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Abstract

In this paper we introduce a notion for fuzzy Menger normed algebra. Then we will investigate continuity of algebraic operations
in this space. We will show that the class of all fuzzy Menger normed algebras strictly contains the class of normed algebras. Finally,
we will prove Hyers–Ulam–Rassias superstability of generalized derivation functional equation

f (ax + by + vw) = a f (x) + b f (y) + v f (w) + g(v)w (x, y, v, w ∈ X; 0 � a, b ∈ C)

in complete fuzzy Menger normed algebras. A few applications of our results will be exhibited.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

In 1984, Katsaras [13] introduced the idea of fuzzy norm on a linear space. Following his pioneering work, several
definitions for a fuzzy norm on a linear space have been introduced and discussed from different points of view
(see e.g. [8,9,15]). In particular, Bag and Samanta in [5,6] introduced and studied an idea of a fuzzy norm on a linear
space in such a manner that its corresponding fuzzy metric is of Kramosil and Michalek type [14]. They also give a
comparative study of fuzzy norms on a linear space [7].

The concept of stability for a functional equation arising when we replace the functional equation by an inequality
which acts as a perturbation of the equation. In 1940 Ulam [29] posed the first stability problem. In the next year, Hyers
[12] gave the first partial affirmative answer to the question of Ulam. Subsequently, the result of Hyers was generalized
for unbounded control functions by Aoki [3]. The concept of the Hyers–Ulam–Rassias stability was originated from
Rassias’ paper [26] for the stability of the linear mappings and its importance in the proof of further results in functional
equations. A functional equation is called superstable if each of its approximate solution is an exact solution of the
equation.

Let X be an algebra over complex numbers and d : X → X be an additive mapping. The function d is said to be a
derivation if the functional equation d(xy) = xd(y)+d(x)y holds for all x, y ∈ X . An additive mapping f : X → X is

∗ Tel.: +98 5118828606.
E-mail addresses: mirmostafaei@ferdowsi.um.ac.ir, amirmostafaee@yahoo.com.

0165-0114/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.fss.2011.10.015



Author's personal copy

110 A.K. Mirmostafaee / Fuzzy Sets and Systems 195 (2012) 109–117

called a generalized derivation if there is a derivation � : X → X such that f (xy) = x f (y) + �(x)y for each x, y ∈ X .
A (generalized) derivation is called a linear (generalized) derivation if it is linear.

The first stability result concerning derivations between operator algebras was obtained by Semrl [27]. We refer the
reader to [1,2,4,25] and the references therein for other related results concerning the stability of derivations.

The stability of functional equations in fuzzy normed spaces originated from [22]. Later several versions of fuzzy
stability concerning Jensen, cubic, quadratic and quartic functional equations were investigated [16–24]. In [18], the
author introduced a notion for “fuzzy Menger normed space” to extend some results in [19].

In this paper, we study fuzzy version of superstability of generalized derivations. In order to achieve this goal, we use
an idea of Mihet [16] to introduce a notion for fuzzy Menger normed algebra (see [9,30,31] for some other definitions
for the notion of a fuzzy algebra). Then we will investigate continuity of algebraic operations in a fuzzy normed algebra.
In Section 3, we will prove Hers–Ulam–Rassias superstability of generalized derivations functional equation

f (ax + by + vw) = a f (x) + b f (y) + v f (w) + g(v)w (x, y, v, w ∈ X; 0 � a, b ∈ C)

in complete fuzzy Menger normed algebras. We also present some applications of our results in normed spaces.

2. Fuzzy Menger normed algebras

In this section, we will introduce a notion for fuzzy normed algebra. We will show that the algebraic operations in a
fuzzy normed algebra are continuous. In order to achieve this goal, we need to recall some definitions.

Definition 2.1. A triangular norm (t-norm for short) [28] is a binary operation T : [0, 1] × [0, 1] → [0, 1] which
is commutative, associative and non-decreasing in each variable and has one as the unit element. A t-norm is called
continuous if it is continuous with respect to the product topology on [0, 1] × [0, 1]. The following are the basic
examples of continuous t-norms:

(1) The minimum t-norm TM , TM (a, b) = min{a, b}.
(2) The product t-norm TP , TP (a, b) = a.b.
(3) The Lukasiewicz t-norm, TL (a, b) = max{0, a + b − 1}.

For each (x1, . . . , xn) ∈ [0, 1]n, n ≥ 2, we inductively define

T 3
i=1xi = T (x1, x2, x3) = T (T (x1, x2), x3), . . . , T n

i=1xi = T (x1, . . . , xn) = T (T (x1, . . . , xn−1), xn)

and for every sequence {xn} in [0, 1], T ∞
i=1xi = limn→∞ T n

i=1xi .

Definition 2.2. A t-norm T is said to be Hadžić-type [10] if {T n
i=1(x)} is equicontinuous at the point x = 1. In the other

words, for every � > 0, there exists some � > 0 such that T n
i=1x > 1 − � whenever x ∈ (1 − �, 1).

A trivial example of a t-norm of Hadžić-type is TM . A few examples of non-trivial Hadžić-type t-norms are given
in [11]. It follows from the definition that if T is of Hadžić-type and {xn} ⊂ [0, 1], then limn→∞ T n

i=1xi = 1 provided
that limn→∞ xn = 1.

Following Bag and Samanta [5,6], Mihet in [16] gave the following definition of a fuzzy Menger norm.

Definition 2.3. Let X be a complex linear space and T be a continuous t-norm. By a fuzzy Menger norm on X, we
mean a fuzzy subset of X × [0, ∞) such that the following conditions hold for all x, y ∈ X and scalars c, s, t :

(N1) N (x, 0) = 0 for each x � 0;
(N2) x = 0 if and only if N (x, t) = 1 for all t > 0;
(N3) N (cx, t) = N (x, t/|c|), whenever c � 0;
(N4) N (x + y, s + t) ≥ T {N (x, s), N (y, t)} (the triangle inequality);
(N5) limt→∞ N (x, t) = 1.
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In this case (X, N , T ) is called a fuzzy normed space. It follows from (N2) and (N4) that N (x, ·) is an increasing
function for each x ∈ X . In fact, if x ∈ X and 0 < s < t , then

N (x, t) ≥ T (N (x, s), N (0, t − s)) = N (x, s).

Definition 2.4. A sequence {xn} in a fuzzy Menger normed linear space (X, N , T ) is said to be convergent if there
exists some x ∈ X such that limn→∞ N (xn − x, t) = 1 for all t > 0. In that case, x is called the fuzzy limit of the
sequence {xn}.

A sequence {xn} in X is called Cauchy if for each 0 < � < 1 and t > 0 there exists some n0 ∈ N such that
N (xn+p − xn, t) > � for all n > n0 and p > 0.

If each Cauchy sequence is convergent in (X, N , T ), then the fuzzy Menger norm is said to be complete.

Remark 2.5. In [5, Theorem 2.1], the authors proved that if a fuzzy (Menger) normed space (X, N , TM ) satisfies the
condition

(N6) N (x, t) > 0 for all t > 0 implies that x = 0,

then ‖x‖� = inf{t : N (x, t) ≥ �}, � ∈ (0, 1) defines an ascending family of norms on X. Moreover, if {xn} converges
in (X, N , TM ), then limn→∞ ‖xn − x‖� = 0 for each 0 < � < 1.

However, the converse is not true in general. For example, if X = �
∞ with the fuzzy (Menger) norm

N (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

1, t > supn |xn|,
0.5, supn

∣∣∣ xn

n

∣∣∣ < t ≤ supn |xn|,
0, t ≤ supn

∣∣∣ xn

n

∣∣∣
for each x = (x1, x2, . . .) ∈ X , then the sequence

e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), . . .

converges to 0 with respect to ‖ · ‖0.5. However, this sequence has no limit in (X, N , TM ) (see [6, Proposition 2. 1 and
Example 2.1]).

Definition 2.6. Let X be an algebra, T, T ′ be continuous t-norms and (X, N , T ) be a fuzzy Menger normed space. Let

N (xy, st) ≥ T ′(N (x, t), N (y, s)) (x, y ∈ X, s, t ≥ 0).

Then the quadruple (X, N , T, T ′) is called a fuzzy Menger normed algebra.

The following two examples show that the class of fuzzy Menger algebras strictly contains all normed algebras.

Example 2.7. Let (X, ‖ · ‖) be an algebra normed space. Define

N (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

0, x � 0, t < 0,

t

t + ‖x‖ , x � 0, t ≥ 0,

1, x = 0.

In [5], it is shown that (X, N , TM ) is a fuzzy (Menger) normed space. An easy computation shows that N (xy; st) ≥
N (x; s).N (y; t) if and only if

‖xy‖ ≤ ‖x‖‖y‖ + s‖y‖ + t‖x‖ (x, y ∈ X; s, t > 0).

It follows that (X, N , TM , Tp) is a fuzzy normed algebra.
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Example 2.8. Let X be the space of complex-valued continuous functions on the real line. Then X is not normable
[32]. Define

N ( f, t) =
⎧⎨
⎩

0, t ≤ 0,

sup

{
n

n + 1
: ‖ f ‖n ≤ t

}
, t > 0,

where ‖ · ‖n denote the sup-norm on [−n, n], n ∈ N. By imitating the proof of Theorem 2.2 in [5], one can show that
(X, N , TM ) is a fuzzy (Menger) normed space. An easy computation shows that N ( f g; st) ≥ TL{N ( f ; s), N (g; t)}.
Therefore (X, N , TM , TL ) is a fuzzy normed algebra.

By Uryshon’s lemma, for each n ∈ N, there is a continuous function fn : R → [0, 1] such that fn(n − 1
2 ) = 1

and fn(x) = 0 whenever x /∈ [n − 1
3 , n + 1]. It is clear that { fn} has no limit in X with respect to the uniform

convergence topology on X. However, this sequence converges to 0 in (X, N ). To see this let t > 0 and 0 < � < 1
be arbitrary. Choose n0 ∈ N such that n0/(1 + n0) > �. Then for each n > n0, we have ‖ fn‖n0 = 0 < t , therefore
N ( fn − 0, t) ≥ n0/(1 + n0) > �. This means that { fn} converges to zero in (X, N ).

Definition 2.9. Let (X, NX , TX ) and (Y, NY , TY ) be two fuzzy Menger normed spaces. A function f : X → Y is said
to be fuzzy continuous if xn → x in (X, NX , TX ) implies that f (xn) → f (x) in (Y, NY , TY ).

Lemma 2.10. Let (X, N , T ) be a fuzzy Menger normed space and let {xn} be a sequence X such that xn → x . Then
for each 0 < � < 1 there are M > 0 and n0 ∈ N such that

N (xn, M) ≥ � f or all n > n0.

Proof. By (N5), there is some M > 0 such that N (x, M/2) > �. Since xn → x and T (·, N (x, M)) : [0, 1] → [0, 1] is
continuous, we can find some n0 ∈ N such that

N (xn, M) ≥ T

(
N

(
xn − x,

M

2

)
, N

(
x,

M

2

))
≥ � (n ≥ n0). �

Theorem 2.11. Let (X, N , T, T ′) be a real fuzzy normed algebra. Then the algebraic operations are fuzzy continuous.

Proof. Let {xn}n∈N and {yn}n∈N converge to x and y respectively, 0 < � < 1 and t > 0. By (N4) and the continuity of
T, we can find some n0 ∈ N such that

N ((xn + yn) − (x + y), t) ≥ T

(
N

(
xn − x,

t

2

)
, N

(
yn − y,

t

2

))
> � (n ≥ n0).

This proves the continuity of addition in (X, N , T, T ′).
Since

xn yn − xy = xn(yn − y) + (xn − x)y (n ∈ N)

and “+” is continuous, it is enough to show that for each t > 0,

lim
n

N (xn(yn − y), t) = 1 and lim
n

N ((xn − x)y, t) = 1. (2.1)

The inequalities

N (xn(yn − y), t) ≥ T ′
(

N (xn, M), N

(
yn − y,

t

M

))

and

N ((xn − x)y, t) ≥ T ′
(

N

(
xn − x,

t

M

)
, N (y, M)

)

together with the continuity of T ′ and Lemma 2.10 proves (2.1). �
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3. Superstability of derivations

Throughout the rest of this paper, unless otherwise is explicitly stated, we will assume that (X, N , T, T ′) is a complete
fuzzy normed algebra with unit, Z is a linear space, N ′ : Z × [0, ∞) → [0, 1] is a fuzzy set and T ′′ is a continuous
t-norm.

Theorem 3.1. Let f : X → X and �, � : X2 → Z satisfy the inequality

N ( f (ax + by + vw) − a f (x) − b f (y) − v f (w) − g(v)w, t) ≥ T ′′(N ′(�(x, y), t), N ′(�(v, w), t)), (3.1)

for each x, y, v, w ∈ X and non-zero scalars a and b with s = a +b > 1. If there are some 1 ≤ � < s and 0 < �, � < s
such that for each x, y ∈ X and t > 0

N ′(�(sx, sy), �t) ≥ N ′(�(x, y), t) (3.2)

and for each x, y ∈ X , and

N ′(�(snx, sm y), �n�mt) ≥ N ′(�(x, y), t) (n, m ≥ 0). (3.3)

Then f is a generalized derivation and g is a derivation.

Proof. Putting x = y and v = w = 0 in (3.1), we have

N ( f (sx) − s f (x), t) ≥ T ′′(N ′(�(x, x), t), N ′(�(0, 0), t)) (x ∈ X, t > 0).

Replacing x by sn−1x in the above inequality and using (3.2), we obtain

N

(
f (snx)

sn
− f (sn−1x)

sn−1 , t

)
≥ T ′′(N ′(�(sn−1x, sn−1x), snt), N ′(�(0, 0), snt))

≥ T ′′
(

N ′
(

�(x, x),
snt

�n−1

)
, N ′(�(0, 0), snt)

)
(x ∈ X, t > 0).

Replacing t by �n−1t /sn in the above inequality, we get to

N

(
f (snx)

sn
− f (sn−1x)

sn−1 ,
�n−1t

sn

)
≥ T ′′(N ′(�(x, x), t), N ′(�(0, 0), �n−1t)) (x ∈ X, t > 0).

It follows that for each m > n, x ∈ X and t > 0,

N

(
f (smx)

sm
− f (snx)

sn
,

m∑
i=n+1

(�

s

)i · t

�

)
= N

(
m∑

i=n+1

f (si x)

si
− f (si−1x)

si−1 ,

m∑
i=n+1

(�

s

)i t

�

)

≥ T m
i=n+1

(
N

(
f (si x)

si
− f (si−1x)

si−1 ,
(�

s

)i t

�

))

≥ T m
i=n+1T ′′(N ′(�(x, x), t), N ′(�(0, 0), �i−1t)).

Therefore

N

(
f (smx)

sm
− f (snx)

sn
, t

)

≥ T m
k=n+1T ′′

⎛
⎜⎝N ′

⎛
⎜⎝�(x, x),

�t∑m
i=n+1

(�

s

)i

⎞
⎟⎠ , N ′

⎛
⎜⎝�(0, 0),

�k t∑m
i=n+1

(�

s

)i

⎞
⎟⎠
⎞
⎟⎠

(3.4)
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for each x ∈ X and t > 0. Since
∑

(�/s)n converges and � > 1,

T ′′

⎛
⎜⎝N ′

⎛
⎜⎝�(x, x),

�t∑m
i=n+1

(�

s

)i

⎞
⎟⎠ , N ′

⎛
⎜⎝�(0, 0),

�k t∑m
i=n+1

(�

s

)i

⎞
⎟⎠
⎞
⎟⎠

tends to one as n → ∞. Eq. (3.4) together with the fact that T is of Hadz̆ić-type, (3.4) ensures that f (snx)/sn is a
Cauchy sequence in X for each x ∈ X . By completeness of X, the limit

d(x) = lim
n→∞

f (snx)

sn
(3.5)

exits. In (3.1), put v = w = 0 and replace x and y by snx and sn y respectively to obtain

N

(
f (sn(ax + by))

sn
− a

f (snx)

sn
− b

f (sn y)

sn
, t

)
≥ T ′′(N ′(�(snx, sn y), snt), N ′(�(0, 0), snt))

≥ T ′′
(

N ′
(
�(x, y),

( s

�

)n
t
)

, N ′(�(0, 0), snt)
)

for each x, y ∈ X and t > 0. Since the right hand side of the above inequality tends to one as n tends to infinity and
multiplication is continuous, d(ax + by) = ad(x) + bd(y) for each x, y ∈ X . By putting x = 0 in (3.5), we see that
d(0) = 0. It follows that d(ax) = ad(x) and d(by) = bd(y) for each x, y ∈ X . Therefore

d(x + y) = d
(
a

x

a
+ b

y

b

)
= ad

( x

a

)
+ bd

( y

b

)
= d(x) + d(y) (x, y ∈ X ).

Hence d is additive. Put x = y = 0 in (3.1) to obtain

N ( f (vw) − v f (w) − g(v)w, t) ≥ T ′′(N ′(�(0, 0), t), N ′(�(v, w), t)) (v, w ∈ X, t > 0). (3.6)

By replacing v and w respectively by snv and snw in the above inequality, by (3.3), we see that for each v, w ∈ X and
t > 0,

N

(
f (s2nvw)

s2n
− v

f (snw)

sn
− g(snv)

sn
w, t

)
≥ T ′′(N ′(�(0, 0), s2nt), N ′(�(snv, snw), s2nt))

≥ T ′′
(

N ′(�(0, 0), s2nt), N ′(�(v, w),

(
s

�

)n ( s

�

)n)

Since the right hand side of the above inequality goes to one as n → ∞, by the continuity of product in fuzzy Menger
normed algebra (X, N , T, T ′), it follows that

lim
n→∞

g(snv)

sn
w = d(vw) − vd(w) (v, w ∈ X ). (3.7)

Put w = e in the above identity to obtain

�(v) = lim
n→∞

g(snv)

sn
= d(v) − vd(e) (v ∈ X ).

For each v, w ∈ X , we have

�(vw) = d(vw) − vwd(e)

= vd(w) + �(v)w − vwd(e)

= v[d(w) − wd(e)] + �(v)w

= v�(w) + �(v)w
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and

�(v + w) = d(v + w) − (v + w)d(e)

= d(v) + d(w) − vd(e) − wd(e)

= �(v) + �(w).

Therefore � is a derivation. By (3.7),

d(vw) = vd(w) + �(v)w (v, w ∈ X ). (3.8)

It follows that d is a generalized derivation. Put v = sne in (3.6), then we have

N

(
f (snew)

sn
− e f (w) − g(sne)

sn
w, t

)
≥ T ′′(N ′(�(0, 0), snt), N ′(�(sne, w), snt))

≥ T ′′
(

N ′(�(0, 0), snt), N ′
(

�(e, w),

(
s

�

)n

t

))

for each w ∈ X and t > 0. Therefore the right hand side of the above inequality tends to one as n → ∞. Thanks to
continuity of multiplication, it follows that d(w) = f (w) + �(e)w for each w ∈ X . Since � is a derivation, �(e) = 0.
Hence f = d is a generalized derivation.

Replace w by snw in (3.6) to obtain

N

(
f (snve)

sn
− v

f (sne)

sn
− g(v)e, t

)
≥ T ′′(N ′(�(0, 0), snt), N ′(�(v, sne), snt))

≥ T ′′
(

N ′(�(0, 0), snt), N ′
(

�(v, e),

(
s

�

)n

t

))

for each v ∈ X and t > 0. Since s > �, the right hand side of the above inequality tends to one as n → ∞. Therefore
d(v) = vd(e) + g(v) for each v ∈ X . On the other hand by (3.8), d(v) = vd(e) + �(v) for each v ∈ X . It follows that
g = � is a derivation. �

Corollary 3.2. Let f, g : X → X satisfy

N ( f (x + y + vw) − f (x) − f (y) − v f (w) − g(v)w, t) ≥ T ′′(N ′(z0, t), N ′(z0, t))

for some z0 ∈ Z; x, y, v, w ∈ X and t > 0. Then f is a generalized derivation and g is a derivation.

Proof. Apply Theorem 3.1 for a = b = � = � = � = 1 and

�(x, y) = z0 = �(v, w) (x, y, v, w ∈ X ). �

Corollary 3.3. Let X be a complete unital normed algebras over complex numbers. Let f, g : X → X for some
0 < p < 1 satisfy the inequality

‖ f (ax + by + vw) − a f (x) − b f (y) − v f (w) − g(v)w‖ ≤ max{‖x‖p + ‖y‖p, ‖v‖p + ‖w‖p} (3.9)

for each x, y, v, w ∈ X and non-zero scalars a and b with 1 < s = a + b. Then f is a generalized derivation and g is
a derivation.

Proof. Let N and N ′ be respectively the fuzzy norms on X and R defined in Example 2.7. Define �(x, y) = �(x, y) =
‖x‖p + ‖y‖p. Then an easy computation shows that (3.9) is equivalent to (3.1) for T ′′ = TM and for � = � = � = s p,
we have

N ′(�(sx, sx), �t) = N ′(�(x, x), t).
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Moreover,

N ′(�(snx, sm y), �n�mt) = snpsmpt

snpsmpt + snp‖x‖p + smp‖y‖p
= t

t + snp‖x‖p + smp‖y‖p

snpsmp

≥ t

t + �(x, y)
= N ′(�(x, y)) ((x, y) ∈ X2, t > 0).

Hence the result follows from Theorem 3.1. �

4. Conclusion

We introduced a notion for fuzzy Menger normed algebra and investigated algebraic properties of this space. We
have shown that the class of fuzzy Menger normed algebras contains the class of all normed algebras, however, the
converse is not true in general. We also proved superstability of generalized derivations in fuzzy Menger normed
algebras and applied our results in standard normed algebras. Our method in this paper may be extended to study some
other Mathematical problems in fuzzy Menger normed algebras.
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