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Abstract—Support Vector Data Description (SVDD) describes 
data by using a hyper-sphere. In this paper, we propose an 
extended SVDD (ESVDD) which describes data by using a 
hyper-ellipse. Clearly, ESVDD can describe data better than 
SVDD in the input space. Both hyper-sphere and hyper-ellipse 
are very rigid for data description. The kernel ESVDD which 
will be proposed in this paper and the kernel SVDD enhance 
the ability of ESVDD and SVDD for data description, 
respectively. The formulation of SVDD/ESVDD contains a 
penalty term C which controls the tradeoff between the volume 
of hyper-sphere/hyper-ellipse and the training errors. We show 
that the ESVDD can control this tradeoff better than the 
SVDD. 
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I. INTRODUCTION 

The one-class classification problem is an interesting 
field in pattern recognition and machine learning researches. 
In this kind of classification, we assume the one class of data 
as the target class and the rest of data are classified as the 
outlier. One-class classification is particularly significant in 
applications where only a single class of data objects is 
applicable and easy to obtain. Objects from the other classes 
could be too difficult or expensive to be made available. So 
we would only describe the target class to separate it from 
the outlier class.  

The SVDD is a kind of one-class classification method 
based on Support Vector Machine [1, 2] which proposed by 
Tax. It tries to construct a boundary around the target data by 
enclosing the target data within a minimum hyper-sphere. 
Inspired by the support vector machines (SVMs), the SVDD 
decision boundary is described by a few target objects, 
known as support vectors (SVs). A more flexible boundary 
can be obtained with the introduction of kernel functions, by 
which data are mapped into a high-dimensional feature 
space. The most commonly used kernel function is Gaussian 
kernel. This method has attracted many researchers from the 

various fields. For example Liu et al. applied the SVDD 
techniques for novelty detection as part of the validation on 
an Intelligent Flight Control System (IFCS) [3]. Ji et al. 
discussed the SVDD application in gene expression data 
clustering [4]. Yu et al. used SVDD for image categorization 
from internet images [5].  

Recently, some efforts have been expended to improve 
the SVDD method. Guo et al. proposed a simple post-
processing method which tries to modify the SVDD 
boundary in order to achieve a tight data description [6]. As 
another example Cho apply the orthogonal filtering as a 
preprocessing step is executed before SVDD modeling to 
remove the unwanted variation of data [7]. 

In this paper, we propose an extended SVDD (ESVDD) 
which describes data by using a hyper-ellipse instead of a 
hyper-sphere. Clearly, ESVDD can describe data better 
than SVDD. The kernel ESVDD which will be 
proposed in this paper enhance the ability of ESVDD 
for data description. The formulation of SVDD/ESVDD 
contains a penalty term  which controls the tradeoff 
between the volume of hyper-sphere/hyper-ellipse and the 
training errors. We show that the ESVDD can control this 
tradeoff better than the SVDD. 

Our proposed method has two major differences with the 
ellipse SVDD proposed by GhasemiGol et al. [8]. Firstly, 
they used a hyper-ellipse whose diameters are parallel with 
the axes. Secondly, they have not used the kernel trick for 
non-linear data description which makes their method more 
time-consuming. In our proposed method, both drawbacks of 
their method will be removed. 

The paper is organized as follows. In the next section we 
review the support vector data description (SVDD). Our 
proposed method is explained in Section 3. Finally, in 
section 4 the experimental results are presented and we 
conclude in the last section. 
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II. SVDD 

Let  nixi ,...,2,1  be p-dimensional training samples 
belonging to one class. We consider approximating the class 
region by the minimum hyper-sphere with center 

 Teee ,..., 21  and radius R in a high dimensional feature 
space (HDS), excluding the outliers. Therefore, the problem 
is  
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where  x  is the mapping function that maps x  into a high 

dimension feature space (HDS),  Tn ,...,, 21 , i  is 
the slack variable of i-th training sample and C  is a constant 
which determines the trade-off between the hyper-sphere 
volume and training errors.  

The Lagrangian dual form of program (1) can be restated 
as follows: 
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where      j

T
iji xxxxK , . From the optimality 

condition of the program (2.1), we obtain 
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and the unknown datum x  is inside the hyper-sphere if 

  22
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where SV  is the set of indices of training samples whose 
0  (See [1, 2] for more information). 

III. OUR PROPOSED METHOD 

The SVDD describes data by using a hyper-sphere. It’s 
clear that the description of data in the input space by using a 
hyper-ellipse is better than a hyper-sphere (see Figure 1). 
Each point on the hyper-ellipse satisfies the following 
equation: 

,21 dCxCx   

where d  is a constant value, and 1C  and 2C  are its focuses 
(see Figure 2). So, the formulation of our novel method 
called extended SVDD (ESVDD) is as follows: 
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The above program is convex (See appendix A). 
Therefore, its global optimal solution can be obtained easily 
[9].  

Clearly, ESVDD can describe data better than SVDD in 
the input space. If samples of a dataset have been distributed 
normally (with a Gaussian distribution), then ESVDD in the 
input space can describe it better than SVDD in the input 
space which uses a hyper-sphere and needn’t use the kernel 
version of SVDD for data description. Using the kernel 
version of SVDD can cause to obtain many support vectors 
and to increase testing time. 

The formulation of kernel ESVDD is as follows: 
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Figure 1. Description of data by using circle and ellipse. 
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Figure 2. An ellipse and its focuses. 

 
We will prove in appendix B that 
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where jjj  ,: are real scalars. Therefore, the program (3) 

can be restated as follows: 
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or equivalently 
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The unknown datum x is inside the hyper-ellipse if  
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where 1SV  is the set of indices of training samples whose 

0  and 2SV  is the set of the indices of training samples 
whose 0 . 

IV. EXPRIMENTAL RESULTS 

In this section, the superiority of our proposed algorithm 
with respect to the SVDD is studied by using some 
numerical examples. Here, for ease of evaluation, 2-
dimensional data is used. Moreover, the Gaussian kernel 

function, namely   
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kernel SVDD and kernel ESVDD. 
 

A. Example 1. 

Figure 3-8 plot the description of data obtained by using 
the kernel SVDD and our novel method (kernel ESVDD) for 

the first training set and for 20 and different value of 
penalty term C . As it can be seen, one of the training 
samples plotted in each of these figures is far from the other 
samples and may be a noisy sample. By decreasing the value 
of penalty term, the kernel ESVDD could ignore such noisy 
sample, properly (see Figure 5 and 6). But, the boundary of 
kernel SVDD either has ignored some other training samples 
too or has contained the area between the noisy training 
sample and the other samples when the value of penalty term 
is decreased. The SVDD cannot ignore such noisy sample by 
changing the value of penalty term C. 

This problem occurs when the value of   is not small 
enough. Choosing a small value for   can remove the 
mentioned problem of kernel SVDD but may produce a very 
tight decision boundary which may cause to occur the over-
fit problem (see Figure 7).  

 

B. Example 2. 

Figure 8-11 plots the problem of kernel SVDD for the 
second training set. One of the training samples plotted in 
each of these figures is far from the other samples and may 
be a noisy sample. Again, by decreasing the value of penalty 
term, the kernel ESVDD could ignore such noisy sample, 
properly (see Figure 9). But, the boundary of kernel SVDD 
either has ignored some other training samples too or has 
contained the area between the noisy training sample and the 
other samples when the value of penalty term is decreased. 
The SVDD cannot ignore such noisy sample by changing the 
value of penalty term C. 

 
Figure 3. Description of data for 6.0,20  C  
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Figure 4. Description of data for 5.0,20  C   

 

 
Figure 5. Description of data for 4.0,20  C  

 

 
Figure 6. Description of data for 3.0,20  C  

 
Figure 7. Description of data for 2.0,5.1  C  

 

 
Figure 8. Description of data for 55.0,50  C  

 

 
Figure 9. Description of data for 45.0,50  C   
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Figure 10. Description of data for 35.0,50  C  

 
Figure 11. Description of data for 25.0,50  C  

V. CONCLUSION 

In this paper, we proposed an extended SVDD (ESVDD) 
which describes data by using a hyper-ellipse. We extended 
it in high dimensional feature space, too.  

Clearly, ESVDD can describe data better than SVDD in 
the input space. If samples of a dataset have been distributed 
normally (with a Gaussian distribution), then ESVDD in the 
input space can describe it better than SVDD in the input 
space which uses a hyper-sphere, and needn’t use the kernel 
SVDD for data description. Using the kernel SVDD or 
kernel ESVDD can cause to obtain many support vectors and 
to increase testing time.  

The formulation of kernel SVDD/ESVDD contains a 
penalty term C which controls the tradeoff between the 
volume of hyper-sphere/hyper-ellipse and the training errors. 
We showed that the kernel ESVDD could control this 
tradeoff better than the kernel SVDD. 

APPENDIX A 

Theorem 1.  The program (2) is convex. 
 

Proof. The cost function this program and the second set of 
their constraints are linear and therefore are convex. Thus, to 
prove the convexity of this program it suffices to prove the 
convexity of the first set of its constraints [9]. Let .  be a 

vector norm. For each pyx ,  and for each  1,0 , we 
have 

      yxyxyx   111 . 

Therefore, .  is convex. Thus, we conclude that the 

second set of the constraints of the program (2) are convex. 

APPENDIX B 

Theorem 2. Consider the program (3.2). Each focuses of the 
objective hyper-ellipse can be stated as follows 
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where jjj  ,: are real scalars, and  njx j ,...,2,1  

are training samples in the input space or high dimensional 
feature space. 

 
Proof. If we have at least p linearly independent p-
dimensional training samples, each point of the p-
dimensional space can be expressed by using these training 
samples and the proof is complete. For example, each point x 
of a 2-dimensional space can be expressed by using two 
linearly independent points 1x  and 2x , namely by utilizing 
one of the following relations: 

2211 xAxAx  , 2211 xAxAx  , 2211 xAxAx   or 

2211 xAxAx  , where  0, 21  AA  or equivalently 

x can be expressed using the relation 



2

1j
jj xx  , where 

j  (See Figure 12). 

Now, suppose that we have pn   linearly independent 
training samples and some dependent training samples in the 
p-dimensional space. Then the objective hyper-ellipse is on a 
p-dimensional hyper-plane (Figure 13 and 14 show this fact 
for p=2 and p=3, respectively). Therefore, since each point 
of the n-dimensional space can be expressed using n linearly 
independent training samples, the proof is complete. 

 

REFERENCES 

[1] D. M. J. Tax and R. P. W. Duin, "Support vector domain description," 

Pattern Recognition Letters, vol. 20, pp. 1191-1199, 1999. 

[2] D. M. J. Tax and R. P. W. Duin, "Support Vector Data Description," 

Mach. Learn., vol. 54, pp. 45-66, 2004. 

[3] Y. Liu, S. Gururajan, B. Cukic, T. Menzies, and M. Napolitano, 

"Validating an Online Adaptive System Using SVDD," in 15th IEEE 

Int. Conf. on Tools with Artificial Intelligence, 2003. 

[4] R. Ji, D. Liu, M. Wu, and J. Liu, "The Application of SVDD in Gene 

Expression Data Clustering," in 2nd Int. Conf. on Bioinformatics and 

Biomedical Engineering, 2008, pp. 371-374. 

ICCKE2011, International Conference on Computer and Knowledge Engineering 
Oct. 13-14, 2011, Ferdowsi University of Mashhad, Mashhad, Iran

36



[5] X. Yu, D. DeMenthon, and D. Doermann, "Support Vector Data 

Description for Image Categorization From Internet Images," in 19th 

Int. Conf. on Pattern Recognition, 2008. 

[6] S. M. Guo, L. C. Chen, and J. S. H. Tsai, "A boundary method for 

outlier detection based on support vector domain description," 

Pattern Recognition, vol. 42, pp. 77-83, 2009. 

[7] H. W. Cho, "Data description and noise filtering based detection with 

its application and performance comparison," Expert Systems with 

Applications, vol. 36, pp. 434-441, 2009. 

[8] M. GhasemiGol, R. Monsefi, and H. Sadoghi Yazdi, "Ellipse Support 

Vector Data Description," Communications in Computer and 

Information Science, vol. 43, pp. 257-268, 2009. 

[9] M. S. Bazara, H. D. Sherali, and C. M. Shetty, Nonlinear 

programming, 3 ed.: John Willey & Sons, Inc., 2006. 
 

 
Figure 12. Dividing the 2-dimensional space by using two linearly independent points x1 and x2. 

 

 
Figure 13. (a) The objective ellipse (shown by a point) in the 2-dimensional space when we have only n=1 independent training sample;  

(b) The objective ellipse (shown by a solid segmented line) in the 2-dimensional space when we have n=1 independent training sample and some dependent 
training samples. 

 
Figure 14. a) The objective ellipse shown by solid segmented line in 3-dimensional space when we have only n=2 independent training sample;  

b) The objective ellipse in 3-dimensional space when we have n=2 independent training sample and some dependent training sample
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