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a b s t r a c t

Based on the nonlocal continuum theory, transverse vibration of a single-walled carbon nanotube
(SWCNT) conveying fluid with immovable support conditions is investigated. Unlike previous similar
studies, the SWCNT is assumed to be not perfectly straight and initially includes a slight geometrical cur-
vature as an imperfection. The SWCNT is assumed to be embedded in a Pasternak-type foundation. Ham-
ilton’s principle is applied to drive an efficient governing equation of motion, which covers stretching,
large deformation, and imperfection nonlinearities. The perturbation method of multi scales (MMS) is
applied and the nonlinear flow-induced frequency ratio is analytically calculated. The obtained results
reveal that the imperfection of the nanotube at high flow velocities makes the model severely nonlinear,
especially when considering the nonlocal effects. A noteworthy observation is that the nonlinear flow-
induced frequency ratio is decreased as the imperfection of the nanotube increases. Whereas through
a parametric study, the effects of the flow velocity, nonlocal parameter, the stiffness of the elastic foun-
dation, and the boundary conditions (BCs) on this frequency reduction are calculated and discussed
widely.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

A needle-like carbon nanostructure with a hollow cylindrical
shape was first discovered and reported by Ijima [1]. electrical,
chemical and physical properties of carbon nanotubes (CNTs) made
them appropriate for many applications in nanotechnology and
nanoengineering. Several nano-electro-mechanical systems
(NEMS) work on the basis of the properties of nanotubes while
more innovative potential applications are proposed for the future.
Nano-sensors [2–4], nano-resonators [5,6], nano-switches [7,8],
nano-resistors [9,10], nano-motors [11,12], and nano-robots [13]
are some interesting examples of the recent uses of the CNTs. Own-
ing mainly to perfectly cylindrical channels and remarkable
mechanical properties, nanotubes embrace variety applications
as nano-containers, nano-channels, and nano-pipes for conveying
fluid and gas [14–17]. In this fashion, CNTs can find uses in artifi-
cial blood vessels and drug-delivery systems (DDSs) in the field
of nanobiotechnology [18,19]. A CNT-based DDS is generally de-
signed to carry drugs and deliver them to a target cell. For instance,
in cancer therapy, CNTs can be used as nano-needles to transport
the drug agents directly into the tumor cells. This targeted delivery
improves the pharmacological and therapeutic profile of drugs
with a consequent reduction of undesirable side effects [20,21].
To employ nanotubes in such applications and to develop their
usage, we need to explore the dynamic nature of, and the impact

of flow-induced vibrations in, these nano-pipes. Molecular dynam-
ics (MD) simulations using empirical potentials can be used to
model the interaction between the flowing fluid and the nanotube
but these atomic-base simulations are still prohibitive, time-
consuming and formidable for nanostructures with large numbers
of atoms. Recently, continuum mechanics models have been effec-
tively and successfully used to simulate the flow-induced vibration
of CNTs. Euler–Bernoulli continuum theory has been applied
widely to investigate flow-induced vibration, instability, and dy-
namic behavior of nanotubes in several papers [16,22–26]. Chang
and Lee [27] applied Timoshenko continuum theory to explore
the flexural vibration of a single-walled carbon nanotube (SWCNT)
conveying fluid and the effects of the fluid flow on the resonant fre-
quencies were explained. As the size of CNTs is on the nano-scale,
the local continuum theories may not predict the mechanical
behavior of CNTs accurately. Hence, the above-mentioned local
theories should be modified by using Eringen’s nonlocal theory
[28]. This theory contains information about the long-range forces
between atoms and the internal length scale and consequently,
simulates the vibrational behavior of CNTs more precisely. Wang
[29] used a nonlocal Euler–Bernoulli continuum model for a dou-
ble-walled carbon nanotube (DWCNT) conveying fluid and ob-
tained the effects of the small length scale on resonant frequency
and critical flow velocity. Lee and Chang developed a nonlocal elas-
tic theory for a fluid-conveying SWCNT [30], and DWCNT [31] to
study the influence of the nonlocal parameter on the vibration
and instability of nanotubes. Moreover, the effects of temperature
change [32] and the visco-elastic foundation [33] on the vibrations
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and instability of a SWCNT conveying fluid were investigated using
nonlocal Euler–Bernoulli elastic theory. Since the previous experi-
ments confirm that the deformation nature of nanostructures is
intrinsically nonlinear, especially for large external forces and/or
large deflections [34–36], the linear modeling of the vibrational
behavior of CNTs may cause some inaccuracy in the results. How-
ever, all of the above studies are limited to linear vibration behav-
ior of CNTs, while the nonlinear one has been rarely investigated.
Rasekh and Khadem [37] introduced a nonlinear model for the
flow-induced vibration of a SWCNT conveying fluid embedded in
a Winkler-type foundation. The model was developed on the basis
of the local Euler–Bernoulli continuum theory and stretching non-
linearity was taken into account. The relationship between the
nonlinear resonant frequency and the vibration amplitude was de-
rived using the perturbation method and the effects of parameters
such as the flow velocity, surrounding elastic medium, mass and
aspect ratios of nanotube were considered.

1.1. Motivation

All previous papers simulate the CNT as an entirely straight and
perfect beam structure. Although the photos taken by transmission
electron microscopes (TEM) show that the CNTs usually exhibit a
certain degree of ‘‘waviness’’ along their length, which influences
their dynamical and mechanical behavior efficiently [38,39]. Late-
ly, the flow-induced vibrations of a curved SWCNT have been con-
sidered by Xia and Wang [40] through a linear elastic model and
the linear resonant frequencies have been compared with those
of straight CNTs. Ghavanloo et al. [41] studied the effects of the vis-
co-elastic medium on the resonant frequency of a semicircular
SWCNT. In this research, the nanotube has been assumed to have
a circularly curved shape and is modeled as a linear and local cir-
cular Euler–Bernoulli beam with an inextensible centerline. How-
ever, the immovable support conditions and the extensible
assumption for the centerline which make the model nonlinear,
represent a more practical situation than the inextensible condi-
tion [42] and cause the centerline strain of the nanotube to be ta-
ken into account.

Due to the lack of research in these areas, the motivation for this
work is to exploit an efficient nonlinear vibrational model for a
fluid-conveying SWCNT with a geometrical imperfection. The
imperfection is assumed to be as a slight curvature initially and
the presented model accounts for the effects of large deformations
and the immovable boundary conditions, simultaneously. The
foundation around the nanotube is modeled as a Pasternak-type
foundation and three classical boundary conditions (BCs) are ap-
plied to investigate the effects of the support stiffness. According
to each specified BC, the imperfection of the SWCNT is chosen sep-
arately. Using Hamilton’s principle, the nonlinear governing equa-
tion of motion is derived based on the nonlocal continuum theory.
The perturbation method of multiple scales (MMS) is applied to
solve the nonlinear equation which contains both cubic and qua-
dratic nonlinear terms and an explicit expression is obtained for
the nonlinear flow-induced frequency ratio. The effects of the
imperfection on the model’s nonlinearity and the nonlinear fre-
quency ratio are explained and the role of key parameters such
as flow velocity, nonlocal parameter, stiffness of the foundation,
and BCs is analyzed.

2. The nonlinear model for a SWCNT conveying fluid with an
initial imperfection

In this section, on the basis of the nonlocal Euler–Bernoulli con-
tinuum theory, the governing equation of motion for a SWCNT con-
veying fluid with an initial imperfection will be given. Consider a

fluid-conveying SWCNT modeled as a nano-pipe of length L, mean
radius Rave and constant thickness h that rests on a Pasternak-type
elastic foundation. A Pasternak foundation model describes a clar-
ified simulation for an elastic medium using a shear layer with lin-
ear elastic stiffness. Recently, some papers applied the Pasternak
model for the foundation of nano-materials and nanotubes suc-
cessfully [43–45]. In this kind of foundation model two different
constants express the stiffness of the medium, and this is why it
is also called the two-parameter foundation model. Here, kw and
kG represent the elastic stiffness and the shear stiffness of the elas-
tic foundation respectively. The CNT is assumed to have an initial
geometrical imperfection with the initial imperfection function
w0(x) (Fig. 1). The rise of the imperfect nanotube R is defined as
the maximum height of the midline of the model from the x axis
and is assumed to be small with respect to the length of the nano-
tube L. This means that the imperfection does not affect the bend-
ing moment and the fluid flow [46] and needs to satisfy the BCs of
the CNT.

To derive the equation of motion, the energy principle and the
variational approach will be used. To this end, based on the
immovable end conditions the kinetic energy due to the internal
fluid flow Tf is approximated as follows:

Tf ¼
1
2

mf
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@t
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dx; ð1Þ

mf is the mass of fluid per unit length, u and w are the longitudinal
and transverse displacement of the SWCNT and V shows the steady
flow velocity. The kinetic energy corresponding to the motion of the
SWCNT is:

Tc ¼
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where mc stands for the mass of the nanotube per unit length. The
total kinetic energy can be defined as T = Tf + Tc and its variation dT
is obtained as:
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Based on the Euler–Bernoulli continuum theory, the displace-
ment field of the model is expressed as:

uðx; y; tÞ ¼ uðx; tÞ � z � @w
@x

;

wðx; y; tÞ ¼ wðx; tÞ;
ð4Þ

where z is the distance from the neutral axis of the nanotube. By
assuming large deformation of the imperfect SWCNT but small
strains, the nonzero component of the von-Karman strain is approx-
imately expressed as [47]:

exx ¼
@u
@x
þ 1

2
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: ð5Þ

The variation of the strain energy for the one-dimensional
stress–strain field is derived using Eq. (5) and the variational rules.
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rx is the longitudinal bending stress. Nx and Mx are the stress resul-
tants defined as follows:

Nx �
Z

A
rx dA; Mx �

Z
A
rx � z � dA; ð7Þ

where A is the cross-sectional area of the SWCNT.
The virtual work dWext done by the external transverse forces

Fext exerted on the nanotube by the Pasternak elastic foundation
can be calculated as:

dWext ¼
Z L

0
Fext � dw � dx ¼

Z L

0
�kw �wþ kG

@2w
@x2

" #
� dw � dx: ð8Þ

In the above equation the viscosity of the flowing fluid through
the nanotube and the corresponding external work have been ig-
nored as indicated by Wang and Ni [48].

Using the dynamic version of the principle of virtual displace-
ments or Hamilton’s principle [49],

Z t2

t1

ðdT þ dU � dWextÞdt ¼ 0; ð9Þ

substituting Eqs. (3), (6), and (8) into Eq. (9), integrating by parts
and setting the coefficients of du and dw zero, lead to the equations
of motion as

du : mf ð�€u� 2V _u0 � V2u00Þ �mc €uþ N0x ¼ 0; ð10Þ

dw : mf ð�€w� 2V _w0 þ V2W 00Þ �mc þ ðNxw0Þ0 þ ðNxW 0
0Þ
0

þM00
x � kwwþ kGw00 � Pw00

¼ 0; ð11Þ

where prime and overdot denote the derivatives with respect to x
and t, respectively. For slender CNTs with immovable end condi-
tions (i.e. u(0, t) = u(L, t) = 0), the variation of the longitudinal iner-
tial forces can be neglected and as a result:

@Nx

@x
� 0: ð12Þ

By substituting Eqs. (7) and (4) into Eq. (12) and using immov-
able end conditions, the following relation between the longitudi-
nal displacement u and the transverse displacement w is
calculated:

u ¼ �1
2
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Hence, Nx can be easily calculated from Eqs. (5), (7), and (13):

Nx ¼
EA
L

Z L

0

1
2
ðw0Þ2 þw0

dw0

dx

� �
dx

� �
; ð14Þ

where E is the Young’s modulus of the SWCNT.
The nonlocal continuum theory, introduced by Eringen in 1983,

represents a more precise constitutive rule for small-scale struc-
tures in comparison with the common local elastic theories. This
theory states that the stress tensor at a reference point in an elastic
medium depends not only on the strains at that point but also on
the strains at all other points in the body [43]. This definition of
nonlocal elasticity is based on lattice dynamics and observations
on phonon dispersion. The nonlocal constitutive equation for the
uniaxial bending stress state forms as [50]

Mx � ðe0aÞ2 @
2Mx

@x2 ¼ EIjðx; tÞ: ð15Þ

Here, j(x, t) denotes the bending curvature, and the parameter
e0a shows the small-scale effect which is called the nonlocal
parameter. In fact, the parameter e0 is estimated such that the rela-
tions of the nonlocal elasticity model could provide a satisfactory
approximation of atomic dispersion curves of plane waves with
those of atomic lattice dynamics, and a represents an internal
length such as lattice parameter, granular size, or distance between
C–C bonds[44].

Based on the large deflection deformation, the relation between
the bending curvature j(x, t) and the nanotube transverse deflec-
tion w(x, t) is defined as:

j ¼ �w00

½1þw02�
3
2
ffi �w00½1� r0w02 þ � � ��; r0 ¼

3
2
: ð16Þ

Substituting Eq. (16) into Eq. (15) yields:

Mx � ðe0aÞ2 @
2Mx

@x2 ¼ �EIw00½1� r0w02 þ � � ��: ð17Þ

Using Eqs.(17) and (11) at the same time with omitting the
resultant stress Mx, the nonlinear governing equation of motion
for a fluid-conveying SWCNT with an imperfection is obtained:

ðmf þmcÞ €wþ 2mf V : _w0 þmf V2w00 þ EIW 0000 � NL1 þ kww

� kGW 00 � NL2 � ðe0aÞ2½ðmf þmcÞ€w00 þ 2mf V : _w000 þmf w0000

þ EIw0000 þ kww� kGw00 � NL2�
¼ 0; NL1 � �2r0EIðw0w000 þw002Þ and NL2

� Nx � ½w00 þ
d2w0

dx2 �: ð18Þ

In the above equation, the nonlinearities of the model are sum-
marized as NL1 and NL2. NL1 deals with nonlinearity due to the
large deformations while NL2 represents the nonlinearities caused
by the axial stretching and the imperfection of the nanotube.

W

XThe rise of the SWCNT R

Kw

KG

Fluid in
Fluid out

Fig. 1. Schematic diagram of a SWCNT conveying fluid with a geometrical imperfection.
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In this model, three standard BCs are employed to demonstrate
the effects of end stiffness on the vibrational characteristics of the
imperfect SWCNT conveying fluid. The pinned–pinned (P–P),
clamped–pinned (C–P), and the clamped–clamped (C–C) condi-
tions can be defined as follows:

P–P conditions:

wð0; tÞ ¼ wðL; tÞ ¼ 0;

w00ð0; tÞ ¼ w00ðL; tÞ ¼ 0:
ð19Þ

C–P conditions:

wð0; tÞ ¼ wðL; tÞ ¼ 0;

w00ð0; tÞ ¼ w0ðL; tÞ ¼ 0:
ð20Þ

C–C conditions:

wð0; tÞ ¼ wðL; tÞ ¼ 0;

w0ð0; tÞ ¼ w0ðL; tÞ ¼ 0:
ð21Þ

For convenience, these equations can be made dimensionless by
using the following definitions:

W ¼ w
r

; W0 ¼
w0

r
; X ¼ x

L
; T ¼ x0t;

x0 ¼
EI

mf þmc

� �1
2

; v ¼ mf

EI

� 	1
2 � V � L;

Kw ¼
kwL4

EI
; KG ¼

kGL2

EI
; m ¼ mf

mf þmc
; l ¼ e0a

L
;

ð22Þ

where W is the dimensionless transverse displacement parameter,
X shows the dimensionless longitudinal coordinate, and r is the ra-
dius of the gyration of cross section. v represents the dimensionless
flow velocity parameter and Kw, KG symbolize the dimensionless
parameters for elastic constant and shear constant of the founda-
tion. m is defined as the dimensionless mass ratio.

Substituting the dimensionless parameters (Eq. (22)) into Eq.
(18), the nonlinear dimensionless form of the governing equation
is obtained:
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" #
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ð23Þ

where

N � r2EA
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ð24Þ

Furthermore, the dimensionless forms of the BCs are easily cal-
culated as:

Dimensionless P–P conditions:

Wð0; TÞ ¼Wð1; TÞ ¼ 0;

@2Wð0; TÞ
@X2 ¼ @

2Wð1; TÞ
@X2 ¼ 0:

ð25Þ

Dimensionless C–P conditions:

Wð0Þ ¼Wð1Þ ¼ 0;

@Wð0; TÞ
@X

¼ @
2Wð1; TÞ
@X2 ¼ 0:

ð26Þ

Dimensionless C–C conditions:

Wð0; TÞ ¼Wð1; TÞ ¼ 0;

@Wð0; TÞ
@X

¼ @Wð1; TÞ
@X

¼ 0:
ð27Þ

3. Solution methodology

In order to convert the governing equation of motion Eq. (23)
into an ordinary differential equation of motion, the Galerkin
method is employed. Hence, the dimensionless transverse dis-
placement can be simplified as:

WðX; TÞ ¼
Xn

i¼1

YiðTÞ �uiðXÞ; ð28Þ

where n is the number of degrees of freedom, ui(X) is the ith eigen-
function of the CNT, and Yi(T) is the ith time-dependent deflection
parameter of the model. Based on a single degree of freedom model
of the beams Eq. (23) can be solved with appropriate accuracy [51]
and the solution is constructed by expressing the deflection func-
tion W(X,T) as the product of two separate functions:

WðX; TÞ ¼ YðTÞ �uðXÞ; ð29Þ

Y(T) is the dynamical transverse response of the model while the
shape function u(X) is related to the boundary conditions. Mean-
while, the dimensionless imperfection function W0(X) should satisfy
the corresponding BCs and has been assumed as a harmonic func-
tion of X in this paper. Hence, for the P–P boundary condition, the
mode shape of the model for the first mode of vibration is:

uðXÞ ¼
ffiffiffi
2
p

sinðpXÞ; ð30Þ

and the corresponding imperfection function W0(X) satisfying the
P–P condition should be:

W0ðXÞ ¼ R sinðpXÞ; ð31Þ

where R is the maximum dimensionless height from the x axis or
‘‘the dimensionless rise’’ of the imperfect SWCNT.

For C–P condition, the mode shape of vibration is

uðXÞ ¼ cosðbXÞ � coshðbXÞ � sinðbXÞ þ sinhðbXÞ;
b ¼ 3:926602;

ð32Þ

with the following imperfection function:

W0ðXÞ ¼
R

2p
sinð1:43pXÞ � 1:43p � cosð1:43pXÞ þ 1:43pð1� XÞ:

ð33Þ

And finally, the C–C condition has a mode shape as:

uðXÞ ¼ cosðbXÞ � coshðbXÞ � sinðbXÞ þ sinhðbXÞ;
b ¼ 4:730041;

ð34Þ

and the imperfection function as:

W0ðXÞ ¼
R

2
cosð1� 2pxÞ: ð35Þ
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By substituting Eq. (29) into Eq. (23) and using the appropriate
mode shape u(X) and imperfection function W0(X) for each kind of
boundary conditions, the nonlinear ordinary differential equation
of motion is concluded:

A�2
d2Y

dT2 þ A�1
dY
dT
þ A1Y þ A2Y2 þ A3Y3 ¼ 0: ð36Þ

A�2, A�1, A1, A2 and A3 are parametric constants which can be de-
fined regarding to the BCs as follows:

For P–P conditions:

A�2 ¼ 1þ ðlpÞ2;

A�1 ¼ 0;

A1 ¼ ðkW þ KG � pÞp2Þð1þ l2p2L4Þ � m2p2ð1þ l2L2Þ
þp4ð1þ R2

2 ð1þ lp2L2Þ;
A2 ¼ 3

ffiffi
2
p

4 p4:Rð1þ ðlpÞ2Þ � 8
ffiffi
8
p

p3

3 r:r0;

A3 ¼ p4

2 ð1þ ðlpÞ2Þ:

ð37Þ

For C–P conditions:

A�2 ¼ 1þ 11:50l2;

A�1 ¼ ð3:32� 10�9 þ 32:6l2Þ
ffiffiffiffiffi
m
p
� m;

A1 ¼ 237:72þ Kwð1þ 11:50� l2Þ þ Kpð11:5þ 237:72� l2Þ
þR2ð58:91þ 1189:56� l2Þ � m2ð11:5þ 337:72� l2Þ;

A2 ¼ �Rð132:55þ 2716:7� l2Þ þ 124:11:r:r0;

A3 ¼ 66:26þ 13:68:38� l2:

ð38Þ

And for C-C conditions:

A�2 ¼ 1þ 12:30l2;

A�1 ¼ ð4:94� 1:�9 þ 4:75� 10�4l2Þ
ffiffiffiffiffi
m
p
� m;

A1 ¼ 500:56þ kwð1þ 12:3� l2Þ þ Kpð12:3þ 500:56� l2Þ
þR2ð60:21þ 2377:05� l2Þ � m2ð12:3þ 500:56� l2Þ;

A2 ¼ �R2ð143:19þ 5768:5� l2Þ þ 3:5� 10�6:r:r0;

A3 ¼ 75:67þ 3079:12� l2:

ð39Þ

Eq. (36) is a nonlinear equation with both cubic and quadratic
term. To solve this equation and to obtain the nonlinear flow-in-
duced frequency of the SWCNT with an initial imperfection, the
MMS is used [52].

In this way, we pinpoint Y in the form Y � ey, where e represents
a small perturbation parameter. The Eq. (36) can be rewritten as:

€yþ 2l _yþ yþ ea2 � y2 þ e2a3 � y3 ¼ 0;

l � A�1

A�2
; x2

0 �
A1

A�2
¼ 1; a2 �

A2

A�2
; a3 �

A3

A�2
:

ð40Þ

To make the damping term 2l _y of the same order as the nonlin-
ear terms, c is defined such that l � e2c and the final form of the
Eq. (40) will be:

€yþ 2e2c � _yþ yþ ea2 � y2 þ e2a3 � y3 ¼ 0: ð41Þ

Based on the method of multiple scales and to solve the above
nonlinear equation, a third-order expansion should be determined.
Hence, the time scales are defined as: Tn = ent, n = 0, 1, 2. The
approximate solution for Eq. (41) is:

y ¼ y0ðT0; T1; T2Þ þ ey1ðT0; T1; T2Þ þ e2y2ðT0; T1; T2Þ þ � � � : ð42Þ

Substituting Eq. (42) into Eq. (41) and equating each of the coef-
ficients of e to zero, the perturbation form of Eq. (41) is:

e0 : D2
0y0 þ y0 ¼ 0; ð43:aÞ

e1 : D2
0y1 þ y1 ¼ �2D0D1y0 � a2y2

0; ð43:bÞ

e2 : D2
0y2 þ y2

¼ �2D0D1y1 � D2
1y0 � a3y3

0 � 2D0D2y0 � 2cD0y0

� 2a2y1y0; ð43:cÞ

where Dn � o/ oTn.
The harmonic solution of Eq. (43.a) can be stated as:

y0ðT0; T1; T2Þ ¼ AðT1; T2ÞeiT0 þ AðT1; T2Þe�iT0 ð44Þ
�A is the complex conjugate of A and Eq. (43.b) becomes:

D2
0y1 þx2

0y1 ¼ �2iD1AeiT0 þ 2iD1Ae�iT0
� 	
� a2 A2e2iT0 þ 2A � Aþ A2e�2iT0

h i
: ð45Þ

Eliminating the secular terms from Eq. (45) results in
D1A = 0) A = A(T2, T3) and the particular solution of Eq. (45) is ob-
tained as:

y1 ¼
a2

3
A2e2iT0 � 8A � Aþ 2AAþ A2e�2iT0

h i
: ð46Þ

Substituting Eq. (46) into Eq. (43.c) yields:

D2
0y2 þx2

0y2 ¼ �2iA0 þ 10
3

a2
2A2 � A� 3a3A2 � A

� �
eiT0 þ cc

þ NST; ð47Þ

where cc and NST stand for the complex conjugate and the non-sec-
ular terms, respectively. To eliminate the secular terms, the follow-
ing condition should be satisfied:

�2iA0 þ 10
3

a2
2A2 � A� 3a3A2 � A ¼ 0: ð48Þ

By expressing A in polar form A � 1
2 a � eib where a and b are real

values, substituting into Eq. (48), and solving the obtained alge-
braic equations, a and b are calculated as follows:

a ¼ a0; b ¼ 3
8
a3 �

5
12

a2
2

� �
a2

0ðT2 � 2tT2
2 þ � � �Þ

ffi 3
8
a3 �

5
12

a2
2

� �
a2

0T2: ð49Þ

Using Eq. (49), the amplitude A is calculated and the harmonic
response of the imperfect SWCNT is obtained through Eqs. (44),
(46), and (42). Furthermore, the nonlinear frequency ratio X can
be defined as follows [52]:

X ¼ 1þ e2r; ð50Þ

while the detuning parameter r is obtained as:

r � 3
8
a3 �

5
12

a2
2

� �
a2

0ð1� 2tT2 þ � � �Þ ffi
3
8
a3 �

5
12

a2
2

� �
a2

0: ð51Þ

4. Results and discussion

To gain a better understanding of the computational method,
the procedure to determine the analytical solution in the present
study has been summarized as a flowchart appeared in Fig. 2.

Based on this procedure, a numerical analysis is conducted to
investigate the nonlinear vibrational behavior of a SWCNT convey-
ing fluid with an initially curved imperfection. The nonlinear nat-
ure of the flow-induced vibration is analyzed and the effects of
several parameters such as the rise of the nanotube, nonlocal
parameter, boundary conditions and the mechanical behavior of
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the surrounding medium on the nonlinear frequency ratio X will
be observed.

There are several papers dealing with vibrations of CNTs which
assumed the elastic modulus of the SWCNTs to be about 1 Tpa apart
from the structural properties [21,23,26,37,43,44,50]. However,
molecular dynamics (MD) and molecular mechanics (MM) simula-
tions show that the Young’s modulus and the wall thickness of
nanotubes vary with the diameter and chirality [53,54]. In this

study, the geometrical and mechanical properties of an armchair
(24, 24) SWCNT are employed with Young’s modulus of 2.366 Tpa,
diameter of 3.0838 nm, and wall thickness of 0.1394 nm as the re-
cent investigation indicates [54] and the aspect ratio of the SWCNT
is assumed to be 20. The flowing fluid within the nanotube is as-
sumed to be water. To determine whether the continuum formula-
tions for fluid dynamics could be applied, the dimensionless
Knudsen number Kn ¼ k

L is employed. The Knudsen number is

H
am

ilton’s P
rinciple E

q. (9)
G

alerkin
procedure

M
M

S

Energy functions of the model

Eqs. (3), (6), and (8)

Nonlinear terms

Eqs. (5), and (16)

Nonlocal continuum theory

Eq (15)

The Nonlinear-nonlocal equation of motion (PDE)

Eq. (23)

Appropriate BCs.

The Nonlinear-nonlocal equation of motion (ODE) 

in dimensionless form

Eq. (36)

Analytical solution and nonlinear frequency ratio

Eq. (50)

Mathematical 

modeling

Solution

procedure

Fig. 2. Computational procedure to determine the analytical nonlinear frequency ratio of the model.
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defined as the molecular mean free path length k to a representative
physical length scale L. For an armchair (24, 24) SWCNT conveying
water, where k is 0.28 nm [55] and L defines as the diameter of
the nanotube, the Knudsen number is smaller than 0.1. This means
that the water can be considered as a continuum medium with the
usual mass density of 1000 kg/m3 [56]. Furthermore, the elastic
stiffness constant kw and the shear stiffness constant kG are set to
be zero (Kw = KG = 0).

4.1. Verification of the model

The obtained nonlinear frequency ratio X is reduced to the re-
sult obtained from the flow-induced vibration of a straight SWCNT
conveying fluid through local continuum theory as l = r = 0. Hence,
it will be comparable with the results in Ref. [37]. Fig. 3 represents
a comparison between the detuning parameter r obtained in this
study with the one used in Ref. [37]. The detuning parameter r
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Fig. 3. The nonlinear detuning parameter r against the dimensionless rise of the SWCNT at two different velocities (a comparison between the present study and Ref. [37]).
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is plotted against the dimensionless rise R for two different dimen-
sionless velocities v. As seen from the figure, as the imperfection of
the SWCNT is decreased (R! 0) and the nanotube approaches a
straight SWCNT; the detuning parameter r obtained from the pres-
ent study and Ref. [37] reaches to the same values. Furthermore,
the figure shows that the results in Ref. [37] deviate obviously from
the present results by increasing the imperfection of the model or
the flow velocity while the flow velocity causes this deviation more
effectively.

A second check of the present results is given in Fig. 4. Here,
the fourth-order numerical Runge–Kutta method is used to repre-
sent the numerical solution of the nonlinear governing equation
of the model (Eq. (41)). The Matlab subroutine ode45 is used to
solve the differential equation since it is recommended in the
Matlab manual to be the first choice due to its accuracy. The ob-
tained dynamical behavior and the numerical result of the nano-
tube midpoint displacement are compared with the MMS analysis
results and as can be seen, the multiple scales results keep a good
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agreement with the numerical exact results and are of high
accuracy.

4.2. The nonlinearity of the model

The nonlinear flow-induced problem of a SWCNT conveying
fluid with an imperfection is simulated as in Eq. (40). The equation
contains both quadratic and cubic nonlinear terms, where a2 and
a3 are the coefficients represent them, consequently. As previously
mentioned, the model covers three different nonlinear phenomena
namely the stretching, large deformation, and initial imperfection

or curvature. The cubic nonlinearity a3 shows the effects of the
stretching nonlinearity while the quadratic nonlinear coefficient
a2 stands for both the large deformation and initial curvature. To
analyze the nonlinear nature of this problem, the quadratic and cu-
bic nonlinear coefficients (a2 and a3) are plotted against the
dimensionless rise parameter R at various dimensionless flow
velocities v (Fig. 5). As seen in the figure, the quadratic nonlinear
coefficient a2 is strictly related to the rise of the nanotube and
the flow velocity. For a slightly curved SWCNT with R < 1:5, as
the initial imperfect rise of curvature is increased, the quadratic
nonlinear coefficient a2 increases sharply, while for R < 1:5 it
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Fig. 7. Nonlinear frequency ratio X against the dimensionless rise of the SWCNT R at several dimensionless flow velocities v.
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starts to decrease gradually. Moreover, at higher dimensionless
flow velocities v, the quadratic nonlinear coefficient a2 becomes
greater, especially when the dimensionless rise of the SWCNT R

is about 1.5.
The cubic nonlinear term a3 varies with the rise of the SWCNT

and the flow velocity. Increasing the dimensionless rise of the
SWCNT R causes the cubic nonlinear term a3 to decrease while
its variation becomes more obvious for R < 1:5. Furthermore, just
like the quadratic nonlinearity a2, the cubic nonlinearity of the
model increases with an increase in the flow velocity. The figure
also depicts a comparison between a2 and a3. As the figure reveals,
the numeric value of the quadratic nonlinear term a2 is always

more than that of the cubic nonlinear term a3, and for high values
of the dimensionless rise R, the nonlinear terms (especially a3) be-
come almost independent of the dimensionless flow velocity v.

As previously mentioned, in nanostructures, the local contin-
uum models can be modified by the nonlocal elasticity theory.
This modification represents a more flexible model as the nano-
structure can be viewed as atoms linked by elastic springs while
the local model assumes spring constants to take on an infinite
value [57]. The nonlocal continuum model can predict the
mechanical behavior of a SWCNT provided that the nonlocal
parameter e0a is determined. Since, there is no experimental
study to define e0a for CNTs and to show the effects of the
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small-scale parameters, in this study, the dimensionless nonlocal
parameter l is taken to be 0, 0.02 and 0.04 while l = 0 shows the
local continuum model. The nonlocal parameter affects the non-
linearity of the model as Fig. 6 reveals. The nonlinear coefficients
(a2 and a3) are plotted with the dimensionless rise R for several
dimensionless nonlocal parameters l. The importance of the
small-scale effects and nonlocal parameter become crucial for
small values of R (R < 1:5) and the cubic and quadratic nonlin-
earity coefficients increase with an increase in dimensionless non-
local parameter l. In other words, for slightly curved SWCNT and
on the basis of the nonlocal continuum theory, the nonlinearity of
the flow-induced behavior of the model becomes more important
compared to the theoretically perfect straight nanotube and local
continuum theories.

4.3. Nonlinear flow-induced frequency

Nonlocal elasticity has been used to simulate the vibrational
behavior of a slightly curved or imperfect SWCNT conveying fluid.
The nonlinear flow-induced frequency was calculated using MMS
analytically and an explicit expression for the nonlinear frequency
ratio X was derived. Looking at these Eqs. (50) and (51), it is seen
that several parameters influence the nonlinear vibration fre-
quency of the model. Hence, a parametric study is conducted to
determine the effects of each individual parameter. In this section,
we have focused on the nonlocal parameter, mean flow velocity of
the internal flow, the mechanical behavior of the surrounding
medium, and the boundary conditions. According to the previous
section, and due to the importance of the nonlinear terms in the
range R < 1:5, the dimensionless rise of the nanotube is assumed
to be in this range.

Fig. 7 represents the variations of the dimensionless nonlinear
frequency ratio X with the dimensionless rise of the SWCNT R at
three different dimensionless flow velocities v for C–C conditions.
The figure represents that with increasing the rise of the nanotube,
the nonlinear frequency ratio X is decreased. This reduction is
explained by the fact that with increasing the dimensionless rise
of the nanotube R, quadratic nonlinearity of the model increases

and the nonlinear detuning parameter r is decreased accordingly
(see Eq. (51)). Moreover, when R is smaller than approximately 1
and the CNT has a very slight curvature, the flow velocity becomes
a key factor in determining the nonlinear frequency. In this case,
the dimensionless nonlinear frequency X is increased with flow
velocity. However, the nonlinear frequency exhibits a reverse trend
in the case of the larger values of R (R >� 1:2).

As previously mentioned, the nonlinear nature of the model is
affected by small-scale effects and the nonlocal parameter. Fig. 8
presents the effects of the dimensionless nonlocal parameter l
on the dimensionless nonlinear frequency X with increasing the
rise R. It is clear that with increasing of the dimensionless nonlocal
parameter l and given a certain value of R, the nonlinearity of the
model and the corresponding dimensionless nonlinear frequency
X are increased. This increase is magnified for low values of the
rise R and the importance of nonlocal elasticity is revealed in the
nonlinear flow-induced vibration of a SWCNT with a very slight
geometrical imperfection. For instance, when the rise of the model
is 1.5, the nonlocal theory (with l = 0.04) predicts a reduction
about 0.008 on the nonlinear frequency ratio X compared with
the local theory, while as the imperfection of the model is de-
creased to 0.25, this frequency reduction increases to 0.0426.

The SWCNT is embedded on a Pasternak-type foundation. The
mechanical behavior of the foundation is characterized by two dif-
ferent parameters: the elastic stiffness constant kw and the shear
stiffness constant kG The effects of the stiffness of the foundation
around the SWCNT are shown in Fig. 9. The surrounding medium
is assumed to be a polymer matrix with a similar range of param-
eters kw and kG as in Ref. [43]. It can be observed from the results
that the dimensionless nonlinear frequency X is reduced with
increasing the elastic stiffness constant kw and/or the shear stiff-
ness constant kG in a certain value of R. Furthermore, the slope
of the plots is decreased as these parameters are increased. It
means that as the elastic medium around the SWCNT becomes stif-
fer, the nonlinearity of the model and also the sensitivity of the
nonlinear frequency to the rise of the nanotube are decreased.

The boundary stiffness can also affect the vibrational behavior
of a SWCNT effectively. Since, determining the exact stiffness of
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the supports of nanostructures is still under dispute [58], the mod-
el has been solved for P–P, C–P, and C–C boundary conditions and
the variations of the corresponding dimensionless nonlinear fre-
quency X with the dimensionless rise R are compared in Fig. 10.
The results indicate that as the bending stiffness of the nanotube
is decreased from C–C to P–P conditions, the variation of the
dimensionless nonlinear frequency X with the dimensionless rise
R increases. For example, as the imperfection of the SWCNT rises
from R ¼ 0:1 to R ¼ 1, the nonlinear frequency ratio X is reduced
from 2.2060 to 0.117 for P–P boundary conditions and from 1.2548
to 1.157 for C–C conditions, respectively. In fact, as the compliance
of the SWCNT due to the boundary conditions is decreased, the
nonlinear nature of the model becomes more sensitive to the rise
R and the decrease of the corresponding nonlinearity will be dra-
matically magnified. In these cases, the exact determination of the
boundary stiffness becomes more crucial in predicting the nonlin-
ear behavior of the flow-induced vibration of a nanotube.

5. Concluding remarks

A SWCNT conveying fluid with an imperfection resting on a Pas-
ternak-type foundation is considered. The imperfection is defined
as an initial geometrical curvature and the end conditions are as-
sumed to be immovable causing stretching during the flow-in-
duced vibration. The nonlinear governing equation of motion is
derived based on the Eringen’s nonlocal theory, and the nonlinear-
ities occur due to the stretching, imperfection and large deforma-
tions. An analytical solution has been sought using MMS, and an
explicit relation is derived for the nonlinear frequency ratio. The
model displays good agreements with the numerical solution and
with the previous literature. The results show that on the basis
of the nonlocal theory and at high flow velocities, nonlinearity of
the model become more important, especially for a slightly curved
SWCNT. Moreover, the geometrical imperfection causes the non-
linear frequency ratio to decrease while increasing the flow veloc-
ity and the nonlocal parameter with a decrease in the bending
stiffness of the model, due to the foundation or to the boundary
conditions, make the model more nonlinear and increase the non-
linear frequency ratio.

6. Future outlook

Carbon nanotubes, among several other applications, can be
used as nano-pipes to transport fluids and gases on the nano-scale.
This potential application makes nanotubes appropriate promising
candidates for several interesting nanofluidic devices. Targeted
DDSs (especially in cancer therapy), nano-pipettes, nano-syringes,
and hydraulic nano-actuators will be designed and applied by
using CNTs in the near future. For this purpose and according to
our obtained results, the dynamical behavior of CNTs conveying
fluid and the fluid–structure interaction should be considered pre-
cisely in modeling and simulating of these devices. Meanwhile, the
nonlinear phenomena such as large deformations, stretching, and
geometrical imperfections may play important roles on the opera-
tional conditions of these nano-equipments and should not be ne-
glected during the designing process, consequently.
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