
appropriate framework for developing the proposed algorithm
and it can be presented and used in different contexts like
typical heuristics.

III. CONSTRUCTIVE-OPTIMIZER NEURAL NETWORK

Similar to all energy-based NNs, BONN is highly sensitive to
the initial conditions and apt to be caught in local minima of its
energy function [35]. Here, a constructive approach is proposed
for the initialization and extension of BONN in order to avoid
weak local minima of the energy function.

As stated in Section II, all cities in BONN are on the tour
(m = n). According to (14), when m < n, the competition in
the fourth layer occurs only among the tour cities (belonging to
the set Qk). Consequently, the nontour cities (belonging to the
set Rk) do not take part in the training process. In each step of
the BONN training algorithm, a tour city is displaced from its
current location to a better one. Hence, the number of tour cities
remains fixed at m during BONN training. A question arises
here: How can the tour grow during training? The main idea
behind the proposed CONN is that, in each constructive phase,
a number of cities from the set Rk are added to the current tour,
and then, the new tour is optimized by BONN in the optimizer
phase.

A. CONN Structure

According to (10), the thresholds of nontour neurons are set
to zero and their activation value is equal to the tour-length
increase due to inserting the corresponding city on the tour.
Consequently, the nontour city with the smallest activation
value in the fourth layer may be the best choice to be added to
the tour. In other words, the winning nontour city in the fourth
layer (belonging to Rk) is likely the best choice for inserting on
the current tour.

The above procedure suggests the extension of BONN to a
CONN, as illustrated in Fig. 2. Neurons of the fourth layer
in CONN are divided into two parts: 1) the optimizer part
which consists of tour neurons (Qk) and 2) the constructive
part including nontour neurons (Rk). The optimizer and con-
structive parts are in charge of optimizing and growing the tour,
respectively. All the neurons in CONN have the same operation
as in BONN except the neurons in the fourth layer. In this layer,
optimizer part neurons compete with each other according
to (14) to optimize the current tour, while constructive part
neurons compete according to (29) to extend the tour

ωcns = arg
(

min
i∈Rk

(
ν4

i

))
. (29)

Furthermore, the winning neuron output in the constructive part
is obtained by the following:

x4
ωcns

= x3
ωcns,2

. (30)

Hence

x4
i = 0, i �= ωopt, ωcns. (31)

B. CONN Training Algorithm

The training algorithm of CONN has two phases including
constructive and optimizer as shown in the block diagram of
Fig. 3. The training algorithm starts with generating an initial
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Fig. 3. Block diagram of CONN training algorithm.

γ-city tour as will be explained in Section III-D. Using the
initial tour, the output of the neurons in the first layer is com-
puted according to (18) in Table I, by setting m = γ. CONN
first extends the tour in the constructive phase. In each step of
this phase, a nontour neuron in the fourth layer wins and its
corresponding city is inserted on the tour as follows:

ψk+1 =
[
xk

1 ,xk
2 , . . . ,xk

x4
ωcns

, cωcns ,x
k
x4

ωcns+1, . . . ,x
k
m

]
. (32)

The winning neuron in the fourth layer is consequently dis-
placed from the constructive part (Rk) to the optimizer part
(Qk). Obviously, adding a new city to the current tour increases
the number of neurons in the first and second layers (m) by one.
This process is repeated until the number of cities on the tour
augments to m = γ + λ.

After construction, the training algorithm switches to the
optimizer phase. In each step of this phase, the winning tour
neuron in the fourth layer is displaced from its current location
to a better location on the tour, according to the BONN training
algorithm presented in Table I. This process is repeated until the
NN convergence is achieved in the optimizer phase. Then, the
training algorithm switches again to the constructive phase and
the same procedure is iterated until the tour includes all cities.

C. CONN Convergence Analysis

Since CONN uses the same optimization algorithm as
BONN, its convergence in the optimizer phase can be demon-
strated as in Section II-C. Similar to (27), it can be simply
shown that in each step of the constructive phase, the energy-
function value increases as follows:

ek+1 = ek + ν4
ωcns

. (33)

Since in each step of the constructive phase only one city is
inserted on the tour and the number of cities is finite, this phase
of the training algorithm cannot make the algorithm unstable.
Indeed, the constructive phase initializes the optimizer phase
in each switching stage. Therefore, CONN is also stable in the
sense of Lyapunov as well as BONN and finally converges to a
local minimum.

D. Initial-Tour Generation

The initial tour may significantly affect the CONN per-
formance. CONN uses only local information to grow and
optimize the tour, while the initial tour can provide some global
information for it. We studied three different algorithms to
generate the initial tour: 1) the cheapest link [38]; 2) hull
through four outermost cities [39]; and 3) convex hull [40].
CONN uses one of these algorithms to generate the initial tour
for each TSP, based on the total number of cities as will be
explained in Section IV-B.

1) Cheapest-link algorithm: This algorithm is used to cre-
ate the initial tour by arranging a number of outermost
cities on a tour. According to (34), γ outermost cities
{cϕ1 , . . . , cϕγ

} can be found by maximizing the average
intradistance between these cities and all the TSP cities
as well as maximizing the average interdistance between
them in γ steps.

ϕp+1 = arg


max

i∈Φ




n∑
j=1

D(ci, cj)

n
+

p∑
q=1

D(cϕq
, ci)

p




 ,

Φ = {1, 2, . . . , n} − {ϕ1, ϕ2, . . . , ϕp} . (34)

The value of γ may depend on the topology and number
of TSP cities. Our simulations resulted in the following
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TABLE II
COMPUTATIONAL COMPLEXITY OF CONN EQUATIONS BEFORE AND AFTER EFFICIENT IMPLEMENTATION

experimental equation to determine γ as a function of n
for good performance:

γ = max (min ([0.032 × n + 6.94], n − 10) , 4) . (35)

2) Hull through four outermost cities: This algorithm simply
creates a four-city tour that consists of four outermost
cities (γ = 4).

3) Convex hull: This algorithm makes a convex hull as the
initial tour whose vertices are chosen from TSP cities
such that the resultant hull surrounds all the remaining
cities [14]. Obviously, the value of γ is determined by the
algorithm and depends on the topology and number of
TSP cities.

E. Computational Complexity

The most computationally complex equations of CONN are
(6), (7), and (10) which are of mn order (Table II). These
equations are used in both constructive and optimizer phases of
CONN. Hence, the overall computational volume of CONN is
O(n2) × K, where K is the total number of CONN iterations.
Suppose that the total number of optimizer phase iterations is
β. Obviously, the number of constructive phase iterations is
n − γ. Hence, the total number of training algorithm iterations
is K = n + β − γ. As will be demonstrated in Section IV-B,
K is usually smaller than 2n, since we generally have β < n.
Therefore, the overall computational complexity of CONN
seems to be of O(n3).

However, in each step of the optimizer phase, only one tour
city is displaced. Consequently, the above equations should
not necessarily be computed for all cities. More specifically,
suppose that the city cωopt has won in the optimizer phase of the
training algorithm and it has been placed at the location a on the
current tour (x1

a = cωopt). The next tour will be generated by
displacing the city cωopt from the location a to the new location
between cities in the link specified by x4

ωopt
on the current tour.

Hence, (10) should be computed only for five cities including
xk

a−1, xk
a, xk

a+1, xk
x4

ωopt
, and xk

x4
ωopt

+1. Similarly, if in the

constructive phase the city cωcns wins, (10) will be computed
only for three cities including xk

x4
ωcns

, xk
x4

ωcns+1, and xk
x4
cns+2.

Therefore, the computational complexity of (10) is reduced to
O(n), as shown in the third column of Table II.

In the same manner, (6) should be computed for only five
links including

Mopt =
{
x2

a−1,x
2
a,x2

x4
ωopt

,x2
x4

ωopt
+1,x

2
x4

ωopt
+2

}
(36)

in each step of the optimizer phase and two links including

Mcns =
{
x2

x4
ωcns

,x2
x4

ωcns+1

}
(37)

in each step of the constructive phase. Hence, the computational
complexity of (6) is also reduced to O(n), as shown in Table II.

Furthermore, efficient implementation of (7) can reduce its
complexity. Note that in each step of the optimizer phase, only
a limited number of ν4

i,j are modified. In more details, for the
ith neuron in the third layer, if the best link in the previous step
(x3

i,2) does not change in the current step

x2
x3

i,2
�∈ Mopt (38)

we will redefine Pi as follows:

Pi = Mopt ∪
{
x2

x3
i,2

}
− {j|j = 1, 2, . . . ,m;x2

j,1,x
2
j,2 �= ci

}
.

(39)

Otherwise, the set Pi is computed by (8). Using (39) for all neu-
rons results in the computational complexity of O(n) for (7).
However, (38) may not be satisfied for all cities. Consequently,
using the above efficient implementation, the complexity order
of (7) reduces to o(n2). In the same manner, similar results
can be obtained for the constructive phase. Therefore, the
overall computational complexity of CONN reduces to o(n3),
as shown in Table II and Fig. 7.

F. Example

We give an example to further clarify the CONN operation.
Consider a six-city TSP (n = 6), consisting of the following
cities:

c1=[0, 0], c2=[0, 1], c3=[0, 2], c4=[1, 2], c5=[1, 1], c6=[1, 0]

where each vector indicates the coordinates of the correspond-
ing city in the two-dimensional space. Suppose that the initial
tour is Ψ0 = [c2, c4, c5, c3, c6], as shown in Fig. 4(a), setting
m = 5 and k = 0. Furthermore, the function D(·) computes the
Manhattan distance between each city pair. According to (18)
in Table I, the outputs of the first-layer neurons are determined
as follows:

x1
1 = c2,x1

2 = c4,x1
3 = c5,x1

4 = c3,x1
5 = c6.

Using (11) and (12), Q0 and R0 are defined as Q0 =
{c2, c4, c5, c3, c6} and R0 = {c1}, respectively. The current



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

SAADATMAND-TARZJAN et al.: NOVEL CONSTRUCTIVE-OPTIMIZER NEURAL NETWORK FOR THE TSP 761

Fig. 4. CONN operation for solving a six-city TSP. (a) Initial tour with
m = 5 cities. (b) Tour improvement by CONN in the optimizer phase. (c) Tour
growing by CONN in the constructive phase.

value of the energy function is given by (2) as e0 = 2 + 1 +
2 + 3 + 2 = 10. Now, suppose that the NN is trained in the
optimizer phase. The output vectors of the second-layer neurons
are given by (4) as follows:

x2
1=[c2, c4],x2

2=[c4, c5],x2
3=[c5, c3],x2

4=[c3, c6],x2
5=[c6, c2].

The output vector of the threshold neuron in the third layer is
computed by (5) as t3 = [2, 1, 2, 3, 2]. The activation values
of the remaining neurons in this layer are determined by (6)
as follows:

v3
1 = [2, 4, 2, 0, 0],v3

2 = [0, 2, 1, 0, 0],v3
3 = [0, 2, 0, 0, 2],

v3
4 = [0, 0, 0, 0, 2],v3

5 = [0, 0, 0, 0, 0],v3
6 = [2, 2, 2, 0, 0].

According to (7), the outputs of these neurons are given by

x3
1 = [0, 4],x3

2 = [0, 4],x3
3 = [0, 1],

x3
4 = [0, 3],x3

5 = [0, 1],x3
6 = [2, 1].

The output vector of the threshold neuron in the fourth layer is
determined by (10) as t4 = [0, 2, 4, 2, 2, 4]. Then, the activation
values of the fourth-layer neurons are computed by (13) as

ν4
1 = 0, ν4

2 = −2, ν4
3 = −4, ν4

4 = −2, ν4
5 = −2, ν4

6 = −2.

Therefore, according to (14), the third neuron in the fourth layer
wins (ωopt = 3). The outputs of the neurons in this layer are
given by (16), (30), and (31) as

x4
1 = 0, x4

2 = 0, x4
3 = 1, x4

4 = 0, x4
5 = 0, x4

6 = 0.

Hence, the city c3 will be displaced from the fourth location to
the second location on the tour [Fig. 4(b)]:

ψ1 = [c2, c3, c4, c5, c6] .

According to (18) in Table I, the new outputs of the first-layer
neurons will be (setting k = 1):

x1
1 = c2, x1

2 = c3, x1
3 = c4, x1

4 = c5, x1
5 = c6.

The current value of the energy function is e1 = e0 + ν4
ωopt

=
10 − 4 = 6 [see (27)]. It can be easily shown that CONN cannot
further improve the current tour and it converges in the opti-
mizer phase. Now, the CONN training algorithm switches to
the constructive phase. In this phase, CONN proceeds forward

in the same manner as in the optimizer phase. The activation
values of the fourth-layer neurons are obtained as follows:

ν4
1 = 0, ν4

2 = 2, ν4
3 = 2, ν4

4 = 2, ν4
5 = 0, ν4

6 = 0.

According to (29), the first neuron in the fourth layer wins
(ωcst = 1, x4

ωcst
= 5). Using (30)–(32), we have

ψ1 = [c2, c3, c4, c5, c6, c1].

It means that the nontour city c1 is inserted at the sixth location
of the tour, as shown in Fig. 4(c). Now, the current value of
the energy function is e2 = e1 + ν4

ωopt
= 6 + 0 = 6 [see (33)].

At this stage, all cities have been added to the tour. Therefore,
the CONN training algorithm switches to the optimizer phase
again. The training algorithm cannot further improve the tour.
Hence, CONN converges to the final solution.

IV. EXPERIMENTAL RESULTS

The performance of CONN was evaluated using nine sets
of experiments. All the experimental results were obtained by
an AMD ATHLON XP 1.4-GHz PC with 1-GB main memory
using MATLAB environment. For comparing CONN with other
algorithms in terms of CPU time, we scaled the CPU time of
each algorithm by an appropriate scaling coefficient related to
its processing system. Similar to the approach used in [34],
we utilized the results reported in [41] to obtain the scaling
coefficients as shown in Table III. Note that the codes made by
3-GL programming languages such as C/C++, PASCAL, and
FORTRAN are more efficient than M-codes in the MATLAB
interpreter [42]. Nevertheless, we did not consider any scaling
coefficient for comparing MATLAB M-codes with 3-GL codes.
In other words, it is expected to obtain better performance by
implementing our algorithm using an efficient programming
language like C++.

A. Adjusting the CONN Parameters

Our primary experiments were performed on a set of
21 benchmark TSPs taken from a frequently used TSP library
called TSPLIB collected by Reinelt [43]. The number of cities
ranges from 52 (small-scale) to 5915 (large-scale). CONN was
used to solve each problem using five different values for λ. For
each λ, CONN was executed ten times to obtain the average
CPU time (T ). The percent differences have been computed
using

δ =
l − lopt

lopt
× 100 (40)

where l and lopt are the algorithm and optimal tour lengths,
respectively. Note that for each TSP, CONN gives the same
solution in all runs. Hence, the average percent difference (δ)
is equal to each percent difference for CONN, i.e., δCONN =
δCONN. The results are shown in Table IV. The best solution
for each benchmark TSP is shown by bold-faced text. As
shown, augmenting the number of TSP cities (n) increases the
appropriate number of cities to be added in each constructive
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TABLE III
SCALING COEFFICIENTS FOR ADJUSTING THE CPU TIME OF CONN COUNTERPART ALGORITHMS WITH RESPECT TO THE CONN CPU TIME

TABLE IV
CONN SOLUTIONS TO 21 BENCHMARK TSPS FROM TSPLIB FOR FIVE DIFFERENT VALUES OF λ. BEST RESULTS ARE INDICATED BY BOLD-FACED TEXT

phase (λa). As illustrated in Fig. 5, the following equation can
be fitted for determining λa as a function of n:

λa = max
([

38 × (lnn)3 − 631 × (ln n)2

+ 3476.9 × (ln n) − 6334] , 10) . (41)

B. CONN Performance on TSPLIB Problems

The second set of experiments was performed on 91 bench-
mark TSPs from TSPLIB with 14–5923 cities. CONN was ex-
ecuted for each TSP with three different initial-tour generation
algorithms including the cheapest link, convex hull, and hull
through four outermost cities. The results are listed in Table V.
For each benchmark problem, the first four columns of this
table are: 1) the TSP name; 2) number of cities (n); 3) optimal
tour length (optimal solution) as reported in TSPLIB; and
4) appropriate number of cities to be added in each constructive
phase (λa) as given by (41), respectively. For each initial-tour

Fig. 5. Number of cities to be added in each constructive phase (λ) versus
the number of cities (in the logarithmic scale) for 21 benchmark TSPs from
TSPLIB. The CPU time has been fitted by a cubic polynomial.
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TABLE V
CONN SOLUTIONS TO 91 BENCHMARK TSPS FROM TSPLIB USING THREE DIFFERENT ALGORITHMS FOR GENERATING THE INITIAL TOURS.

BEST RESULTS ARE INDICATED BY BOLD-FACED TEXT. FOR EACH TSP, CONN CHOOSES ONE OF THESE ALGORITHMS BASED ON THE

NUMBER OF CITIES (n). FINAL CONN SOLUTIONS ARE INDICATED BY GRAY BACKGROUND
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Fig. 6. K/n ratio for 91 benchmark TSPs from TSPLIB.

generation algorithm, the subsequent columns give the CONN
percent difference (δ = δ), number of cities on the initial
tour (γ), number of optimizer phase iterations (β), number
of total CONN iterations (K), and average CONN CPU time
per run, respectively. As shown, the cheapest-link algorithm
gives the best average results. More specifically, the cheapest-
link algorithm provides the best performance for TSPs with
n < 130. The convex-hull algorithm performs better for 130 <
n < 900. Finally, the hull through four outermost cities is more
appropriate for 900 < n. If TSP cities’ coordinates are not
strictly specified, the convex-hull algorithm cannot be used
for the initial-tour generation. In these cases, the cheapest-link
algorithm may be used. In the experiments reported hereafter,
the above criteria were used to generate the CONN initial tour.
The CONN solutions using this arrangement of algorithms are
indicated in Table V by gray background.

As shown in Table V, for all benchmark TSPs, we have
β/n < 0.5 and consequently K/n < 1.5 (Fig. 6). Hence, ac-
cording to the discussion presented in Section III-E, the overall
computational order of CONN is o(n3).

Fig. 7 shows the CONN CPU time versus the number of cities
for all benchmark TSPs. In this figure, the CPU time versus
n has been fitted to a polynomial whose degree is less than
three (2.7).

As illustrated in Fig. 8, the solution qualities of CONN are
between 0.0% and 14% for all benchmark TSPs. Furthermore,
CONN gave the optimal solutions for five benchmark TSPs.

C. Comparing With Computationally Complex Algorithms

In this section, we compared CONN with several nonneural
computationally complex algorithms. First, the performance of
CONN was compared with those of 2-Opt and 4-Opt heuristics,
an accurate variant of SA (SA1), and iterated tabu search
(ITS), which were reported in [28]. The third set of experi-
ments was performed on ten benchmark TSPs from TSPLIB
with 99 (small-scale) to 493 cities (medium-scale). The results
are given in Table VI. CONN gave shorter tours than 2-Opt
heuristic and converged several times faster than it. However,
CONN caused 0.7%, 3.6%, and 3.7% suboptimalities with

Fig. 7. CONN CPU time versus the number of cities for 91 benchmark TSPs
from TSPLIB. The CPU time has been fitted by a polynomial whose degree is
less than three (2.7).

Fig. 8. CONN percent difference versus the number of cities for 91 bench-
mark TSPs from TSPLIB.

respect to 4-Opt heuristic, SA1, and ITS, respectively, and
converged significantly faster than all of them. In more details,
the computational complexity of these counterpart algorithms
is O(n2) × K, where K is the total number of tour generations
(iterations). As shown in Table VI, their CPU time as well
as K increased rapidly by augmenting the number of cities.
In other word, K increased as a function of nl, where l ≥ 1.
Hence, the overall computational complexity of these nonneural
approaches is Ω(n3). Therefore, CONN rapidly outstrips them,
since its computational complexity is o(n3). For example, to
solve d198, CONN converged five and 1440 times faster than
2-Opt and 4-Opt heuristics, respectively. Another example is
d493, for which CONN converged 85 and 240 times faster than
SA1 and ITS. Fig. 9 illustrates these results in more details by
comparing the CPU times of CONN and SA1 for 64 bench-
mark TSPs from TSPLIB (the fourth set of experiments) with
14–493 cities.

The fifth set of experiments was performed on 14 benchmark
TSPs from TSPLIB with 532–4461 cities in order to compare
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TABLE VI
EXPERIMENTAL RESULTS OF CONN, 2-OPT HEURISTIC, 4-OPT HEURISTIC, SA1, AND ITS FOR TEN BENCHMARK TSPS FROM TSPLIB.

CONN IS COMPARED WITH THESE COUNTERPARTS IN TERMS OF THE AVERAGE PERCENT DIFFERENCE, AVERAGE CPU TIME,
AND COMPUTATIONAL COMPLEXITY. BEST RESULTS ARE INDICATED BY BOLD-FACED TEXT

Fig. 9. Comparing CONN with SA1 for 64 benchmark TSPs from TSPLIB in
terms of CPU time. The CPU time of SA1 was scaled by 0.32 (see Table III).

the performances of CONN and three nonneural computation-
ally complex algorithms including: 1) greedy Lin–Kernighan
(Greedy-LK) [44]; 2) max-min ant system (MMAS) [25];
and 3) an evolutionary algorithm called NEA that utilizes the
natural crossover operator [30]. These algorithms are among
the most accurate algorithms for TSP. According to Table VII,
CONN resulted in significant efficiency improvement and
caused 8.1%, 8.3%, and 6.3% suboptimalities with respect to
Greedy-LK, MMAS, and NEA, respectively. It can be easily
shown that the computational complexity of these counterparts
may be also Ω(n3); hence, CONN outstrips them quickly. For
example, to solve fl3795, CONN converged 18 times faster
than Greedy-LK. Another example is fl1577, for which CONN

converged 65 times faster than MMAS. The final example is
fnl4461, where CONN converged 37 times faster than NEA.

Note that classical well-known heuristics like Greedy-LK
may result in better performance in some problems by ex-
tensively tweaking and tuning the algorithm [44]. However,
CONN is based on a much simpler and more general-purpose
approach. In other words, CONN is not a tool to compete with
designer algorithms [36]. Nevertheless, the above experimental
results demonstrated that CONN can converge several times
faster than such heuristics while providing a reasonable percent
difference in the solution quality.

D. Comparing With Computationally Comparable Algorithms

Table VIII compares CONN with several well-known heuris-
tics including nearest neighbor, greedy, Clarke–Wright, and
Christofides whose computational complexities were reported
in [36]. As shown, CONN has a competitive computational
complexity with respect to these algorithms. However, as il-
lustrated in Fig. 8, it is apparent that CONN’s result extrap-
olates to being more than 10% above optimal for n ≥ 104.
In this case, Christofides may give better results compared to
CONN [36].

In the following experiments, we compared CONN with
several state-of-the-art NNs, including KNIES NNs [45],
Budinich’s SOM [16], ESOM [14], eISOM [11], Co-Adaptive
Net [34], and multivalued Hopfield network (MVHN) [37] as
well as a computationally comparable variant of SA (SA2) [14].
These algorithms have comparable computational complexities
with respect to CONN. However, it was claimed that KNIES
NNs had been the most efficient NN formerly presented in the
literature for TSP [45], [46]. Similarly, ESOM [14] and eISOM
[11] were introduced as the most accurate NNs for TSP. Also,
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TABLE VII
EXPERIMENTAL RESULTS OF CONN, GREEDY-LK, MMAS, AND NEA FOR 14 BENCHMARK TSPS FROM TSPLIB. CONN IS COMPARED

WITH THESE COUNTERPARTS IN TERMS OF THE AVERAGE PERCENT DIFFERENCE, AVERAGE CPU TIME, AND

COMPUTATIONAL COMPLEXITY. BEST RESULTS ARE INDICATED BY BOLD-FACED TEXT

TABLE VIII
COMPARING CONN AND SEVERAL WELL-KNOWN HEURISTICS INCLUDING NEAREST NEIGHBOR, GREEDY,

CLARKE-WRIGHT, AND CHRISTOFIDES IN TERMS OF THE COMPUTATIONAL COMPLEXITY

Co-Adaptive Net was proposed as a neural approach with better
performance than other NNs in terms of accuracy and/or CPU
time [34].

The basic idea of KNIES NNs is dispersing output neurons
after SOM learning to make their statistics equal to that of
some cities. If all cities participate, it leads to the global ver-
sion, KNIES_TSP_Global (KG). If only the represented cities
are involved, it leads to the local version, KNIES_TSP_Local
(KL). KNIES_DECOMPOSE (KD) first decomposes large-
scale TSPs by clustering cities using the learning vector quan-
tization approach. It then uses KNIES_TSP_Global to find a
tour among the cluster centers. Finally, it glues the Hamiltonian
paths, which are computed by KNIES_HPP_Global [47] for
each cluster. Budinich’s SOM is an effective implementation
of the traditional SOM that maps each city onto a linear or-
der without ambiguity [16]. ESOM incorporates the neighbor-

hood preserving and convex-hull properties of TSP to generate
shorter tours than Budinich’s SOM and CEN [14]. Furthermore,
eISOM optimally integrates the above two-TSP properties used
in ESOM with the mechanism of dragging excited neurons
toward the input cities [11]. Finally, Co-Adaptive Net involves
not only unsupervised learning to train neurons but also allows
neurons to cooperate and compete among themselves depend-
ing on their situation [34].

The sixth set of experiments was conducted on 37 benchmark
TSPs from TSPLIB with 51–5934 cities. Table IX lists the
results of CONN and its nine counterparts. The best solution
for each benchmark problem is shown by bold-faced text. It
may be observed from Table IX that all algorithms can generate
good tours. The range of CONN solution qualities is at least
1.7% less than those of its counterparts except eISOM. Fur-
thermore, CONN produced a superior average solution quality
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TABLE IX
COMPARING CONN AND ITS NINE COUNTERPARTS INCLUDING SA2, KD, KL, KG, BUDINICH’S SOM, ESOM, eISOM,

CO-ADAPTIVE NET, AND MVHN FOR 37 BENCHMARK TSPS FROM TSPLIB IN TERMS OF THE SOLUTION

QUALITY AND COMPUTATIONAL COMPLEXITY. BEST RESULTS ARE INDICATED BY BOLD-FACED TEXT

than its counterparts except ESOM and eISOM. In more de-
tails, CONN provided 1.2%, 2.9%, 0.7%, 1.0%, 1.3%, 0.5%,
and 6.1% improvements over SA2, KD, KL, KG, Budinich’s
SOM, Co-Adaptive Net, and MVHN (two optimal), respec-
tively. Although CONN caused 0.6% and 2.2% suboptimalities
with respect to ESOM and eISOM, respectively, it converged
significantly faster than both, as will be further demonstrated.
Moreover, CONN provided the best solution for 13 benchmark
TSPs. CONN has a smaller computational complexity than
those of its counterparts; hence, it eventually outstrips them,
as demonstrated in the following experiments.

The seventh set of experiments were performed to compare
the CPU time of CONN, Budinich’s SOM, and ESOM [14]
for 20 benchmark TSPs from TSPLIB. The number of cities
in these benchmark problems is between 51 and 1748. As
illustrated in Fig. 10, CONN converged, at least, ten times
faster compared to its counterparts for all benchmark TSPs.
Regarding the solution qualities reported in Table IX, CONN
performed significantly better than Budinich’s SOM and
ESOM. The execution time of eISOM is about 1.6 times longer
than those of ESOM and Budinich’s SOM [11]. Consequently,
CONN is more efficient than eISOM, ESOM, and Budinich’s
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Fig. 10. Comparing CONN with Budinich’s SOM and ESOM for 20 bench-
mark TSPs from TSPLIB in terms of CPU time. The CPU time of Budinich’s
SOM and ESOM was scaled by 0.48 (see Table III).

Fig. 11. Comparing CONN with Co-Adaptive Net for 20 benchmark TSPs
from TSPLIB in terms of CPU time. The CPU time of Co-Adaptive Net were
scaled by 0.42 (see Table III).

SOM. For example, the CPU time of CONN, Budinich’s
SOM, ESOM, and eISOM are 12, 218, 228, and (about) 365 s,
respectively, for vm1748.

The eighth set of experiments was run to compare CONN
with Co-Adaptive Net in terms of CPU time for 20 benchmark
TSPs from TSPLIB with 100–5934 cities. As shown in Fig. 11
and Table IX, CONN beats Co-Adaptive Net in terms of CPU
time and solution quality.

The last set of experiments was mainly designed to compare
CONN with KNIES NNs including KD, KL, and KG in terms
of CPU time for 18 benchmark TSPs from TSPLIB with
51–1002 cities. The experimental results illustrated in Fig. 12
and Table IX demonstrate that CONN beats KL in terms of
both CPU time and solution quality. KG converged faster than
CONN for TSPs with n < 442. However, for larger n, CONN
outstripped it since its computational order is smaller than KG.
Although CONN converged slower than KD, it provided 2.9%

Fig. 12. Comparing CONN with KNIES NNs including KD, KL, and KG for
18 benchmark TSPs from TSPLIB in terms of CPU time. The CPU time of
KNIES NNs was scaled by 0.25 (see Table III).

quality improvement over that (Table IX). Furthermore, the
computational complexity of CONN is smaller than KD and it
eventually outstrips KD for TSPs with larger size. Generally,
among KNIES NNs, KL is the slowest NN with the highest
accuracy, while KD is the fastest one with the poorest solution
quality.

V. CONCLUSION

In this paper, we proposed a constructive-optimizer NN
called CONN for TSP. The main purpose of designing CONN
is to obtain a fast method while achieving near to optimal
solution quality. CONN uses a feedback-type structure sim-
ilar to HNN and a competitive training algorithm similar to
K-SOM. The main idea behind the CONN training algorithm
is as follows. CONN is first initialized by an initial tour. Then,
it grows and optimizes the current tour until all cities are
added. CONN utilizes three different algorithms including the
cheapest link, convex hull, and hull through four outermost
cities for generating the initial tour. For each TSP, it chooses
one of these algorithms depending on the number of TSP cities.
Furthermore, CONN provides competitive efficiency compared
to the previously introduced NNs for TSP. Its computational
intensity is less than o(n3).

CONN was compared with several computationally complex
algorithms including 4-Opt heuristics, SA1, ITS, Greedy-LK,
MMAS, and NEA for performance evaluation. Although these
algorithms slightly outperformed CONN in terms of accuracy,
their computational complexity was several times larger which
limits their applications.

The CONN performance was also compared with those of
several computationally comparable NNs, including KNIES
NNs, Budinich’s SOM, ESOM, eISOM, Co-Adaptive Net, and
MVHN as well as SA2. These state-of-the-art NNs were out-
performed by CONN in terms of accuracy and/or CPU time.
It provided a better compromise between the CPU time and
solution quality.
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CONN uses a competitive training algorithm based on the
minimum added tour-length criterion. Its performance can be
improved by considering other criteria such as the shortest link
for growing and optimizing the tour in the training algorithm.
Moreover, the initial tour has an important role in the CONN
performance. Hence, extending the CONN training algorithm
as well as its structure to include other criteria and improving
the initial tour may result in better CONN performance in terms
of both time and accuracy.
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