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Abstract

Diffuse optical tomography (DOT) is a non-linear, ill-posed, boundary value and optimization problem which necessitates regular-
ization. Also, Bayesian methods are suitable owing to measurements data are sparse and correlated. In such problems which are solved
with iterative methods, for stabilization and better convergence, the solution space must be small. These constraints subject to extensive
and overdetermined system of equations which model retrieving criteria specially total least squares (TLS) must to refine model error.
Using TLS is limited to linear systems which is not achievable when applying traditional Bayesian methods. This paper presents an effi-
cient method for model refinement using regularized total least squares (RTLS) for treating on linearized DOT problem, having max-
imum a posteriori (MAP) estimator and Tikhonov regulator. This is done with combination Bayesian and regularization tools as
preconditioner matrices, applying them to equations and then using RTLS to the resulting linear equations. The preconditioning matrixes
are guided by patient specific information as well as a priori knowledge gained from the training set. Simulation results illustrate that
proposed method improves the image reconstruction performance and localize the abnormally well.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Tomography is imaging by sections or sectioning. The
method is used in medicine, archaeology, biology, geology,
materials science and other sciences. Traditional tomo-
graphic systems such as CT, MRI, SPECT and PET are
expensive, use radiation, need special rooms (MRI), and
are unable to provide the functional information, and gath-
ering measurements is too slow for the process of tomogra-
phy [1]. DOT is becoming a useful complement to the
current tomographic modalities. It involves the technique
of using near infrared (NIR) photons for imaging specific
parts of the body to obtain information about tissue abnor-
malities, such as breast and brain tumors. Although, due to
diffusive nature of NIR light, DOT systems have poor spa-
tial resolution, difficult non-linear and ill-posed inverse
scattering problems, and contact with the object is neces-

sary, DOT imaging has the advantage of good contrast
of functional parameters using a non-invasive and non-ion-
izing mechanism, good dynamic resolution, up to 100
images/s, and small, even portable, measurement systems
[2]. Also, it has a temporal resolution an order of magni-
tude faster than other new physiological systems such as
functional MRI. The reconstructed images of the spatial
distribution of tissue parameters can be related directly to
physiologically important properties such as blood and tis-
sue oxygenation states. For this reasons, DOT is an inter-
esting and growing research field with a number of medical
applications. Its dominant enabling field is related to Bio-
Chemical agent detection such as its ability to provide
unique information relating metabolic status, and the pos-
sibility for non-invasive functional imaging without extrin-
sic contrast agents by diffusive property of photons in
turbid media.

Image reconstruction methods in DOT have been the
subject of intense theoretical work and gained considerable
momentum over the past decade, marked by the develop-
ment of two- and three-dimensional imaging techniques,
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modeling the photon behavior in media, and different
types of numerical schemes to solve it. This modeling is
formulated with some approximations [2] which are con-
taminated by error and can be retrieved with TLS criteria.
But, DOT poses a typical ill-posed problem with a large
number of unknowns and a relatively limited number of
measurements. This necessitates the incorporation of a pri-

ori information into the inverse problem formulation in
order to obtain viable solutions. To tackle the ill-posed
nature of the inverse problem and to address the low spa-
tial resolution in DOT, a number of approaches have been
developed. Bayesian approach has been suggested to incor-
porate a priori information to the inverse problem formu-
lation [2–8]. Introducing penalty functions and uniform or
spatially varying regularization terms within the regulari-
zation framework are alternative ways to incorporate a

priori information into the image reconstruction process
[6,9]. However, Bayesian methods are inherently non-lin-
ear, such that when using in DOT problems, the TLS cri-
teria is not accessible with traditional methods [10,11].
Most of ways around this difficulty is to retrieve error of
model with methods that marginalize model error as noise
[2], but they do not retrieve the mismatch between mea-
surements and model, while TLS can do this. Also, error
marginalization methods usually results in less image
quality.

In agreement with the statistical approach taken in this
paper, for better computation and image quality, a new sta-
tistically based preconditioners and truncation method are
introduced which have MAP estimator property without
changing the linearity of the problem. For mismatch
removal of model matrix and measurement vector, an
RTLS criterion to the resulting preconditioned system is
introduced which is not applicable to traditional Bayesian
based methods.

This paper is organized as follows: in Section 2, some
theories in DOT that are used in this paper are discussed.
In Section 3, useful methods for solving linear equations
which we are concerned with are recalled. In this section,
preconditioning and the regularization theory are reviewed.
Section 4 introduces iterative method for RTLS problem
and some implementations for selection of preconditioners
based on statistical and regularization premises. The details
of how we determined the preconditioner and principal
components from a library of typical solutions are pre-
sented in this section. Simulation results illustrating the
performance of RTLS method and preconditioners in
DOT problems are presented in Section 5. Section 6 con-
tains the conclusions.

2. Theory

In this section, the simulation basis are described briefly,
such as light transport model based on the Rytov approx-
imation of the diffusion approximation and its application
to the image reconstruction process. See [1–4] for more
detailed derivations.

2.1. Formulation of the problem

DOT is centered around the simple idea that light passes
through the body in small amounts, and emerges bearing
clues about tissues through which it has passed. One special
feature in DOT is the variety of the different measurement
or data types that are used for image reconstruction. Three
types of systems are widely used in the community: contin-
uous-wave (CW), time-domain and frequency-domain sys-
tems [3,4]. The experimental systems in use today utilize
either ultrashort input pulses (time-domain systems) or
continuous intensity-modulated input (frequency-domain
systems). In the latter case, the measurements consist of
the complex intensity in terms of the phase shift and ampli-
tude of the transmitted photon density wave, which is a
sinusoid modulated continuous wave. The frequency
domain version of the problem is the one considered in this
paper for simulation, in such a way that the boundary mea-
surements gathered around the boundaries of the object are
the measured amplitude and phase of received optical sig-
nal with adding 2% zero-mean Gaussian noise to both.

It was recognized that in turbid media such as biological
tissue, the radiative transfer equation (RTE) is an accurate
model for photon transport using the particle picture of
light [3]. Light transport in turbid media can be described
accurately by the diffusion approximation (DA) equation,
which is an approximation to the RTE.

Let X � Rp (p = 2,3) denote the model domain. In the
frequency-domain, the DA is expressed by [4,5]

�r � ðjðrÞrUðr;xÞÞ þ laðrÞ þ
ix
c

� �
Uðr;xÞ ¼ q0ðr;xÞ;

r 2 X; ð1Þ

where U(r,x) is the photon density at position r and mod-
ulation frequency x (in this work, x = 100 MHz),
jðrÞ ¼ 1=3ðla þ l0sÞ denotes the spatially varying diffusion
coefficient with absorption coefficient la and reduced scat-
tering coefficient l0s, c is the speed of light in the medium,
p = 2,3 is the dimension of the domain, q0(r,x) is the iso-
tropic source term and i ¼

ffiffiffiffiffiffiffi
�1
p

.
To solve Eq. (1) inside the domain under test, the

boundary condition must be applied. In the literature, the
most frequently used boundary condition is the Robin
boundary condition, which is also referred to as the partial
current boundary condition [6]. It can be derived as fol-
lows: within the DA framework, it can be shown that the
total inward directed photon at a point r on the boundary
is zero. In this paper, a Robin (Type III) boundary condi-
tion is used, which is given as follows [6,7]:

Uðr;xÞ þ 1

2c
jðrÞ oUðr;xÞ

om
¼ gðr;xÞ r 2 oX;

where g(r,x) models the boundary sources, c is a dimen-
sion-dependent constant (c2 = 1/p, c3 = 1/4) and m is the
outer normal at boundary domain, oX.
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2.2. Image reconstruction in optical tomography

The image reconstruction problem is to estimate the
optical properties within the object when the amount of
guided light and the actual measurement on the boundary
of the object are given. Image reconstruction in DOT
always done by sequential solving of two problems, for-
ward and inverse problems [8,9]. Roughly speaking, the
forward problem in DOT evaluates the photon propaga-
tion in tissue and is usually formulated by the DA equa-
tion. The inverse problem consists in retrieving the
spatially varying image of the object by comparing pre-
dicted and actual measurements. In this paper, the forward
problem is solved with finite element based methods
(FEM). The key principle in the FEM is the reduction of
the general, continuous, problem to one of matrix algebra
of finite size. Each node in the FEM mesh is labeled
according to the region obtained from simulated MRI
images [12].

The inverse problem solving methods are divided into
two classes, which are the linear (difference or perturba-
tion) methods and the methods based on the non-linear
optimization approach. In the former category, measure-
ments are taken before and after a small perturbation in
the optical properties. Consequently, if Iðla; lsÞ is the
FEM based forward operator for light transport which
maps the spatial absorption and scattering parameters to
the predicted measurements, the relation of perturbation
in optical properties to perturbation in optical measure-
ment can be linearized with the perturbation equation by
[13]:

Dy ¼ JDx; ð2Þ

where Dy ¼ y � Iðla; lsÞ is the difference between actual
and predicted measurement, respectively, and Dx =
(la,ls) � (la,ref,ls,ref) is the difference between estimated
and approximated images. The measurements in (2) are
complex, and inversion would lead to a complex parameter
update. For this reason we split the measurement vector
into real and imaginary parts with a commensurate split-
ting of the linearized derivative operators. In addition,
when considering log of the data the splitting associates
the real part with logarithmic amplitude, and the imaginary
part with phase [9]. The matrix J is named the Jacobian or
sensitivity matrix for the forward model, which is the first
Frechet derivative of Iðla; lsÞ with dimension MS · 2N

where M is the number of measurements, S is the number
of sources (MS rows or equations) and N is the number of
FEM based nodes into which the object is discretized (2N

column or scattering and absorption parameters) [13]. To
yield Eq. (2), We have employed the perturbation approach
with a first-order Rytov approximation [7] to solve the for-
ward problem in the frequency domain.

For non-linear optimization methods, the regularized
least squares problem is to estimate absorption and scatter-
ing distributions which minimize the objective function

W ¼ ðy � Iðla; lsÞÞk k2 þRðla; lsÞ ð3Þ

where k Æ k denotes the Euclidean norm and R is the pen-
alty operator. Further, the first term in objective function
(W) is least squares based for data fitting and the positive
second term to be minimized, penalizes unexpected growth
of the solution in respect to background, which is named a
regularizing penalty. The non-linear minimization problem
(3) is usually solved iteratively using gradient methods such
as the non-linear conjugate gradient [14,15] or Newton
based methods [9] to minimize the objective function over
the search space of optical parameters. Newton based
methods converges faster owing to the contribution of
higher order information. However, the price paid is the
reduction in robustness, i.e. it is more sensitive to poor ini-
tial estimates. To overcome this, a Gauss–Newton ap-
proach [9] to the inverse solver in optical tomography is
used. In the Gauss–Newton method, after computing Jaco-
bian matrix (J(i)) and predicted measurements (IðlðiÞa ; l

ðiÞ
s Þ)

with the latest estimate of optical properties that are com-
puted at iteration i, the image can be updated by solving
the minimization problem

la

l0s

� �
ðiþ1Þ
�

la

l0s

� �
ðiÞ
¼ cðiÞ J T

ðiÞWJ ðiÞ þ
1

2
H ðiÞB

� ��1

J T
ðiÞW y � IðlðiÞa ; l

0ðiÞ
s Þ

� �
� 1

2
gðiÞB

� �
; i ¼ 1; 2; . . . ð4Þ

iteratively, where i is the iteration index, la, ls 2 RN/2, W is
a positive definite covariance matrix, c(i) is a step size
parameter, and gðiÞB and H ðiÞB are gradient (first derivative)
and Hessian (second derivative) of the penalty Rðla; lsÞ,
respectively.

It is shown that [8], the linear methods has a good per-
formance such as robustness for poor initial estimates in
the first stage of the iterative process. But in the final stages
of the iterations, where the estimate of optical property is
closed to the actual ones, Gauss–Newton method is very
good because of its quadratic convergence and low oscilla-
tion during convergence [9]. For this reasons, we have used
the linear deference method (2) at the first and the Gauss–
Newton method (4) at the final stage.

3. Traditional methods for solving linear equations

In order to focus on numerical aspects of Eqs. (2) and
(4), they can be represented in the matrix form by concern-
ing with the solution of large linear equation systems con-
taminated by additive Gaussian noise:

Ax ¼ bþ e; A 2 Rm�n; x 2 Rn; b; e 2 Rm; ð5Þ
where e is the additive noise vector, and b and A are named
the measurement vector and model matrix, respectively. In
DOT the actual measurement of each photon is most often
corrupted by shot noise statistics, which originates from
Poisson statistics. However, With a sufficiently large num-
ber of detected photons, as the intensity tends to infinity,
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the probability distribution of the shot noise is normally
considered in the Gaussian limit [7]. So, e in (5) is assumed
to have Gaussian distribution, where its variance is ex-
pected to be proportional to the number of photons at
the detector and spatially uncorrelated for simplicity.

In particular, we are concerned about the solution of lin-
ear discrete ill-posed problems for which the corresponding
model matrices A are of ill-determined rank, contaminated
by noise, and as large as to make its factorization impossi-
ble and not explicitly available. Besides, for a relatively
small solution space, the system is considered overdeter-
mined and so model matrix space and measurement vector
are not coincident. In this section we extend the discussion
into three major and popular methods for the conversion
of linear systems to have a better behavior and solutions.
Through this methods, one that is used frequently in solv-
ing of DOT problems is Tikhonov regularization.

3.1. Preconditioning theory and dimension reduction

In traditional iterative reconstruction methods, precon-
ditioning is a technique which improves the convergence
rate by transforming the matrix A into a new matrix with
more desirable spectral characteristics [16]. With this per-
spective, the equation

ðL1AL�1
2 ÞðL2xÞ ¼ L1b ð6Þ

is named the preconditioned system of Eq. (5), which has
the same solution. L1 and L�1

2 are symmetric positive defi-
nite matrices which are named left and right precondition-
ers, respectively, such that the condition number of the
resulting matrix L1AL�1

2 , in general, will be smaller. Natu-
rally, the closer resulting matrix is to the identity, the faster
we can expect an iterative method to converge. So, the
dimension subspace of the problem can be reduced effec-
tively with preconditioning [16].

This set of transformations can be directly applied to
formulate preconditioned iterative algorithms such as the
preconditioned conjugate gradient. After the last iteration,
the image can be recovered by applying the transformation.
Furthermore, the side where the preconditioner is applied
is very important. In the iterative solution of linear discrete
ill-posed problems a right preconditioner is closely related
to available or inferred information about the solution,
while a left preconditioner conveys information about the
noise in the data or model matrix whose statistical proper-
ties may be known. A survey of popular preconditioning
strategies for linear systems iterative solvers can be found
(e.g. in [16]).

3.2. Regularization of ill-posed problems

When the linear Eq. (5) comes from the discretization of
a diffusion approximation, many of the singular values of
the coefficient matrix A are very close to the origin, so
the ill-conditioning of the coefficient matrix for these linear
systems is typically very large [17]. Quite often, one of the

following results can occur in the evaluation of the goal of
the inverse problem: (1) the solution does not exist, (2) the
solution is not unique, or (3) solving for the solution is not
stable, i.e. a tiny perturbation (error) in b (measurements)
will be amplified so that it results in a large perturbation
in x (image). If any of the above results occurs, the inverse
problem is said to be ill-posed (in the Hadamard sense) [18]
sometimes so much as to make the computed image useless.
An ill-posed problem must be converted into a well-posed
version in order to be solved. The technique for this con-
version is called regularization. For a linear ill-posed prob-
lem, the following methods are among the most commonly
used which all of them are satisfied with proposed method:
(1) the truncated methods such as truncated SVD (TSVD),
(2) Tikhonov regularization and (3) the truncated total
least squares (TTLS).

To solve a linear ill-posed problem using the TSVD, the
SVD of A must be computed and then the small singular
values which correspond to cheap subspaces must be omit-
ted. the suitable subspace called coarse space. This is not
realistic when there is not sufficient gap between large
and small singular values of A, or when A is very large
since the most efficient algorithms for computing the
SVD of a general matrix has computational complexity
O(N3). For more details see [19,20].

An alternative to TSVD is Tikhonov regularization.
Tikhonov regularization replaces the linear system (5) with
the minimization problem

xtikhonov ¼ arg min
x
fkAx� bk2 þ kkLðx� x0Þk2g ð7Þ

which the second term in the functional to be minimized
penalizes unexpected growth of the solution. The Matrix
L decides how the computed solution should be allowed
to grow and the regularization parameter k balances the ef-
fect of the prior with predicted-actual measurements mis-
match. Note that for a general case, i.e. without the a
priori information, L becomes identity matrix. To compare
proposed technique with traditional Tikhonov method, in
the later, L and k are calculated as [9,18]:

ðLTLÞij ¼
nn if i ¼ j

�1 if j is neighbour of i

0 otherwise

8><
>: ð8Þ

where nn is the number of the neighbors of basis compo-
nent i in FEM. We have used the so-called L-curve, which
has been widely used to choose an optimal regularization
parameter k for solving Eq. (7). Details of implementing
the L-curve to choose k can be found in [21]. Tikhonov reg-
ularization is one of the most popular methods in DOT.
Moreover, the computational complexity for solving opti-
mization problem (7) is only on the order of O(N2) [8,14].

A third method for regularizing linear ill-posed prob-
lems is the TTLS [10]. It can guarantee the existence of
the solution by adapting the measurement space with the
model space. The TLS method can produce a robust solu-
tion only in linear systems such as Eq. (5) when the A
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matrix and b are both contaminated with noise whereas
other methods only consider the noise in b. For more detail
see [11].

3.3. Regularized total least square method

Total least squares (TLS) is a method for treating an
overdetermined system of linear equations Ax � b, where
both the matrix A and the vector b are contaminated by
noise. The inequality may often be attributed to two possi-
bly distinct mechanisms: model mismatch and measure-
ment inaccuracies. Model mismatch encompasses
inaccuracies for discretization even when exact measure-
ments are used. Measurement inaccuracies, on the other
hand, account for possible deviations of the measured data
from the true (unknown) data (in the absence of model
mismatch). The TLS estimation of x is obtained by [10]:

min kðE; f ÞkF subject to ðAþ EÞx ¼ bþ f ;

where both E and f must to be minimized with the Frobe-
nius norm kkF. The best method for solving the above
equation, is based on optimization, which leads to:

xTLS ¼ argminx

kAx� bk2

1þ kxk2
;

Also, in practical situations, the linear system is often ill-
conditioned. These happen when the system is obtained
via discretization of ill-posed problems such as DOT when
using Newton based methods. In these cases the TLS solu-
tion can be physically meaningless and thus regularization
is essential for stabilizing the solution. For this reason,
RTLS was addressed by several approaches such as trunca-
tion methods and Tikhonov regularization [16,10,11]. In
this paper RTLS is applied to all of the preconditioned lin-
ear equations as the minimization problem of [10]:

xRTLS ¼ arg min
x2Rn

kAx� bk2

kxk2 þ 1
: kLsxk2

6 q

( )
; ð9Þ

where q > 0 is a regularization parameter and
Ls 2 Rk · n(k 6 n) is a regularization matrix that defines a
(semi)norm on the solution which is frequently chosen to
approximate the first or second derivative operator.

4. Implementation

In this paper, preconditioners are introduced for simpli-
fication of regularization and MAP estimation without
changing the linearity of systems of type (5). So, applying
some criterions such as reduction model with error margin-
alization and accelerating convergence of iterative algo-
rithm can be simple and realizable. Besides, by using
TSVD to statistical information matrices, the solution
space is reduced to minimum complexity. For this reason,
the approach is efficient for simplification and application
of three kinds of regularization methods which are dis-
cussed in (Section 3.2). From the point of view of regular-

ization, the traditional preconditioners which only improve
the speed of convergence seem to be of little use in DOT.
Indeed, accelerated convergence by preconditioning may
lead to an iterative method where the noise takes over
immediately and the regularization property is lost. It has
been demonstrated that if the preconditioner is selected
properly, it improves the quality of the iterative solution
[22]. Indeed, the rule of thumb is that a matrix L that works
well in Tikhonov regularization (7), works also as a precon-
ditioner. In this work, this property is investigated from the
point of view of Bayesian statistics. For this reason, a good
preconditioner in DOT is constructed from the Cholesky
factor of the inverse of the prior covariance matrix of the
unknown. Such preconditioners are referred as
priorconditioners.

Since, in medical applications, a prior density for the
unknown might be replaced by a large collection of realiza-
tions, useful priorconditioners can be constructed by sam-
pling. For this reason, we suppose that a learning set of
typical vectors x (anatomical information or data collected
by previous surgical interventions) and the corresponding
measurement b are available. The priorconditioners are then
constructed from the sample-based estimates of the
expected value and covariance matrix of the unknown.
By remarking anomaly with the statistical interpretation,
we have stabilized the computation and regularize the
covariance matrix, which is further discussed later in the
rest of the paper.

4.1. Statistics and regularization as preconditioner
perspective

DOT has a variety of explicit possible clinical applica-
tions specially in physiological studies, for example the
imaging functional activity of the brain region [2,23]. But,
it is well-known that traditional DOT reconstruction algo-
rithms do not produce satisfactory reconstructions when
applied to sparse projection data or the model matrix
[24]. In recent years, many papers present and review
results suggesting that statistical inversion methods can
be successfully used for reconstruction in DOT.

Although many statistical methods have been proposed
for the restoration of tomographic images, their use in
medical environments especially in functional imaging,
has been limited due to two important factors. These fac-
tors are the need for greater computational time than deter-
ministic methods and the selection of the hyperparameters
in the image models. For this manner, we consider the
compatibility of prior assumptions of regularization
scheme and the actual prior information on optical prop-
erty distribution from a Bayesian perspective and then sim-
plification of applying them as preconditioners to linear
systems, and estimation of hyperparameters with aide of
typical Sequences.

In this paper, random variables are denoted by capital
letters and their realizations are denoted by lowercase let-
ters. In the Bayesian approach the optical property distri-
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bution X and the measured voltages Y are assumed to be
multivariate random variables with some joint probability
density p(x,y). In inverse problems, all variables are inter-
preted as random ones, the randomness really reflecting
our lack of information about their values. Hence, instead
of the deterministic Eq. (5), we consider its stochastic
extension,

AX ¼ Bþ E; A 2 Rm�n; X 2 Rn; B;E 2 Rm; ð10Þ
where X, B and E are random variables instead of x, b and
e in deterministic model, respectively, and A is the deter-
ministic model matrix. Most papers use the additive noise
model E, but the ideas of this paper are more generally
applicable, so that the model error in A can be added to
E with good approximation. p(x) denotes the prior proba-
bility density of image X, which expresses the degree of
information about the values of X prior to measuring B.
The likelihood density, denoted by p(b|x), is the probability
density of B given the realization X = x. The probability
density of X given B = b is called the posterior density
and is denoted by p(x|b);

pðxjbÞ ¼ pðxÞpðbjxÞ
pðbÞ ð11Þ

This is the solution of the inverse problem (10) in the
Bayesian frame of mind. Based on the posterior density,
we may define various estimates of the image x. The most
commonly used statistical estimates are the conditional

mean (CM) and MAP estimates,

xMAP ¼ arg max
x

pðxjyÞ; xCM ¼
Z

xpðxjyÞdx;

provided that such estimates exist. Consider the linear
additive noise model (10) under the assumption that X

and E are mutually independent Gaussian random vari-
ables with X � N(lx,Cx) and E � N(0,Ce), that is, the ran-
dom variable X has mean lx 2 Rn and its covariance matrix
Cx 2 Rn·n is symmetric, positive definite, and E is zero
mean Gaussian noise with covariance Ce 2 Rm. Then,
Bayes’ formula implies that the posterior density is

pðxjbÞ/ exp �1

2
½ðx�lxÞ

TC�1
x ðx�lxÞþðb�AxÞTC�1

e ðb�AxÞ�
� �

¼ exp �1

2
½kLxðx�lxÞk

2þkLeðb�AxÞk2�
� �

¼ expð�WðxjbÞÞ
ð12Þ

where the Cholesky factors of C�1
x and C�1

e are denoted by
Lx and Le, respectively, i.e., LT

x Lx ¼ C�1
x , with Lx upper tri-

angular. Under these assumptions, the maximum a posteri-

ori estimate xMAP coincides with the conditional mean
estimate xCM, which is the centre point of the posterior
density given above, and they are the solutions to the min-
imization problem

xMAP ¼ xCM ¼ arg minðWðxjbÞÞ:

For solving this minimization problem, first the new ran-
dom variable is introduced:

W ¼ LxðX � lxÞ;

which is a Gaussian white noise W � N(0,I), since

lW ¼ EfW g ¼ 0; CW ¼ EfWW Tg ¼ LxCxLT
x ¼ I ;

where I is the identity matrix. Therefore, the upper triangu-
lar matrix Lx is a whitening matrix for X and owing to the
above properties of W, the resulting equation has a better
convergence property. For a given realization of the image
x, if we define b0 = b � Alx, we can write

WðxjbÞ¼ kwk2þkLeðb0�AL�1
x wÞk2¼ LeAL�1

x

I

" #
w�

Leb0

0

� �					
					

2

ð13Þ

Then, the MAP estimator is the solution of this linear sys-
tem in the least square sense, in the context of iterative
solvers with appropriate regularization:

LeAL�1
x w ¼ Leb0; w ¼ Lxðx� lxÞ ð14Þ

Since measurements in ill-posed problems in DOT are al-
ways noisy, we can also use information about the statistics
of the noise in the solver to improve the quality of the com-
puted solution. This is well known where whitening of the
noise is often a preprocessing step for an inversion algo-
rithm. In the iterative linear solvers framework, the whiten-
ing of the noise naturally defines a left preconditioner.

The Gaussian MAP estimate (and so the linear Gauss-
ian statistical model) is intimately related to the classical
Tikhonov regularization of ill-posed problems. Indeed, if
it is assumed that the additive noise is white Gaussian,
i.e., Ce = r2I, the MAP estimate agrees with the Tikhonov
regularized solution:

k ¼ r2; L ¼ Lx; lx ¼ x0:

4.2. Iterative methods

Beginning with an initial optical property estimate, the
forward model needs to be evaluated to produce the pre-
dicted measurement. An update of the optical property is
then computed from the difference between the predicted
and actual boundary measurements utilizing the gradient
information for updating the previous optical property
and the evaluation of the forward model for a new predic-
tion of measurement. This process is repeated until the sat-
isfactory match is found between the predicted and actual
measurements. In order to retrieve the spatial distribution
of optical properties (or image) of the unknown media,
one needs to solve an ill-posed non-linear optimization
problem which is best addressed using iterative gradient-
based approaches. The solution of linear discrete ill-posed
problems by iterative methods equipped with a suitable
stopping rule has gained a lot of attention in recent years,
in view of its speed and ease of implementation [25].
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Among the various iterative methods proposed in the liter-
ature, the conjugate gradient (CG) method for the symmet-
ric positive definite case, the generalized minimal residual
(GMRES) method for the square non-symmetric case,
and the conjugate gradient for least squares (CGLS)
method and its implementational variations for the general
non-square case have been the methods of choice for linear
discrete ill-posed problems.

For the iterative solution of preconditioned linear Eq.
(14), it only requires to replace b, A and x in Eq. (5) with
Leb0, LeAL�1

x and w, respectively, but when we use precon-
ditions, the equations have a better solution when applying
GMRES with respect to CG based methods.

The use of preconditioners to accelerate the rate of con-
vergence of these iterative methods is quite prevalent. But
the choice of preconditioners would be more efficient to
avoid accelerating the convergence of those components
dominated by amplified errors, when applied to the linear
discrete ill-posed problems. For this reason, from a decade
ago, preconditioners for iterative methods which aim at
accelerating only the convergence of the part of the spec-
trum associated with the signal, while leaving the portion
associated with the noise alone, were first proposed in lin-
ear algebra [14]. All preconditioners of this type, which are
related to truncated SVD, need to somehow decompose the
spectrum of matrix A to separate the eigenvalues associated
with the signal from those associated with the noise. This
task is easy when the spectrum of A shows a well-marked
gap between larger and smaller eigenvalues, while it
becomes very difficult in DOT. Because most of small
eigenvalues belong to important information of image such
as small tumors, as well as the eigenvalues or singular val-
ues decrease smoothly to zero. For comparison to our pro-
posed method, we have used this kind of preconditioners.

In a different approach, when we use priorconditioners
in (14), preconditioning is viewed as a tool to improve
the quality of the computed solution rather than to acceler-
ate the convergence. In view of this observation, which is
motivated by the reformulation of W(x|b) in terms of w,
lead to the system (14), we use the factor L of C�1 as a right
and left preconditioners. Our simulations indicate that it is
not often necessary to take L to be the Cholesky factor of
the inverse of C. In fact, if we have a factorization of C of
the form MTM = C, we may choose L = M�1. Note that
since the construction of the priorconditioner uses no
information about matrix A, we do not expect it to affect
its spectral distribution. On the other hand, since the prior-
conditioner carries a lot of information about the distribu-
tion of solution X, once it has been computed it may be
used in connection with several different linear systems.
Finally, it is easy to see that priorconditioners can be used
in combination with standard preconditioners for faster
convergence.

In this section, we have assumed that the prior density of
X is directly given as a Gaussian density. however, the prior
density is often non-Gaussian and, in fact, the a priori

knowledge about the solution may not be formulated at

all in statistical terms, but rather as a large database of
sample solutions. For termination criteria definition, a pop-
ular method that is used in iterative solution of linear sys-
tems, and the one that we used here, are referred to as a
truncated iteration. The idea behind regularization by a
truncated iteration is that in the first few iterations the
computed solution approaches the exact solution, but as
the iterations continue, amplified noise components start
to dominate the computed solution. Therefore, to make
iterative methods suitable for the solution of linear discrete
ill-posed problems, it is necessary to equip them with suit-
able termination criteria which stop the iteration prior to
the inclusion in the computed solution of amplified noise
components.

4.3. Sample-based priors

A central challenge in statistical modeling of inverse
problems is constructing informative and reliable prior
densities. In this paper, we discuss sample-based estimation
of the prior. Sample-based priors have been discussed in
[26]. Another equally important question concerning priors
is how to avoid typical priors that are biasing towards a
reasonable, but incorrect, solution. In particular, in medi-
cal imaging, the prior should favor the typical or normal
solutions that we expect to see, but at the same time it
should allow the appearance of abnormalities or anomalies
that are often of central interest. This issue has been previ-
ously addressed in [27–29]. These two related questions will
be addressed in this section. Our approach to all these
issues is based on random sampling.

4.3.1. Computing of priors with random sampling

Assume that we have access to a sample of realizations
of the random variable X, as well as of the corresponding
set of data. this sample of pairs are named a training set

and denoted by

#0 ¼ fðx1; b1Þ; ðx2; b2Þ; . . . ; ðxN ; bN Þg; xj 2 Rn; bj 2 Rm

with N P n. The noise level of the measurements may or
may not be considered in sampling. If the prior is Gaussian
or another standard parametric distribution, efficient ran-
dom vector generators can be used. More generally, the
sample can be generated by using Markov chain Monte
Carlo (MCMC) techniques. In DOT, the training set could
consist, e.g., of previous measurements bj combined with
information obtained by surgical or experimental interven-
tions, or it could have been generated, e.g., by using a com-
putational anatomical or physiological model such as
previous MRI or CT image. This set is used to set up a
prior model that is adjusted to the estimation method of
choice. Here, we assume that the vectors xj are represented
as discretized approximations. We start by setting up a
prior model based on the training set. If N is large and
the sample is representative, it is possible to estimate the
probability density of the underlying variable X using this
sample. We must note that if a sample of true realizations
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is given, they may not distributed normally, But for con-
structing priorconditioners, we must seek a Gaussian
approximation of the prior density. The Gaussian distribu-
tions are completely characterized by the second-order sta-
tistics. Based on the available sample, the sample mean ð~lxÞ
and the sample covariance ð~CxÞ which are estimation of real
mean and covariance obtained as

~lx ¼
1

N

XN

j¼1

xj � EfXg ¼ lx;

~Cx ¼
1

N

XN

j¼1

xjxT
j � ~lx~l

T
x � EfXX Tg � lxl

T
x ¼ Cx

ð15Þ

The higher order moments can be estimated as well, and
they can be used to assess the fidelity of the Gaussian
approximation.

Always, the prior favor the typical solutions so that
resists the appearance of abnormalities or anomalies that
are often of central interest. The more severe problem, in
particular, from the point of view of DOT applications,
is sample’s inability to reproduce outliers. Assume, for
instance, that the training set represents head intersection
images. The major part of the images corresponds to nor-
mal skull and brain, while the few outliers representing
anomalies, such as tumors, that might be in the set have
a negligible effect in the averaging process. As a conse-
quence, the anomalous features will not be represented
by the PCA subspace vectors, when the purpose of the
imaging process might have been, in fact, to detect these
anomalies.

To overcome the aforementioned shortcomings, we pro-
pose a stochastic model that accounts for both the regular

and anomalous parts. We write a model

X ¼ X r þ X a; ð16Þ
where Xr and Xa are stochastically independent random
variables. The regular part Xr is assumed to have mean
and covariance lr and Cr, respectively, calculated from
the training set. The anomalous part Xa accounts for all fea-
tures not captured by regular part or the PCA reduced
model that is proposed in the next. To define the statistics
of the anomalous part, we may use any prior information
that we have concerning the anomalies that we expect to
encounter. For instance, if we expect smooth anomalies
of a given size, we use a smoothness prior with a properly
chosen correlation length. In this work, we shall assume
that Xa has zero mean and that its covariance (Ca) is de-
fined up to a multiplicative constant. Hence, the second-or-
der statistics of X is of the form

EfXg ¼ lx ¼ lr; covðX Þ ¼ Cx ¼ Cr þ aCa; ð17Þ
for some a > 0. Assuming that the resulting covariance ma-
trix Cx is invertible, we may now write a whitened version
of the estimation problem, as (14). The parameter a plays
an important role in three different ways. First, even when
the correlation structure of the anomaly may be known, the
relative anomaly variance, compared to the regular part,

may be unknown. Secondly, it is important to guaranty
that the stochastic model (16) does not produce false arti-
facts. Therefore, we adjust the parameter a using the train-
ing set so that the prior model performs well on the training
set #0. Lastly, from the numerical point of view, a can be
seen as a regularization parameter that guarantees that
Cx is numerically positive definite, hence ensuring the exis-
tence of its Cholesky decomposition. We remark that often
sample-based covariance matrices are rank-deficient, be-
cause the samples collection is either not sufficiently large
or the samples are not independent. To avoid the problem
of working with a singular matrix, we add to the sample-
based covariance a small multiple of the identity. The effect
of this form of regularization of the covariance is not only
to make the matrix invertible, but also to allows for anom-
alies in the solution to appear, which could not be captured
from the available sample.

4.3.2. PCA reduced model

In medical applications, the vectors xj represent typical
features of the random variable X. For this reason, the vec-
tors can not be very dissimilar. Consequently, the space
spanned by the realizations may be a proper subspace even
if N P n, and hence Cx is rank deficient or of ill-determined
rank with satisfactory approximation of its real value.
Without loss of generality, also in linearized perturbation
DOT problems, we may assume that the mean of X van-
ishes. Introduce the singular value decomposition of the
matrix Cx,

Cx ¼ VDV T; V ¼ ½v1; v2; . . . ; vn�; D ¼ diag½d1; d2; . . . ; dn�;

where the orthonormal singular vectors vj correspond to
the singular values dj such that we have; d1 P
d2 P � � �P dr > dr+1 = � � � = dn = 0. In practice, we iden-
tify with zero those singular values that are smaller than
a given threshold value, that can be thought of as the work-
ing precision. We write

V 0 ¼ ½v1; . . . ; vr�; V 1 ¼ ½vrþ1; . . . ; vn�;
and further, we split X in parts as

X ¼ V 0ðV T
0 X Þ þ V 1ðV T

1 X Þ ¼ V 0X 0 þ V 1X 1;

X 0 2 Rr; X 1 2 Rn�r: ð18Þ

We have

EfkX 1k2g¼ traceðEfX 1X T
1 gÞ¼ traceðV T

1 CxV 1Þ¼
Xn

j¼rþ1

dj¼ 0;

in other words, X = V0X0 with probability 1. Therefore, if
we trust the covariance matrix Cx, we may write a reduced

model

B ¼ AX þ E ¼ AV 0X 0 þ E; AV 0 2 Rm�r; ð19Þ
and the model reduction error has zero probability of
occurrence. The above model is equivalent to the principal

component analysis (PCA) model [22] which has a capabil-
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ity that it is sufficient to compute the SVD of covariance
matrix only once for analogous problems whereas if we
use A matrix for model reduction, we must calculate TSVD
of it for any iteration. Simulation results shows that the
proposed PCA model in DOT has a better image quality
with respect to traditional TSVD. In addition, if we define

W 0 ¼ D�1=2
0 X 0 ¼ D�1=2

0 V T
0 X 2 Rr;

where D�1=2
0 ¼ ðD1=2

0 Þ
�1 and D1=2

0 ¼ diag½d1=2
1 ; d1=2

2 ; . . . ; d1=2
r �

we observe that:

EfW 0W T
0 g ¼ D�1=2

0 V T
0 CxV 0D�1=2

0 ¼ Ir�r;

i.e., W0 is r-variate white noise. The whitened PCA model

for solving X can be written as

LeB ¼ LeAV 0D1=2
0 W 0 þ LeE; X ¼ V 0D1=2

0 W 0: ð20Þ
The matrix V 0D1=2

0 2 Rn�r acts as a whitening precondi-
tioner. Observe that the solution is automatically in the
subspace spanned by the eigenvectors v1, . . ., vr. Hence,
the PCA model is a reducing constraint, since it forces
the solution to a low-dimensional space. The clear advan-
tage of the PCA (19), or its whitened version (20), is that
it takes full advantage of the prior information, and when
r	 n, the degree of ill-posedness may decrease, and so
does the required computational work. also, when apply-
ing only informative components in covariance matrix,

the important parts such as anomalous dose not destroyed
in reconstruction process. however, in medical applica-
tions, there are clear disadvantages. The first problem is
related to some approximations such as (15) and ignoring
some eigenvalues and their corresponding eigenvectors.
In general, we do not know to what extent the training
set is a sufficient sample. However, the error with given
N may have a significant effect on the eigenvalues that
are used to determine the truncation parameter r. also
there may be some eigenvalues that converge smoothly
to zero.

4.4. Applying RTLS to preconditioned PCA model

The RTLS problem was extensively studied in recent
years, but A key difficulty with this problem is its non-con-
vexity in DOT problems that not guarantee to converge to
a global optimum. To avoid this difficulty, when solving
linearized DOT problems, we used globally and efficiently
convergent algorithm which is proposed in [11]. Here we
used a practical iterative algorithm utilizing the shifted
inverse power method for which the only prescribed
parameter, q in (9), should be determined a priori from
knowledge of the underlying physical model. The algo-
rithm then determines both the Lagrange multipliers and
estimates a RTLS solution concurrently. The only assump-

Fig. 1. Flow chart of the proposed reconstruction method.
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tion made is that the problem must be well defined. This is
achieved when using proposed preconditioners and PCA
methods. In this paper, RTLS is applied to whitened
PCA model (17). Also, we used Cholesky factor of data
covariance matrix, Ls in (9), as a regularization matrix to
RTLS problem.

4.5. Flow chart of the proposed algorithm

Based on the proposed methods in Section 4, a flow
chart is drawn in Fig. 1 to illustrate the detailed computa-
tional steps for a complete reconstruction. From the flow
chart, five proposed key steps can be identified: (a) compu-
tation of priors with random sampling, (b) extraction of
preconditioners from priors, (c) applying reduced PCA
model to the right preconditioner, (d) updating the recon-
struction equations by applying preconditioners to them
and (e) solving preconditioned linear equations using
RTLS criteria. The accuracy of these procedures are essen-
tial for a successful reconstruction.

5. Numerical results

In this section, we provide numerical examples to vali-
date the applicability of the proposed preconditioners.

5.1. Simulated test phantom

Two multi-layered phantoms are simulated with differ-
ent absorption and scattering coefficients in a circular

object of diameter 100 mm and infinite height. A two-
dimensional cross section of these phantoms are shown in
Figs. 2a and 3a in Fig. 2a, three regions are shown, region
0 (la = 0.1 mm�1 and l0s ¼ 10 mm�1) and region 1 (la =
0.02 mm�1 and l0s ¼ 2 mm�1) with typical prior informa-
tion and finally region 2 (la = 0.08 and l0s ¼ 8 mm�1)
which is simulated as a anomaly with few prior informa-
tion. These values in Fig. 3a are (la = 0.015 mm�1 and
l0s ¼ 1:5 mm�1Þ, (la = 0.15 mm�1 and l0s ¼ 15 mm�1) and
(la = 0.01 and l0s ¼ 1), respectively.

The regional information which is gathered from typical
images is used to label the corresponding regions in the
FEM mesh. the 16 optical channels are simulated, as is
the standard practice in human imaging studies. They are
used to collect data using 16 sources and 16 detectors (giv-
ing 240 measurements) in a single plane geometry so that
there are one source and one detector for each 16 optical
channels. Sources are considered to be intensity modulated
with a frequency of 100 MHz, and measurements consist-
ing of the logarithmic modulation amplitude bA and phase
shift bu, so that the target data b = (bA,bu) is calculated
with the FEM diffusion forward model. With this model,
the object is discretized into 2880 non-overlapping triangu-
lar elements connected by 1501 nodes, defining a piecewise
quadratic unstructured basis expansion. Both bA and bu

are then contaminated with 2% zero mean additive Gauss-
ian random noise which is always considered in practical
simulations. For a prior information, pixels of similar
intensity as segmented MRI are assumed to represent the
same material or tissue such as [12].

Fig. 2. (a) The simulated test phantom, (b) the reconstructed image with traditional Tikhonov regularization, and (c) its associated transect at 45�. (d) The
reconstructed image with proposed preconditioning method, and (e) its associated transect at 45�.
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5.2. Phantom imaging: proposed method without PCA

Fig. 2b gives the reconstructed image of la for Tikhonov
regularization with regularization matrix L and regulariza-
tion parameter a which are calculated as Section (3.2). By
comparison, Fig. 2d gives the reconstructed image for the
same phantom by proposed method in Eq. (14) which the
preconditioners are constructed by assumption Gaussian
measurement noise and access to typical measurement for
data and anomaly. The proposed method with inherent
regularization and MAP estimator which are applied as
priorconditioner to linear systems, has flexible and less
computational operations with CGLS and GMRES itera-
tive algorithms. The associated transect of Fig. 2b at 45�
that is plotted to Fig. 2c has the better quality for anomaly
detection with respect to corresponding traditional Tikho-
nov regularization that is plotted to Fig. 2e. The recon-
struction results to reconstruct Fig. 2d represent the 14th
iteration of the GMRES method, taking 50 min on a
2.8 GHz pentium processor with 1 GB RAM wile the cor-
responding values by the traditional Tikhonov regulariza-
tion method is 17 iteration and 62 min, respectively.

5.3. Phantom imaging: using RTLS and PCA

Fig. 3b gives the reconstructed image of la when using
traditional MAP estimator with sample based image and

noise covariance matrixes as Section (3.3). By comparison,
Fig. 3c gives the reconstructed image for the same phantom
with proposed priorconditioners as previous section. The
details of how RTLS criteria can improve the quality of
image is shown in Fig. 3d. here, we have used RTLS to pre-
conditioned DOT linear equation of type (14) with iterative
methods. The better results of RTLS are shown when using
whitened PCA model of type (20) by comparison of three
latter images. Fig. 3e gives the reconstructed image when
traditional TSVD model reduction is applied to proposed
priorconditioners (14) without using RTLS, that is dis-
cussed in Section (2.2). in this image, the regions are faded.
Fig. 3f gives the reconstructed image by proposed PCA
method for dimension reduction of the covariance matrix
which is constructed by accessing to typical measurement
for data and anomaly, as (17). Comparison of Fig. 3e
and f would demonstrates that dimension reduction with
proposed PCA method has the superior quality in anomaly
detection in respect to TSVD. The better results are shown
when we used RTLS to Eq. (20) that is shown in Fig. 3g.
Besides, necessity of changing the system matrix A and
so calculating the SVD of it in any iteration, TSVD method
has inherent computational complexity with respect to
applying RTLS to proposed PCA method.

6. Conclusion

In this work, we formulated the linearized DOT prob-
lem within a preconditioning framework where the con-
structing of them is based on the a priori information
extracted from a training set of typical and anomaly based
images and their observation measurements. This help us
to apply RTLS criteria for data and model matching which
is used in our simulations. In another work, we used model
reduction based on PCA to image covariance matrix to
improve the reconstruction speed. The reconstructed
results show that using preconditioners has the better
results and improves the reconstructed image quality dra-
matically as compared to the Tikhonov regularization. In
addition, using PCA to proposed method has the better
image with respect to TSVD model reduction. The images
show that applying RTLS can improve the reconstructed
image specially when using PCA based model reduction.
Quantitatively, priorconditioner results are close to the
expected results.
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