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Problems with truncated data arise frequently in survival analyses and reliability
applications. The estimation of the density function of the lifetimes is often of
interest. In this article, the estimation of density function by the kernel method is
considered, when truncated data are showing some kind of dependence. We apply
the strong Gaussian approximation technique to study the strong uniform consistency
for kernel estimators of the density function under a truncated dependent model.
We also apply the strong approximation results to study the integrated square error
properties of the kernel density estimators under the truncated dependent scheme.

Keywords Integrated square error; Kiefer process; Strong Gaussian
approximation; Strong mixing; Strong uniform consistency; Truncated data.
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1. Introduction and Preliminaries

In medical follow-up or in engineering life testing studies, one may not be able to
observe the variable of interest, referred to hereafter as the lifetime. Among the
different forms in which incomplete data appear, right censoring and left truncation
are two common ones. Left truncation may occur if the time origin of the lifetime
precedes the time origin of the study. Only subjects that fail after the start of
the study are being followed, otherwise they are left truncated. Woodroofe (1985)
reviewed examples from astronomy and economy where such data may occur.

Let X1�X2� � � ��XN be a sequence of the lifetime variables which may not be
mutually independent, but have a common unknown distribution function (d.f.)
F with a density function f . Let T1�T2� � � ��TN be a sequence of independent
and identically distributed random variables with continuous d.f. G, they are also
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4250 Fakoor and Jomhoori

assumed to be independent of the random variables Xi’s. In the left-truncation
model, �Xi�Ti� is observed only when Xi ≥ Ti. Let �X1� T1�� � � � � �Xn� Tn� be the
actually observed sample (i.e., Xi ≥ Ti), and put � �= P�T1 ≤ X1� > 0, where P is
the absolute probability (related to the N -sample). Note that n itself is a random
variable and that � can be estimated by n/N (although this estimator cannot be
calculated since N is unknown). Assume, without loss of generality, that Xi and Ti

are nonnegative random variables, i = 1� � � � � N . For any d.f. L denote the left and
right endpoints of its support by aL = inf�x � L�x� > 0� and bL = sup�x � L�x� < 1�,
respectively. Then under the current model, as discussed by Woodroofe (1985), we
assume that aG ≤ aF and bG ≤ bF . Define

C�x� = P�T1 ≤ x ≤ X1 �T1 ≤ X1� = ��T1 ≤ x ≤ X1� = �−1G�x��1− F�x��� (1.1)

where ��·� = P�· � n� is the conditional probability (related to the n-sample) and
consider its empirical estimate by

Cn�x� = n−1
n∑

i=1

I�Ti ≤ x ≤ Xi�� (1.2)

where I�·� is the indicator function. Then the product-limit (PL) estimator F̂n of F
is given by

F̂n�x� = 1− ∏
Xi≤x

(
1− 1

nCn�Xi�

)
� (1.3)

The cumulative hazard function 	�x� is defined by

	�x� =
∫ x

0

dF�u�

1− F�u�
� (1.4)

Let

F ∗�x� = P�X1 ≤ x �T1 ≤ X1� = ��X1 ≤ x� = �−1
∫ x

0
G�u�dF�u� (1.5)

be the d.f. of the observed lifetimes. Its empirical estimator is given by

F ∗
n �x� = n−1

n∑
i=1

I�Xi ≤ x��

On the other hand, the d.f. of the observed Ti’s is given by

G∗�x� = P�T1 ≤ x �T1 ≤ X1� = ��T1 ≤ x� = �−1
∫ �

0
G�x ∧ u�dF�u��

and is estimated by

G∗
n�x� = n−1

n∑
i=1

I�Ti ≤ x��

D
ow

nl
oa

de
d 

by
 [

V
ah

id
 F

ak
oo

r]
 a

t 0
7:

04
 0

6 
N

ov
em

be
r 

20
11

 



Some Asymptotic Results of Kernel Density 4251

It then follows from (1.1) and (1.2) that

C�x� = G∗�x�− F ∗�x�� Cn�x� = G∗
n�x�− F ∗

n �x−�� (1.6)

In the independence framework with no truncation, the kernel estimate fn of a
real univariate density f introduced by Rosenblatt (1956) and defined by

fn�t� =
n∑

i=1

1
nhn

K

(
t − Xi

hn

)
�

where X1� � � � � Xn are independent observations from the density f , K is a kernel
function, and hn is a sequence of (positive) “bandwidths” tending to zero as n →
�. Parzen (1962) showed that under some mild smoothness conditions on K (and
f ), fn�t� is in any respect a consistent estimator of f�t� for each t ∈ �� The weak
and strong uniform consistency properties of fn have been considered by several
authors, including Nadaraya (1965), Schuster (1969), and Van Ryzin (1969). In
these articles, the condition placed on the bandwidth for strong uniform consistency
includes

∑
exp�−cnhn

2� < � for all positive c. Silverman (1978) established the
strong uniform consistency for fn − f using the strong approximation technique
developed by Komlós et al. (1975) for the ordinary empirical process.

Under random left truncation model, for the case in which the lifetime
observations are mutually independent, the estimation for density has been studied
extensively by many authors during recent years, for example, Uzunoḡullari and
Wang (1992), Gijbels and Wang (1993), Sun (1997), Sun and Zhou (1998), and
Arcones and Giné (1995).

Using the strong representation of the PL estimator in the form of an average of
random variables plus a reminder term, Sun and Zhou (2001), established uniform
consistency (with rate) and asymptotic normality of the kernel estimators of density
function when the truncated data are subjected to strong mixing condition (see
definition below).

In this article, we apply the strong Gaussian approximation technique to
establish some asymptotic results of the kernel density estimators, including the
strong uniform consistency and asymptotic expansion for the integrated square
error (ISE) of the kernel density estimators when the truncated data are subjected
to a kind of dependence whose definition is given below.

Definition 1.1. Let �Xi� i ≥ 1� denote a sequence of random variables. Given a
positive integer m, set


�m� = sup
k≥1

��P�A ∩ B�− P�A�P�B��� A ∈ � k
1 � B ∈ ��

k+m�� (1.7)

where � k
i denote the �-field of events generated by �Xj� i ≤ j ≤ k�� The sequence is

said to be 
-mixing (strongly mixing) if the mixing coefficient 
�m� → 0 as m → ��

Among various mixing conditions used in the literature, 
-mixing, is reasonably
weak and has many practical applications. There exists many processes and time
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4252 Fakoor and Jomhoori

series fulfilling the strong mixing condition. As a simple example, we can consider
the Gaussian AR(1) process for which

Zt = Zt−1 + �t�

where �� < 1 and �t’s are independently identically distributed random variables
with standard normal distribution. It can be shown (see Ibragimov and Linnik,
1971, pp. 312–313) that �Zt� satisfies strong mixing condition. The stationary
autoregressive-moving average (ARMA) processes, which are widely applied in time
series analysis, are 
-mixing with exponential mixing coefficient, i.e., 
�n� = e−�n

for some � > 0. The threshold models, the EXPAR models (see Ozaki, 1979), the
simple ARCH models (see Engle, 1984; Masry and Tjostheim, 1995, 1997) and their
extensions (see Diebolt and Guégan, 1993) and the bilinear Markovian models are
geometrically strongly mixing under some general ergodicity conditions. Auestad
and Tjostheim (1990) provided excellent discussions on the role of 
-mixing for
model identification in nonlinear time series analysis.

Now, for the sake of simplicity, the assumptions used in this article are as
follows.

Assumptions.

(1) Suppose that �Xi� i ≥ 1� is a sequence of stationary 
-mixing random variables
with continuous distribution function F , survival function S�·� and mixing
coefficient 
�n� = O�e−�log n�1+�

�, for some � > 0.
(2) Suppose that the truncated time variables �Yi� i ≥ 1� are i.i.d. random variables

with continuous distribution function G and are independent of Xi’s, also let
aG < aF .

(3) f is continuous with bounded second derivative on �0� b�� where 0 ≤ b < bF �

(4) Suppose that the symmetric kernel function K satisfies
∫ 1
−1 K�t�dt = 1�∫ 1

−1 tK�t�dt = 0�
∫ 1
−1 t

2K�t�dt = �2 
= 0� and K�t� = 0 if t � �−1� 1� and is of
bounded variation on �−1� 1� with total variation denoted by VK�

The layout of the article is as follows. In Sec. 2.11, we provide some asymptotic
behaviors of kernel density estimation. The counterpart of these results for the
censored dependent model was established by Fakoor et al. (2009) and Fakoor
(2010). Some proofs of the results are deferred to the Appendix.

2. Asymptotic Behaviors

We first introduce the following Gaussian process, which plays an important role to
present our results.

Let gj�s� = I�Xj ≤ s�− F ∗�s�� j ≥ 0,

��s� s′� = Cov�g1�s�� g1�s
′��+

�∑
j=2

�Cov�g1�s�� gj�s
′��+ Cov�g1�s

′�� gj�s���� (2.1)

Define, for 0 ≤ t ≤ b < bF , two-parameter mean zero Gaussian process

B�t� n� �= k�t� n�/
√
n

C�t�
+
∫ t

0

k�u� n�/
√
n

C2�u�
dC�u�� (2.2)
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Some Asymptotic Results of Kernel Density 4253

where �k�s� t�� 0 ≤ s� t ≤ b� is a Kiefer process in Theorem 3 of Dhompongsa (1984)
with covariance function

�∗�t� t′� s� s′� = min�t� t′���s� s′��

and ��s� s′� given by (2.1).
We now restate below a strong approximation by Bolbolian Ghalibaf et al.

(2010) for the PL process 
n�t� �=
√
n�F̂n�t�− F�t�� by a two-parameter Guassian

process at the rate O��log n�−��, for some � > 0. The statements are conditional on
the observed sample size n.

Theorem 2.1. (Bolbolian et al., 2010) Let b < bF . Suppose that Assumptions (1) and
(2) are satisfied. On a rich probability space, there exists a two-parameter mean zero
Gaussian process B�u� v� for u� v ≥ 0, such that,

sup
0≤t≤b

�
n�t�− S�t�B�t� n�� = O��log n�−�� a�s�� (2.3)

for some � > 0.

2.1. Strong Uniform Consistency

It is the purpose of this section to study the strong uniform consistency for fn − f�
using the strong Gaussian approximation technique obtained in Theorem 2.1 for the
PL process. Our approach is first to apply the strong approximation technique to
establish the strong uniform consistency of fn − f̃n� where

f̃n�t� =
1
hn

∫ �

o
K

(
t − s

hn

)
dF�s�� (2.4)

Theorem 2.2. Let hn be a sequence of positive bandwidths tending to zero as n → ��
Suppose that Assumptions �1�–�4� hold and that

lim
n→�

�log n�−�

√
nhn

= 0� (2.5)

for some � > 0� Then, for any b < bF ,

lim
n→� sup

0≤t≤b

�fn�t�− f�t�� = 0 a�s� (2.6)

Proof. See the Appendix.

An inspection of the proof of Theorem 2.2 gives the rate of strong uniform
consistency for fn − f̃n�

Lemma 2.1. Under the same conditions as in Theorem 2.2, we have

sup
0≤t≤b

�fn�t�− f̃n�t�� = O

(√
log log n

n

)
+ O

(
�log n�−�

√
nhn

)
a�s�
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4254 Fakoor and Jomhoori

Remark 2.1. If the bandwidth hn is chosen to be hn ∼ 
n−� with 
 > 0 and
0 < � ≤ 1

2 , then condition (2.5) is satisfied.

Remark 2.2. In the independence framework with no truncation, for suitable
kernels, Silverman (1978) showed that the condition h−1

n = o�n/ log n� as n → � is
sufficient for strong uniform consistency of kernel density estimates. In the 
-mixing
case with truncation, we cannot achieve the same rate as in the iid case.

Using strong Gaussian approximation in Theorem 2.1 for the PL process, we
can find a two parameter mean zero Gaussian process which strongly uniformly
approximate the empirical density process. Let

�n�t� s� =
1
hn

K

(
t − s

hn

)
� (2.7)

Theorem 2.3. Suppose that Assumptions �1�–�4� hold. Then, for any b < bF

sup
0≤t≤b

�√n�fn�t�− f�t��− ��t� n�� = O

(
�log n�−�

hn

+√
nh2

n

)
a�s��

where

��t� n� = −
∫ �

0
S�x�B�x� n�d�n�t� s��

Proof. Applying Theorem 2.1, we have

fn�t�− f�t� = �fn�t�− f̃n�t��+ �̃fn�t�− f�t��

=
∫ �

0
�n�t� x�d�F̂n�x�− F�x��+ �̃fn�t�− f�t��

= − 1√
n

∫ �

0
Zn�x�d�n�t� x�+ �̃fn�t�− f�t��

a�s�= − 1√
n

∫ �

0
S�x�B�x� n�d�n�t� x�+ O

(
�log n�−�

√
nhn

)
+ �̃fn�t�− f�t���

By a two-term Taylor expansion for f̃n − f� we obtain the result.

Remark 2.3. Theorem 2.3 suggests the optimal rate hn ∼
(
n−1/2�log n�−�

)1/3
for

such approximation.

2.2. Integrated Square Error

It is well known that the most widely accepted stochastic measure of the global
performance of a kernel estimator is its integrated square error (ISE), defined by

ISE�fn� =
∫

�fn�t�− f�t��2 dt�
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Some Asymptotic Results of Kernel Density 4255

Indeed, it is often suggested that fn be constructed to minimize mean integrated
square error (MISE), defined by

MISE�fn� =
∫

E �fn�t�− f�t��2 dt�

in an asymptotic sense. In this section, we consider the ISE of the kernel density
estimator on the interval �0� b� and find an asymptotic expansion for this error in
terms of sample size n and the bandwidth hn. For any b < bF , the integrated square
error of fn on the interval �0� b� is defined to be

ISE�fn� =
∫ b

0
�fn�t�− f�t��2dt�

Theorem 2.4. Let hn be a sequence of positive bandwidths satisfying hn = O�n−1/6� as
n → �. Suppose that Assumptions �1�–�4� hold, then for b < bF , we have

ISE�fn� =
h4
n�

2
2

4

∫ b

0
�f ′′�t��2dt + V 2

K

nh2
n

∫ b

0

�F 2�t�B2�t� n�dt

+ op�h
4
n�+ op

(
1

nh2
n

)
� (2.8)

where B�u� v� is the two-parameter Gaussian process defined in (2.2).

The proof of Theorem 2.4 is based on the following lemmas. We begin with
introducing some further notations. We define

Qn1 =
∫ b

0

[∫ 1

−1
S�t − hnu�B�t − hnu� n�dK�u�

]2
w�t�dt�

Qn2 =
∫ b

0

[∫ 1

−1
S�t − hnu�B�t − hnu�dK�u�

]
w�t�dt�

where w�t� is some (measurable) function defined on �0���. The next Lemma
establishes an asymptotic expansion for Qn1�

Lemma 2.2. Let f�t� and w�t� are continuous on �0� b�. Under Assumptions �1�–�4�,
we have

Qn1 = V 2
K

∫ b

0
S2�t�B2�t� n��w�t��dt + Op

(√
hn log h−1

n

)
�

Proof. See the Appendix.

The following Lemma pertains to the asymptotic behavior for Qn2.

Lemma 2.3. Under the conditions of Lemma 2.2, we have

Qn2 = Op

(√
hn log h−1

n

)
� (2.9)

Proof. See the Appendix.
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4256 Fakoor and Jomhoori

Proof of Theorem 2.4. Using (2.3) and for large n, we have

fn�t�− f̃n�t� =
1√
nhn

∫ 1

−1
S�t − hnu�B�t − hnu� n�dK�u�+ Op

(
�log n�−�

√
nhn

)
� (2.10)

uniformly in t ∈ �0� b�. Since f is twice continuously differentiable on �0� b�� it is
easy to see that

f̃n�t�− f�t� = 1
2
f ′′�t�h2

n�
2 + o�h2

n�� (2.11)

uniformly in t ∈ �0� b�. Combining (2.10) with (2.11) yields

fn�t�− f�t� = 1√
nhn

∫ 1

−1
S�t − hnu�B�t − hnu� n�dK�u�

+ 1
2
h2
n�

2f ′′�t�+ Op

(
�log n�−�

√
nhn

)
+ op�h

2
n� (2.12)

uniformly in t ∈ �0� b�. From (2.12) we deduce that

ISE�fn� =
∫ b

0
�fn�t�− f�t��2dt

= 1
4
h4
n�

4
∫ b

0
�f ′′�t��2dt + 1

nh2
n

Dn1 +
hn�

2
2√
n
Dn2

+
[
op�h

2
n�+ Op

(
�log n�−�

√
nhn

)][
op�h

2
n�+ Op

(
�log n�−�

√
nhn

)
+ h2

n�
4
∫ b

0
f ′′�t�dt + 2√

nhn

Dn3

]
� (2.13)

where

Dn1 =
∫ b

0

[∫ 1

−1
S�t − hnu�B�t − hnu� n�dK�u�

]2
dt�

Dn2 =
∫ b

0
f ′′�t�

[∫ 1

−1
S�t − hnu�B�t − hnu� n�dK�u�

]
dt�

Dn3 =
∫ b

0

[∫ 1

−1
S�t − hnu�B�t − hnu� n�dK�u�

]
dt�

Applying Lemma 2.2 with w�t� = 1 yields

Dn1 = V 2
K

∫ b

0
B2�t� n�dt + Op�

√
2hn log h−1

n �� (2.14)

Applying Lemma 2.3 with w�t� = f ′′�t� and w�t� = 1, respectively gives

Dn2 = Op

(√
hn log h−1

n

)
�
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Some Asymptotic Results of Kernel Density 4257

and

Dn3 = Op

(√
hn log h−1

n

)
�

This in conjunction with (2.13) and (2.14) completes the proof.

Appendix

To study strong uniform consistency of kernel density estimators, we also need
to study the modulus of continuity of approximating process B�u� v�� In the next
Lemma, we prove the global modulus of continuity of the Gaussian process B�u� v��

Lemma A.1. Let hn be a sequence of positive numbers for which

lim
n→�

log h−1
n

log log n
= �� (3.1)

Then, for any b < bF

sup
0≤t≤b

sup
−1≤u≤1

�B�t − hnu� n�− B�t� n�� = O

(√
hn log h−1

n

)
a�s� (3.2)

Proof. First, we have

�B�t − hnu� n�− B�t� n�� ≤
∣∣∣∣k�t − hnu� n�/

√
n

C�t − hnu�
− k�t� n�/

√
n

C�t�

∣∣∣∣
+
(

inf
0≤x≤b

C2�x�

)−1

sup
0≤x≤b

∣∣∣∣k�x� n�√
n

∣∣∣∣ ∣∣C−1�t − hnu�− C−1�t�
∣∣

= I1 + I2�

It can be shown, after simple algebra that for large n�

sup
0≤t≤b

sup
−1≤u≤1

I1 ≤
(

inf
0≤x≤b

C�x�

)−1

sup
0≤t≤b

sup
−1≤u≤1

∣∣k�t − hnu� n�/
√
n− k�t� n�/

√
n
∣∣

+
(

inf
0≤x≤b

C2�x�

)−1

sup
0≤x≤b

∣∣∣∣k�x� n�√
n

∣∣∣∣ sup
0≤t≤b

sup
−1≤u≤1

�C�t − hnu�− C�t��
= I11 + I12�

By the global modulus of continuity for the Kiefer processes (cf., e.g., Theorem
1.15.2 in Csörgő and Révész, 1981), we have

I11 = O

(√
hn log h−1

n

)
a�s� (3.3)

To deal with I12, according to the Mean Value Theorem and the law of iterated
logarithm for the kiefer processes (see Theorem A of Berkes and Philipp, 1977),
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4258 Fakoor and Jomhoori

we have

I12 = O�hn

√
log log n� a�s� (3.4)

It follows from (3.3) and (3.4) that

sup
0≤t≤b

sup
−1≤u≤1

I1 = O�
√
hn log h−1

n � a�s� (3.5)

Likewise, we observe that

sup
0≤t≤b

sup
−1≤u≤1

I2 = O�hn

√
log log n� a�s� (3.6)

Combining (3.5)–(3.6), completes the proof.

Lemma A.2. Assuming the same conditions as in Theorem 2.2, we have

lim
n→� sup

0≤t≤b

�fn�t�− f̃n�t�� = 0 a�s�

Proof. According to (2.3), there exists a two parameter Gaussian process B�t� n�

such that, for large n and t ∈ �0� b�, we have

fn�t�− f̃n�t� = − 1√
nhn

∫ �

0
Zn�x�dK

(
t − x

hn

)
a�s�= 1√

nhn

∫ 1

−1
S�t − uhn�B�t − uhn� n�dK�u�+ O

(
�log n�−�

√
nhn

)
= 1√

nhn

S�t�
∫ 1

−1
�B�t − uhn� n�− B�t� n��dK�u�

+ 1√
nhn

∫ 1

−1
�S�t − uhn�− S�t���B�t − uhn� n�− B�t� n��dK�u�

+ 1√
nhn

B�t� n�
∫ 1

−1
�S�t − uhn�− S�t��dK�u�+ O

(
�log n�−�

√
nhn

)
= I1n�t�+ I2n�t�+ I3n�t�+ O

(
�log n�−�

√
nhn

)
� (3.7)

To deal with I1n� we apply Lemma A.1, so we have

sup
0≤t≤b

�I1n�t�� = O

(√
log h−1

n

nhn

)
a�s� (3.8)

Let Mf = sup0≤t≤b f�t�� then it follows from the Mean Value Theorem that

�S�t − hnu�− S�t�� ≤ Mfhn (3.9)
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Some Asymptotic Results of Kernel Density 4259

for u ∈ �−1� 1� and t ∈ �0� b�� Now applying Lemma A.1 yields

sup
0≤t≤b

�I2n�t�� = O

(√
hn log h−1

n

n

)
a�s� (3.10)

According to the law of iterated logarithm for the Kiefer process (see Theorem A
of Berkes and Philipp, 1977), we have

sup
0≤t≤b

�B�t� n�� = O
(√

log log n
)

a�s� (3.11)

It follows from (3.9) and (3.11)

sup
0≤t≤b

�I3n�t�� = O

(√
log log n

n

)
a�s� (3.12)

Combining (3.7), (3.8), (3.10), and (3.12), we conclude

lim
n→� sup

0≤t≤b

�fn�s�− f̃n�s�� = 0 a�s� (3.13)

Proof of Theorem 2.2. Since f is continuous on �0� b�� f is uniformly continuous on
�0� b�� and hence it is easy to show by the dominated convergence theorem that

lim
n→� sup

0≤t≤b

�f̃n�s�− f�s�� = 0� (3.14)

Therefore, the result is a straightforward consequence of (3.14), (3.13) and the
equality

fn − f = fn − f̃n + f̃n − f�

Proof of Lemma 2.2. Simple algebra shows

Qn1 =
∫ b

0

{ ∫ 1

−1
S�t − hnu��B�t − hnu� n�− B�t� n��dK�u�

+
∫ 1

−1
S�t − hnu�B�t� n�dK�u�

}2
w�t�dt

= Kn1 + Kn2 + Kn3� (3.15)

where

Kn1 =
∫ b

0

{ ∫ 1

−1
S�t − hnu��B�t − hnu� n�− B�t� n��dK�u�

}2

w�t�dt�

Kn2 =
∫ b

0
B2�t� n�

{ ∫ 1

−1
S�t − hnu�dK�u�

}2

w�t�dt�

Kn3 = 2
∫ b

0

{ ∫ 1

−1
S�t − hnu��B�t − hnu� n�− B�t� n��dK�u�

}
×
{ ∫ 1

−1
S�t − hnu� n�dK�u�

}
B�t� n�w�t�dt�
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4260 Fakoor and Jomhoori

To deal with Kn1, we apply Lemma A.1

�Kn1� ≤
∫ b

0

{
�B�t − hnu� n�− B�t� n�� �S�t − hnu���dK�u��

}2�w�t��dt
= Op�hn log h

−1
n �� (3.16)

A Taylor expansion of F yields

�Kn2� ≤
∫ b

0
B2�t� n�

{ ∫ 1

−1
�S�t − hnu���dK�u��

}2

�w�t��dt

= V 2
K

∫ b

0
S2�t�B2�t� n��w�t��dt + Op�hn�� (3.17)

Likewise, applying Lemma A.1 gives

�Kn3� = Op�
√
hn log h−1

n �� (3.18)

Combining (3.15) with (3.16)–(3.18) completes the proof.

Proof of Lemma 2.3. First, we can write

Qn2 = Kn4 + Kn5 + Kn6� (3.19)

where

Kn4 =
∫ b

0

[∫ 1

−1
�S�t − hnu�− S�t�� �B�t − hnu� n�− B�t� n�� dK�u�

]
w�t�dt�

Kn5 =
∫ b

0
B�t� n�

[∫ 1

−1
�S�t − hnu�− S�t�� dK�u�

]
w�t�dt�

Kn6 =
∫ b

0

[∫ 1

−1
S�t�B�t − hnu� n�dK�u�

]
w�t�dt�

Applying (3.2) with mean value theorem gives

�Kn4� ≤ Mfhn

∫ b

0

∫ 1

−1
�B�t − hnu� n�− B�t� n���dK�u���w�t��dt

= Op

(√
h3
n log h−1

n

)
� (3.20)

where Mf = sup0≤t≤b �f�t��� According to (3.11), we have

�Kn5� ≤
∫ b

0
�B�t� n��

[∫ 1

−1
�S�t − hnu�− S�t���dK�u��

]
�w�t��dt

≤ MfhnVK

∫ b

0
�B�t� n���w�t��dt

= Op�hn

√
log log n�� (3.21)
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Some Asymptotic Results of Kernel Density 4261

The term Kn6 can be written as

Kn6 =
∫ b

0
S�t�

[∫ 1

−1
�B�t − hnu�− B�t� n��dK�u�

]
w�t�dt

= Op

(√
hn log h−1

n

)
�

This, in conjunction with (3.19)–(3.21), completes the proof.
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