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Abstract Propagation of cylindrical and spherical electron-
acoustic solitary waves in unmagnetized plasmas consisting
of cold electron fluid, hot electrons obeying a superthermal
distribution and stationary ions are investigated. The stan-
dard reductive perturbation method is employed to derive
the cylindrical/spherical Korteweg-de-Vries equation which
governs the dynamics of electron-acoustic solitons. The ef-
fects of nonplanar geometry and superthermal hot electrons
on the behavior of cylindrical and spherical electron acous-
tic soliton and its structure are also studied using numerical
simulations.

Keywords Electron acoustic · Cylindrical and spherical
solitary waves · KdV equation · Superthermal electrons

1 Introduction

Electron acoustic waves (EAWs) are one of the basic wave
processes in plasmas and they have been studied for sev-
eral decades. EAWs can be created in a two-temperature
(cold and hot) electron plasma. Multispecies models were
originally used for laser-plasma interaction but there are
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several similar situations. The evidence of two popula-
tions of electrons in laboratory and space plasmas has al-
ready been reported. The observations (Parks et al. 1984;
Onsager et al. 1993) in the plasma sheet boundary layer have
shown that there exist two types of electrons, namely back-
ground plasma electrons and cold electron beams having en-
ergies of the order of few eV to few hundreds of eV. Intense
broadband electrostatic noise is commonly observed in such
these plasma sheet boundary layer of the Earth’s magneto-
sphere (Gurnett et al. 1976). Matsumoto et al. (1991) have
shown that broadband electrostatic noise emissions in the
plasma sheet boundary layers are not continuous noise but
consist of electrostatic impulsive solitary waves. Polar cap
boundary layer (Tsurutani et al. 1998), the magnetosheath
(Pickett et al. 2003), the bow shock (Bale et al. 1998), and
strong currents associated with the auroral acceleration re-
gion (Ergun et al. 1998) are other examples of plasmas con-
sisting of two and three similar particle population. The
EAWs are typically high frequency waves in comparison
with the ion plasma frequency. Therefore ions remain sta-
tionary and form a neutralized background. The phase speed
of the EAW lies between the cold and hot electron thermal
velocities, so that the Landau damping effects are ignored
for the consistency of fluid theory in two electron popula-
tion plasmas. Motivated by these observations, we exam-
ine the generation of small amplitude solitons in a plasma
with two components namely, cold electron beam and back-
ground plasma electrons. Watanabe et al. (1977) used a lin-
ear electrostatic Vlasov dispersion equation to show that
electron acoustic waves can be destabilized in such plasma.
Later on, Yu and Shukla (1983) and Gary et al. (1985) ob-
tained a dispersion relation for EAWs in a two (electron-ion)
and three (two-temperature electrons and ions) component
plasmas, respectively. The electron-acoustic solitary wave
(EASW) (as same as other localized waves in nonlinear me-
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dia) is a localized nonlinear wave phenomena which arises
due to a delicate balance between nonlinearity and disper-
sion. EASWs have been studied both theoretically (Schamel
2000) and numerically (Valentini et al. 2006). These waves
have been observed in experiments with pure electron plas-
mas (Kabantsev et al. 2006) and in laser-produced plasmas
(Sircombe et al. 2006) and also have been studied in re-
lated subjects using numerical simulations (Ghizzo et al.
2006). The propagation of EASWs in a plasma system has
been studied by several investigators in unmagnetized two
electron plasmas (Mace et al. 1991; Dubouloz et al. 1991;
Chatterjee and Roychoudhury 1995; Berthomier et al. 2000;
Mamun and Shukla 2002; Mamun et al. 2002; Clarmann
et al. 2002) as well as in magnetized plasmas (Mace and
Hellberg 2001; Berthomier et al. 2003; Shukla et al. 2004).
Energetic electron distributions are observed in the differ-
ent regions of the magnetosphere. Gill et al. (2006) stud-
ied small amplitude EASWs in a plasma with nonthermal
electrons. Recently, Shewy (2007) studied the higher order
solution of EASWs with nonthermal electrons. However,
numerous observations of space plasmas (Vasyliunas 1968;
Leubner 1982; Armstrong et al. 1983) are often character-
ized by a particle distribution function with high energy tail
and they may thus deviate from the Maxwellian. Superther-
mal particles may arise due to the effect of external forces
acting on the natural space environment plasmas or to wave-
particle interaction. Plasmas with an excess of superthermal
(non-Maxwellian) electrons are generally characterized by
a long tail in the high energy region. To model such space
plasmas, generalized Lorentzian of k-distribution has been
found to be appropriate rather than the Maxwellian distri-
bution (Hasegawa et al. 1985; Thorne and Summers 1991;
Summers and Thorne 1991, 1994; Mace and Hellberg 1995).
Kappa distribution has been used by several authors (Hell-
berg and Mace 2002; Podesta 2005; Abbasi and Pajouh
2007; Baluku and Hellberg 2008; Hellberg et al. 2009;
Sultana et al. 2010; Baluku et al. 2010) in studying the
effect of Landau damping on various plasma modes. “Su-
perthermal” plasma behavior was observed in various ex-
perimental plasma contexts, such as laser matter interac-
tions or plasma turbulence (Magni et al. 2005). At very
large values of the spectral index k, the velocity distribu-
tion function approaches a Maxwellian distribution, while
for low values of k, they represent a “hard” spectrum with a
strong non-Maxwellian tail having a power-law form at high
speeds. Direct measurement of the k distribution in associa-
tion with the electrostatic solitary structures is not available,
however; studies of electron flux spectra in the auroral re-
gion where solitary waves are often observed have shown
that k rather than Maxwellian fitting gives a better fit to the
observed distribution (Olsson and Janhunen 1998). Numer-
ous observations of space plasmas (Feldman et al. 1973;
Formisano et al. 1973; Scudder et al. 1981; Marsch et al.

1982) indicate clearly the presence of superthermal electron
and ion structures as ubiquitous in a variety of astrophys-
ical plasma environments. The latter may arise due to the
effect of external forces acting on the natural space environ-
ment plasmas or to the wave-particle interaction which ulti-
mately leads to kappa-like distributions. To study the elec-
tron acoustic solitary waves in the nonplanar geometry with
radial symmetry we consider unmagnetized plasmas, whose
constituents are cold electron fluid, hot electrons obeying
a superthermal distribution and stationary ions. In this pa-
per, we try to show how the electron acoustic solitary waves
in cylindrical and spherical geometries differ qualitatively
from that in one-dimensional planar geometry and how hot
superthermal electrons affect on them. The manuscript is or-
ganized as follows: We present the basic equations and de-
rive the cylindrical/spherical KdV equation in Sect. 2. Our
results are presented and discussed in Sect. 3. A summary of
obtained results is given in Sect. 4.

2 Basic equations and derivation of the KdV equation

We consider homogeneous, unmagnetized plasmas consist-
ing of a cold electron fluid, hot electrons obeying a su-
perthermal distribution and stationary ions. In two tempera-
ture (cold and hot) electron plasmas, electron acoustic waves
can be created due to conservation of equilibrium charge
density ne0h + ne0c = ni0. It is basically an acoustic (elec-
trostatic) wave in which the inertia is provided by the cold
electrons and the restoring force comes from the pressure of
the hot electrons. The ions are stationary and provide only
the background charge neutrality. This means that the ion
dynamics does not influence the electron acoustic waves be-
cause the EA wave frequency is much larger than the ion
plasma frequency. The nonlinear dynamics of the electron
acoustic solitary waves is governed by the continuity and
motion equations for cold electrons, and the Poisson’s equa-
tion
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where m = 0, for one-dimensional geometry and m = 1, 2
for cylindrical and spherical geometries, respectively. In the
above equations, nc (nh) is the cold (hot) electron number
density normalized by its equilibrium value nc0 (nh0), uc

is the cold electron fluid velocity normalized by Ce =
(kBTh/αme)

1/2, φ is the electrostatic wave potential nor-
malized by kBTh/e, kB is the Boltzmann’s constant, e and
me are the electron charge and its mass respectively and
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α = nh0/nc0. The time and space variables are in units of the
cold electron plasma period ω−1

pc and the hot electron Debye
radius λDh, respectively. nh is the superthermal hot electron
density and it is given by Younsi and Tribeche (2010)

nh =
(

1 − φ

k − 1/2

)−k− 1
2

(2)

The parameter κ shapes predominantly the superthermal tail
of the distribution (Tribeche and Boubakour 2009) and the
normalization is provided for any value of the spectral in-
dex κ > 1/2 (Boubakour et al. 2009). In the limit κ → ∞,
(2) reduces to the well known Maxwell-Boltzmann electron
density. Low values of k represent distributions with a rela-
tively large component of particles with speed greater than
the thermal speed (“superthermal particles”) and an associ-
ated reduction in “thermal” particles, as one observes in a
“hard” spectrum. Such a very hard spectrum, with an ex-
treme accelerated superthermal component, may be found
near very strong shocks associated with Fermi acceleration
(Mace and Hellberg 1995).

Now, we study the small but infinite amplitude waves in
plasmas with superthermal electrons by using the reductive
perturbation method. Firstly, we introduce the stretched co-

ordinates as, τ = ε
3
2 t, ξ = −ε

1
2 (r + λt), where ε is a small

dimensionless expansion parameter and λ is the wave speed
normalized by Ce. Secondly, dependent variables are ex-
panded as follows,
⎡
⎢⎢⎢⎣

nc = 1 + εn1c + ε2n2c + · · ·
uc = εu1c + ε2u2c + · · ·
φ = εφ1 + ε2φ2 + · · ·

(3)

Substituting (3) into (1) and collecting the terms in different
powers of ε the following equations can be obtained at the
lower order of ε

n1c = −αφ1

λ2
, u1c = −αφ1

λ
,

1

λ2
= 2k + 1

2k − 1
(4)

To the next higher order in ε, we obtain a set of equations,
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Finally from (4) and (5) the cylindrical/spherical KdV equa-
tion yields
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where the coefficients are

A =
[
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2λ
+ 2k + 3
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λ

]
, B = λ3

2
(7)

Equation (6) is the cylindrical/spherical KdV equation de-
scribing the nonlinear propagation of the electron acoustic
solitary waves in plasma consisting superthermal hot elec-
trons and stationary ions. In this equation A and B are the
nonlinear coefficient and dispersive terms.

3 Numerical results and discussion

There is not known exact analytical solution for the modified
KdV (6) when the geometrical effect is taken into account
(m �= 0). Therefore, we have numerically solved equation
(6) and have studied the effects of superthermal electrons on
the propagation of electron acoustic solitary waves. In the
numerical procedure the modified KdV equation was ad-
vanced in time with a standard fourth-order Runge-Kuttah
method (Press et al. 1992) with a time step of 10−4. The
spatial derivatives were approximated with centered finite
difference approximations using spatial grid spacing of 0.1
(Maxon and Viecelli 1974a, 1974b). At large values of |τ |
(e.g., τ = −14) the spherical and cylindrical solitary waves
are similar to one dimensional solitary waves in flat geom-
etry. In this situation the term m

2τ
φ1, is no longer dominant

and we have usual KdV equation which has solitary wave
solution

φ1 = φ0 sech2
(

χ

w

)
(8)

where φ0 = 3u
A

is the amplitude and w = 2
√

B
u

is the width
of the solitary wave while u is a constant velocity and χ =
ξ − uτ is stationary space variable.

Solution (8) can be used as an initial condition for numer-
ical simulation of (6) starts from larger values of |τ |. How-
ever, as the value of |τ | decreases, the term m

2τ
φ1 becomes

dominant and both spherical and cylindrical solitary waves
are differ from one dimensional solitary wave. Thus evolu-
tion of solitary wave can be investigated using the results of
numerical solutions.

Figure 1 shows evolution of solitary solution in cylindri-
cal geometry with initial values of α = 0.5, u = 0.1 and dif-
ferent values of k. Soliton amplitude increases when k in-
creases. As it was mentioned before, in the limit k → ∞, su-
perthermal distribution reduces to the Maxwell-Boltzmann
distribution. Thus, in the presence of hot superthermal elec-
trons, the amplitude of solitons decreases. On the other
hand, both amplitude and also width of the solitary wave
increases in the presence of greater excess of superthermal
hot electrons. This means that the soliton energy increases
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Fig. 1 Time evolution of cylindrical solitary wave (m = 1) amplitude
(φ1) versus spatial coordinate χ at times τ = −14, τ = −8.65, and
τ = −3.3, for different values of k = 0.2, 2 and 6 with α = 0.5

Fig. 2 Time evolution of cylindrical solitary waves (m = 1), φ1 versus
spatial coordinate χ at times τ = −14, τ = −8.65, and τ = −3.3, for
different values of α = 0.2, α = 0.4 and α = 0.6 with k = 2

when the population of superthermal hot electrons (the value
of parameter k) increases (decreases). It is known that the
velocity of the KdV solitons is proportional with their am-
plitude. As Fig. 1 presents, soliton amplitude and therefore
its velocity is not constant and it increases when the term
m
2τ

φ1 become larger (smaller values of |τ |). This means that
soliton moves under influence of a kind of external force as
we look at the soliton as a localized lump of energy.

Figure 2 demonstrates solitary wave profiles as functions
of χ at different times with some values of α. As solitons
in flat geometry, the soliton amplitude increases with an
increasing α. Also soliton velocity becomes greater with
smaller values of |τ |. Soliton velocity changes in time al-
most independent of the value of α as Fig. 2 clearly presents.

Fig. 3 Time evolution of spherical solitary waves (m = 2), φ1 versus
spatial coordinate χ at times τ = −14, τ = −8.65, and τ = −3.3, for
different values of k = 1.0, 2.0 and 4.0 with α = 0.5

Fig. 4 Time evolution of cylindrical solitary waves (m = 2), φ1 versus
spatial coordinate ξ at times τ = −14, τ = −8.65, and τ = −3.3, for
different values of α = 0.2, α = 0.4 and α = 0.6 with k = 2

Note that the soliton width has not sensible change as α

increases. Therefore the soliton becomes narrow when the
ratio of electron temperatures increases. Figures 3 and 4
demonstrate similar situations of Figs. 1 and 2 for spheri-
cal geometry (m = 2) respectively. Both Figs. 3 and 4 indi-
cate that soliton velocity increases as time (|τ |) decreases.
The rate of velocity increase in the spherical geometry is
very greater than what we can find in cylindrical geome-
try. All the Figs. 1–4 strongly confirm that parameters “k”
and α have not considerable effect in velocity change. Fig-
ure 5 compares behavior of soliton in cylindrical and spheri-
cal geometries. This figure demonstrates a very clear view
of what happening in different geometries. For great val-
ues of |τ | there is no difference between solitons in dif-
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Fig. 5 Time evolution of spherical (dashed line) and cylindrical
(solid line) solitary waves, φ1 versus spatial coordinate χ at times
τ = −14, τ = −8.65, and τ = −3.3, for α = 0.5 and k = 2

ferent geometries. It is clear because in the large values of
|τ | the geometrical effects are negligible. Soliton amplitude
(width) increases (decreases) when |τ | decreases. On the
other hand the soliton velocity increases as |τ | decreases
in both cylindrical and spherical geometries. In the spher-
ical geometry solitons move under the influence of stronger
force and therefore its amplitude (and thus its velocity) have
bigger change. This situation is occurred almost indepen-
dent of the other parameters like the superthermal electron
population (k) or the ratio of the energy of hot and cold elec-
trons. More interesting result is that the kappa distribution is
not able to flip the negative amplitude to positive amplitude.
All the Figures indicate that the kappa distribution has only
quantitative (and not a qualitative) effects on the soliton ex-
istence domains and only negative potential solitons can be
created (Sahu 2010).

The soliton velocity increases during the evolution in
both cylindrical and spherical geometries, as Figs. 1–5
clearly present. There are two different reasons for this phe-
nomenon. Consider a situation with fixed values for the pa-
rameters “k” and α. Soliton velocity increases in time as
the term m

2τ
φ1 becomes bigger and bigger. This term in

the spherical geometry (m = 2) is bigger than that in the
cylindrical geometry (m = 1). Therefore acceleration in the
spherical geometry is greater than acceleration in the cylin-
drical geometry. All the figures show that the soliton ampli-
tude increases in time too.

On the other hand the soliton amplitude increases when
the parameter “k” increases as Figs. 1 and 3 present. There-
fore the soliton velocity increases with an increasing value
of the parameter “k”. This is the second reason for increas-
ing the soliton velocity (and therefore its amplitude). Note
that we have to compare soliton profiles with different val-

ues of the parameter “k” in the same time, for finding this
situation.

Figures 1 and 3 clearly show that the dominant reason for
increasing the soliton velocity is the term m

2τ
φ1 (geometry

effect) and the effect of the parameter “k” is very smaller
than the geometry effect. Thus the peaks of the solitons with
different values of “k” are located in very near positions in
every instant of time as one can find in the Figs. 1 and 3.

4 Conclusion

We have addressed the problem of nonlinear electron-
acoustic oscillations in unmagnetized collisionless plasmas
comprising cold fluid electrons, superthermal hot electrons
and stationary ions. It was shown that the reductive per-
turbation method results nonlinear waves in this situation
which can be described by solitary waves of the cylindri-
cal/spherical Korteweg-de-Vries equation. Solitons move
under the influence of a kind of force in the spherical and
cylindrical geometry. The soliton velocity (and thus its am-
plitude) increases in non planar geometries. This situation is
occurred almost independent of the other parameters like (k)
or α. Our investigations presented that the soliton velocity
increases as |τ | decreases in both cylindrical and spheri-
cal geometries. This effect is more noticeable for spherical
geometry. Also it has been shown that the soliton ampli-
tude (and its velocity) increases and also it becomes narrow
when as |τ | decreases. The effects of superthermal electrons
on the spherical and cylindrical solitary wave structure have
been studied too. We found that an increase of the param-
eter k increases the amplitude of cylindrical and spherical
solitary waves. The soliton energy increases when the pop-
ulation of superthermal hot electrons increases. The same
changes can be found for the parameter “α” too. It is shown
that the soliton amplitude increases when the ratio of hot
electrons to cold electrons increases. But the soliton width
has not considerable change with α. Therefore one can con-
clude that the soliton amplitude increases when α increases.
In general one can conclude that the kappa distribution has
only quantitative effects on the soliton existence domains
and only negative potential solitons can be created in the
medium. Our results may be useful in understanding the
wide relevance of nonlinear features of localized electroa-
coustic structures in different regions of the magnetosphere
(Singh and Lakhina 2004). In further studies one can pay at-
tention on the role of relativistic particles in the media which
can strongly affect on the behavior of nonlinear waves.
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