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Abstract—The epsilon-SVR has two limitations. Firstly, the 
tube radius (epsilon) or noise rate along the ࢟-axis must be 
already specified. Secondly, this method is suitable for function 
estimation according to training data in which noise is 
independent of input ࢞  (is constant). To resolving these 
limitations, in approaches like ࢜-SVIRN, the tube radius or the 
radius of estimated interval function which can be variable 
with respect to input ࢞, is determined automatically. Then, for 
the test sample ࢞, the centre of interval function is reported as 
the most probable value of output according to training 
samples. This method is useful when the noise of data along the 
࢟ -axis has a symmetric distribution. In such situation, the 
centre of interval function and the most probable value of 
function are identical. In practice, the noise of data along the 
 ,axis may be from an asymmetric distribution. In this paper-࢟
we propose a novel approach which estimates simultaneously 
an interval function and a triangular fuzzy function.  The 
estimated interval function of our proposed method is similar 
to the estimated function of ࢜-SVIRN. The center of triangular 
fuzzy function is the most probable value of function according 
to training samples which is important when the noise of 
training data along the ࢟ -axis is from an asymmetric 
distribution.  

 

Keywords-  Fuzzy; Interval; Support vector machines 
(SVMs); Support vector regression machines. 

I.  INTRODUCTION 

Support vector machines [1], [2], [3] is a learning method 
used for patterns classification and function estimation. The 
support vector machines are used in various fields due to its 
simple structure and satisfactory performance. A version of 
SVM for regression analysis was initiated by [4], [2], [5]. 
This method is named -insensitive support vector regression 
or -SVR. In this method, for training data ሼሺݔ, ݅			,ሻݕ ൌ
1,2, … , ݊ሽ , the objective function ݂ሺ. ሻ ൌ ሻݔሺ்߮ݓ  ܾ  is 
estimated such that for each ݅, ݂ሺݔሻ െ ߝ  ݕ  ݂ሺݔሻ    ,ߝ
where w is a weight vector, b is a bias, and ߮ሺ. ሻ is a function 

that map the input space into a high-dimensional feature 
space. In other words, this method estimates an interval 
function or a tube with the center ݂ሺ. ሻ and the radius ߝ such 
that maximum possible amount of data are included. This 
method is faced with following two issues: (1) the tube 
radius (ߝ) or the noise rate along the ݕ-axis must be already 
specified. (2) The method is suitable for those training data 
in which noise is independent of input value	ݔ because the 
radius of tube is considered to be constant along the ݔ-axis. 

Several researchers have made great efforts to solve the 
mentioned problems of ߝ -SVR. For example, in support 
vector interval regression machine or SVIRNs, [6] the lower 
and upper bound of the tube is determined automatically 
using two independent RBF networks. By using this method, 
there is no need to have a priori knowledge about the noise 
rate along the ݕ-axis. In addition, in this method, the tube 
size along ݔ -axis can be variable which is suitable for 
situation that the noise along the ݕ-axis is dependent on input 
value	ݔ. The initial structure of these two RBF networks is 
formed using ߝ -SVR approach, and the back propagation 
method is employed for adjusting the RBF networks.  
Another method to solve the problems of ߝ -SVR was 
proposed by [7]. The method is called support vector interval 
regression machine or SVIRM. In this method, the upper and 
lower bound of the tube are gotten simultaneously based on 
combining the possibility estimation formulation integrating 
the property of central tendency with the ߝ-SVR approach. 
The proposed approach is robust against outliers’ impact on 
the resulting interval regression models. The SVIRM is 
theoretically simpler than SVIRNs.  Finally, the ݒ-SVIRN 
method was proposed by [8]. This approach is faster and 
simpler than two previous introduced methods.  

In each of the four mentioned methods, for the test 
sample ݔ, the centre of tube or estimated interval function is 
reported as the most probable value of output according to 
training samples. This method is useful when the noise along 
the ݕ-axis is from a symmetric distribution (e.g. Uniform or 
Gaussian distribution). In such situation, the centre of 

ICCKE2011, International Conference on Computer and Knowledge Engineering 
Oct. 13-14, 2011, Ferdowsi University of Mashhad, Mashhad, Iran

49



function and the most probable value of function are 
identical. In practice, the noise of data along the ݕ-axis may 
be from an asymmetric distribution. In this paper, we 
propose a novel approach which estimates simultaneously an 
interval function and a triangular fuzzy function.  The 
estimated interval function of our proposed method is similar 
to the estimated function of ݒ -SVIRN. The center of 
triangular fuzzy function is the most probable value of 
function according to training samples which is important 
when the noise of training data along the ݕ-axis is from an 
asymmetric distribution. 

II. DEFINITIONS 

A. Interval value 

Definition 1- interval value is a normalized and 
continuous fuzzy set whose elements have equal degrees of 
membership [9]. Let ݔ ൌ ሾܽ, ܾሿ  be an interval value. This 
interval value can be represented by ሺ݉, ܿሻ  in which 
݉ ൌ

ା

ଶ
 is center of interval and ܿ ൌ

ି

ଶ
 is radius of 

interval. 

B. Basic operators on intervals 

Theorem 1- Let ݔ ൌ ሺ݉, ܿሻ  and ݕ ൌ ሺ݊, ݀ሻ  be two 
interval value and ݏ  be a scalar [9]. Based on extension 
principle [10], we have: 

ݔ  ݕ ൌ ሺ݉  ݊, ܿ  ݀ሻ, 
ݔ െ ݕ ൌ ሺ݉ െ ݊, ܿ  ݀ሻ, 

ݔݏ ൌ ሺ݉ݏ,  .ሻܿ|ݏ|

C. Triangular fuzzy number 

Definition 2- The fuzzy number ݔ  with the following 
membership function 

ሻݔ௫ሺߤ ൌ

ە
ۖ
۔

ۖ
ۓ
ݔ െ ݈
݅ െ ݈

݈ ൏ ݔ  ݅,

ݎ െ ݔ
ݎ െ ݅

݅ ൏ ݔ ൏ ,ݎ

0 ,݁ݏ݅ݓݎ݄݁ݐ

 

 
is called triangular fuzzy number (TFN) denoted by 
ሺ݅, ݈, ሻ்ிேݎ  in which ݅  , ݈  , and ݎ   are called  center,  left 
spread, and right spread of TFN [11]. 

D. Basic operators on Triangular fuzzy numbers 

Theorem 2- Let ݔ ൌ ሺ݅, ݈, ݕ ሻ்ிே andݎ ൌ ሺ݆,݉, ݊ሻ்ிே be 
two TFNs and ݏ be a scalar. Based on extension principle 
[10], we have: 

 
ݔ  ݕ ൌ ሺ݅  ݆, ݈  ݉, ݎ  ݊ሻ்ிே, 
ݔ െ ݕ ൌ ሺ݅ െ ݆, ݈  ݊, ݎ  ݉ሻ்ிே, 

ݔݏ ൌ ൜
ሺ݅ݏ, ,݈ݏ ݏ			ሻ்ிேݎݏ  0,
ሺ݅ݏ, ,ݎݏ ݏ			ሻ்ிே݈ݏ ൏ 0.

 

 

III. ݒ-SVIRN APPROACH 

In this model, the objective is to find two functions ݂ሺ. ሻ 
and ݃ሺ. ሻ or interval function ሚ݂ሺݔሻ ൌ ሾ݂ሺݔሻ െ ݃ሺݔሻ, ݂ሺݔሻ 

݃ሺݔሻሿ ൌ ൫݂ሺݔሻ, ݃ሺݔሻ൯, so that following condition is met: 	
݂ሺݔሻ െ ݃ሺݔሻ  ݕ  ݂ሺݔሻ  ݃ሺݔሻ,			݅ ൌ 1,2, … , ݊. 
To obtain this objective, function ሚ݂ሺݔሻ  is defined as 

follows: 
ሚ݂ሺݔሻ ൌ ሻݔ்߮ሺݓ  ෨ܾ, 

where  ݓ ൌ ሺݓଵ, ,ଶݓ … ሻ்ݓ,  and ෨ܾ  are weight vector and 
bias term, respectively.  Here, ݓ ൌ ሺݓ, ܿሻ and ෨ܾ ൌ ሺܾ, ݀ሻ 
are considered to be interval variables where ݓ is the center 
and ܿ is the radius of  ݓ , and ܾ is the center and ݀ is the 
radius of  ෨ܾ. Based on interval arithmetic, the ሚ݂ሺݔሻ can be 
expressed as ሚ݂ሺݔሻ ൌ ሺ்߮ݓሺݔሻ  ܾ, ்ܿ߮ሺ|ݔ|ሻ  ݀ሻ 
where ݓ	 ൌ ሺݓଵ, ,ଶݓ … ሻ்ݓ, , ൌ ሺܿଵ, ܿଶ, … , ܿሻ்  , and 
|ݔ| ൌ ሺ|ݔଵ|, ,|ଶݔ| … , |ሻ்ݔ| . In other words, ݂ሺݔሻ ൌ
ሻݔሺ்߮ݓ  ܾ and	݃ሺݔሻ ൌ ்ܿ߮ሺ|ݔ|ሻ  ݀. Therefore, the ሚ݂ሺݔሻ 
can be written as follows:  

ሚ݂ሺݔሻ ൌ ሾ்߮ݓሺݔሻ  ܾ െ ሺ்ܿ߮ሺ|ݔ|ሻ  ݀ሻ, ሻݔሺ்߮ݓ  ܾ 
ሺ்ܿ߮ሺ|ݔ|ሻ  ݀ሻሿ. 

Consequently, similar to ߝ -SVR model, the following 
model is defined as: 

Min
௪,,క,క

1
2
ଶ‖ݓ‖  ܥ ൭ݒ ൬

1
2
‖ܿ‖ଶ  ݀൰ 

1
݊
ሺߦ  መሻߦ



ୀଵ

൱

subject	to	

ە
۔

ۓ
ݕ െ ሼሺ்߮ݓሺݔሻ  ܾሻ  ሺ்ܿ߮ሺ|ݔ|ሻ  ݀ሻሽ  ,ߦ
ሼሺ்߮ݓሺݔሻ  ܾሻ െ ሺ்ܿ߮ሺ|ݔ|ሻ  ݀ሻሽ െ ݕ  ,መߦ
,ߦ መߦ  0	,			݅ ൌ 1,2, . . . , ݊; 																																										ሺ1ሻ




where ߦ ൌ ሺߦଵ, ,ଶߦ … , ሻ்ߦ መߦ , ൌ ሺߦመଵ, ,መଶߦ … , መሻ்ߦ , and ܥ  is a 
penalty term. 

The constraints of above problem imply that outliers can 
lie outside the tube. The penalty term helps to determine 
margin size and number of samples outside the tube. The ݒ 
parameter allows at most a ݒ-percent of the data lie outside 
the tube. The dual of problem (1) can be formulated as 
follows: 

max
ఋ,ఋ

൫ߜ െ ݕመ൯ߜ



ୀଵ

െ
1
2
൫ߜ െ ߜመ൯൫ߜ െ ,ݔ൫ܭመ൯ߜ ൯ݔ



ୀଵ



ୀଵ

െ
1
ݒܥ2

൫ߜ  ߜመ൯൫ߜ  ,|ݔ|൫ܭመ൯ߜ หݔห൯



ୀଵ



ୀଵ

subject	to	

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ߜ൫ۓ െ መ൯ߜ ൌ 0



ୀଵ

;	

൫ߜ  መ൯ߜ ൌ ݒܥ



ୀଵ

;	

0  ߜ 
ܥ
݊
,			݅ ൌ 1,2, … , ݊;

0  መߜ 
ܥ
݊
,			݅ ൌ 1,2, … , ݊;

																															ሺ2ሻ

 

where  ߜ ൌ ሺߜଵ, ,ଶߜ … , ሻ்ߜ , መߜ	 ൌ ሺߜመଵ, ,መଶߜ … , መሻ்ߜ , ߛ	 ൌ
ሺߛଵ, ,ଶߛ … , ሻ்ߛ , and ߛො ൌ ሺߛොଵ, ,ොଶߛ … , ොሻ்ߛ  in which  ߛො  ,	ߛ , 
መߜ , and ߜ  ∀  ݅  are Lagrange multipliers. According to the 
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optimality conditions of problem (1), for each ݅  and ݆  that 
,ߜ መߜ ∈ ሺ0,  :ሻ, we have݊/ܥ

ܾ ൌ െ
1
2
൫்߮ݓሺݔሻ  ൯ݔ൫்߮ݓ  ்ܿ߮ሺ|ݔ|ሻ െ ்ܿ߮൫หݔห൯

െ ݕ െ  ሺ3ሻ																																								൯,ݕ

݀ ൌ െ
1
2
൫்߮ݓሺݔሻ െ ൯ݔ൫்߮ݓ  ்ܿ߮ሺ|ݔ|ሻ  ்ܿ߮൫หݔห൯

െ ݕ   ሺ4ሻ																																									൯.ݕ
Therefore, the lower, center, and upper bounds of the 

interval function ሚ݂ሺݔሻ are as follows, respectively: 
݂ሺݔሻ െ ݃ሺݔሻ ൌ ൫∑ ൫ߜ െ ,ݔሺܭመ൯ߜ ሻݔ


ୀଵ  ܾ൯ െ

ቀ
ଵ

௩
∑ ൫ߜ  ,ݔሺܭመ൯ߜ |ሻݔ|

ୀଵ  ݀ቁ,  

݂ሺݔሻ ൌ ൫∑ ൫ߜ െ ,ݔሺܭመ൯ߜ ሻݔ

ୀଵ  ܾ൯,  

݂ሺݔሻ  ݃ሺݔሻ ൌ ൫∑ ൫ߜ െ ,ݔሺܭመ൯ߜ ሻݔ

ୀଵ  ܾ൯ 

ቀ
ଵ

௩
∑ ൫ߜ  ,ݔሺܭመ൯ߜ |ሻݔ|

ୀଵ  ݀ቁ.  

In fact, the center and radius of interval function ሚ݂ሺݔሻ are 
identified as ݂ሺݔሻ ൌ ൫∑ ൫ߜ െ ,ݔሺܭመ൯ߜ ሻݔ


ୀଵ  ܾ൯  and 

݃ሺݔሻ ൌ ቀ
ଵ

௩
∑ ൫ߜ  ,ݔሺܭመ൯ߜ |ሻݔ|

ୀଵ  ݀ቁ, respectively. 

IV. PROPOSED MODEL 

The most probable value of output according to training 
samples is equal to the center of interval function (which has 
been estimated by ݒ-SVIRN), when the noise along the ݕ-
axis is from a symmetric distribution (e.g. Uniform or 
Gaussian distribution). However, the noise along the ݕ-axis 
may be from an asymmetric distribution. In such situation, 
the center of interval function is not equal to the most 
probable value of output. The paper then proposes a novel 
approach to find both the center of interval function and the 
most probable value of output. According to our approach, 
the upper, center, and lower bound of the interval function 
and a triangular fuzzy function are obtained, simultaneously.  
The support of triangular fuzzy function is equal to the 
support of interval function. Beside, the center of triangular 
fuzzy function shows the most probable value of interval 
output according to training data. In this method, the 
objective is to find three functions i.e. ݂ሺݔሻ, ݃ሺݔሻ, and ݄ሺݔሻ 
such that ݂ሺݔሻ െ ݃ሺݔሻ  ݕ  ݂ሺݔሻ  ݄ሺݔሻ,			݅ ൌ
1,2, … , ݊. To achieve this goal, function ሚ݂ሺݔሻ is defined as 
follows: 

ሚ݂ሺݔሻ ൌ ሻݔ்߮ሺݓ  ෨ܾ 
where ݓ ൌ ሺݓଵ, ,ଶݓ … ሻ்ݓ,  is weight vector and ෨ܾ  is bias 
rate. Meanwhile, ݓ ൌ ሺݓ, ݈, ሻ்ிேݎ  and ෨ܾ ൌ ሺܾ, ݀, ݁ሻ்ிே 
are considered as triangular fuzzy numbers where ݓ  is 
center, ݈ is left spread, and ݎ is right spread of ݓ. Similarly, 
ܾ  is center, ݀  is left spread, and ݁  is right spread of ෨ܾ . 
Assuming ݔ  0, if we use kernel functions like Gaussian 
kernel function, we have ߮ሺݔሻ  0  [12]. Hence, ሚ݂ሺݔሻ ൌ
ሺ்߮ݓሺݔሻ  ܾ, ்݈߮ሺݔሻ  ݀, ሻݔሺ்߮ݎ  ݁ሻ்ிே  where ݓ ൌ
ሺݓଵ, ,ଶݓ … ሻ்ݓ, , ݈ ൌ ሺ݈ଵ, ݈ଶ, … , ݈ሻ் , and ݎ ൌ
ሺݎଵ, ,ଶݎ … , ሻ்ݎ . In other words, ݂ሺݔሻ ൌ ሻݔሺ்߮ݓ  ܾ , 
݃ሺݔሻ ൌ ்݈߮ሺݔሻ  ݀ , and ݄ሺݔሻ ൌ ሻݔሺ்߮ݎ  ݁ . Therefore, 
similar to previous model, the following model is defined: 

Min
௪,,క

1
2
ଶ‖ݓ‖  ܥ

ۉ

ۈ
ۇ
ݒ ൬
1
2
‖݈‖ଶ  ݀൰  ݒ ൬

1
2
ଶ‖ݎ‖  ݁൰


1
݊
ߦ

ସ

ୀଵ



ୀଵ ی

ۋ
ۊ

subject	to	

ە
ۖۖ
۔

ۖۖ
ۓ
ݕ െ ሼሺ்߮ݓሺݔሻ  ܾሻ  ሺ்߮ݎሺݔሻ  ݀ሻሽ  ,	ଵߦ
ሼሺ்߮ݓሺݔሻ  ܾሻ െ ሺ்݈߮ሺݔሻ  ݁ሻሽ െ ݕ  			,	ଶߦ
ݕ െ ሺ்߮ݓሺݔሻ  ܾሻ  ݅			,	ଷߦ ൌ 1,2, … , ݊;
ሺ்߮ݓሺݔሻ  ܾሻ െ ݕ  ݅			,	ସߦ ൌ 1,2, … , ݊;
ߦ  0	,			݅ ൌ 1,2, … , ݊; ݆ ൌ 1,2,3,4;

												ሺ5ሻ

				

 

The Lagrange function of the problem (5) is as follows: 
,ݓሺܮ ܾ, ݈, ݀, ,ݎ ݁, ,ߦ ,ߜ ሻߛ ൌ 

ଵ

ଶ
ଶ‖ݓ‖  ܥ ቀݒ ቀ

ଵ

ଶ
‖݈‖ଶ  ݀ቁ  ݒ ቀ

ଵ

ଶ
ଶ‖ݎ‖  ݁ቁ 

ଵ


∑ ∑ ߦ


ୀଵ


ୀଵ ቁ  ∑ ݕଵሺߜ െ ሺ்߮ݓሺݔሻ  ܾሻ െ

ୀଵ

ሺ்߮ݎሺݔሻ  ݀ሻ െ ଵሻߦ  ∑ ሻݔሺ்߮ݓଶ൫ሺߜ  ܾሻ െ
ୀଵ

ሺ்݈߮ሺݔሻ  ݁ሻ െ ݕ െ ଶ൯ߦ  ∑ ݕଷሺߜ െ ሺ்߮ݓሺݔሻ 

ୀଵ

ܾሻ െ ଷሻߦ  ∑ ሻݔሺ்߮ݓସ൫ሺߜ  ܾሻ െ ݕ െ ସ൯ߦ

ୀଵ െ

∑ ∑ ߦߛ
ସ
ୀଵ ,

ୀଵ 																																																									ሺ6ሻ  
where ߛ  and ߜ  ∀ ݅, ݆ are the Lagrange multipliers. From 
the optimality conditions of program (5), we have: 

(7) 
డሺ௪,,,ௗ,,,క,ఋ,ఊሻ

డ௪
ൌ 0 → ݓ ൌ ∑ ሺߜଵ െ ଶߜ 


ୀଵ

ଷߜ െ ሻݔସሻ߮ሺߜ ;  
(8) 

డሺ௪,,,ௗ,,,క,ఋ,ఊሻ

డ
ൌ 0 → ݎ ൌ

ଵ

௩
∑ ሻݔଵ߮ሺߜ

ୀଵ ;  

(9) 
డሺ௪,,,ௗ,,,క,ఋ,ఊሻ

డ
ൌ 0 → ݈ ൌ

ଵ

௩
∑ ሻݔଶ߮ሺߜ

ୀଵ ;  

(10) 
డሺ௪,,,ௗ,,,క,ఋ,ఊሻ

డ
ൌ 0 → ∑ ሺߜଵ െ ଶߜ  ଷߜ െ


ୀଵ

ସሻߜ ൌ 0 ;  
(11) 

డሺ௪,,,ௗ,,,క,ఋ,ఊሻ

డௗ
ൌ 0 →		∑ ଵߜ ൌ ݒܥ

ୀଵ ;  

(12) 
డሺ௪,,,ௗ,,,క,ఋ,ఊሻ

డ
ൌ 0 → 		∑ ଶߜ ൌ ݒܥ

ୀଵ ;  

(13) 
డሺ௪,,,ௗ,,,క,ఋ,ఊሻ

డకೕ
ൌ 0 → ߜ ൌ




െ ݅				,	ߛ ൌ

1,2, … , ݊; ݆ ൌ 1,2,3,4;  

(14) 
ݕ െ ሼሺ்߮ݓሺݔሻ  ܾሻ  ሺ்߮ݎሺݔሻ  ݀ሻሽ  ଵߦ ,

݅ ൌ 1,2, … , ݊;  

(15) 
ሼሺ்߮ݓሺݔሻ  ܾሻ െ ሺ்݈߮ሺݔሻ  ݁ሻሽ െ ݕ  ଶߦ ,

݅ ൌ 1,2, , … , ݊;  
ݕ (16) െ ሺ்߮ݓሺݔሻ  ܾሻ  ,	ଷߦ ݅ ൌ 1,2, … , ݊;  

(17) ሺ்߮ݓሺݔሻ  ܾሻ െ ݕ  ,	ସߦ ݅ ൌ 1,2, … , ݊;  

(18) 
ݕଵሺߜ െ ሺ்߮ݓሺݔሻ  ܾሻ െ ሺ்߮ݎሺݔሻ  ݀ሻ െ

ଵሻߦ ൌ 0, ݅ ൌ 1,2, … , ݊;  

(19) 
ሻݔሺ்߮ݓଶ൫ሺߜ  ܾሻ െ ሺ்݈߮ሺݔሻ  ݁ሻ െ ݕ െ

ଶ൯ߦ ൌ 0, ݅ ൌ 1,2, … , ݊;  

(20) 
ݕଷሺߜ െ ሺ்߮ݓሺݔሻ  ܾሻ െ ଷሻߦ ൌ 0, ݅ ൌ

1,2, … , ݊;  

(21) 
ሻݔሺ்߮ݓସ൫ሺߜ  ܾሻ െ ݕ െ ସ൯ߦ ൌ 0, ݅ ൌ

1,2, … , ݊;  
ߦߛ (22) ൌ 0, ݅ ൌ 1,2, … , ݊; ݆ ൌ 1,2,3,4;  
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,ߦ (23) ,ߜ ߛ  0, ݅ ൌ 1,2, … , ݊; ݆ ൌ 1,2,3,4.  
 
With respect to (13) and γ୧୨  0, we have: 

(24) 0  ߜ 



,					݅ ൌ 1,2, … , ݊; ݆ ൌ 1,2,3,4.  

Substituting (7)-(13), (22), and (24) into the Lagrange 
function, we obtain the dual of problem (5) as follows: 

max
ఋ

ሺߜଵ െ ଶߜ  ଷߜ െ ݕସሻߜ



ୀଵ

െ
1
2


ሺߜଵ െ ଶߜ  ଷߜ െ ସሻߜ ቆ
ଵߜ െ ଶߜ
ߜଷ െ ସߜ

ቇ

,ݔሺܭ ሻݔ



ୀଵ



ୀଵ

െ
1
ݒܥ2

൫ߜଵߜଵ  ,ݔሺܭଶ൯ߜଶߜ ሻݔ



ୀଵ



ୀଵ

subject	to	

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ଵߜሺۓ െ ଶߜ  ଷߜ െ ସሻߜ ൌ 0



ୀଵ

;	

ߜଵ ൌ ;ݒܥ



ୀଵ

ߜଶ ൌ ;ݒܥ



ୀଵ

0  ߜ 
ܥ
݊
,			݅ ൌ 1,… , ݊; ݆ ൌ 1,2, ,3,4;

 

Solving the above quadratic programming problem, we 
find the optimal value of Lagrange multipliers. With respect 
to (18), if ߜଵ  0  then ݕ െ ሺ்߮ݓሺݔሻ  ܾሻ ൌ ሺ்߮ݎሺݔሻ 
݀ሻ  ଵߜ ଵ. Regarding (13), ifߦ ൏




 then ߛଵ	  0; therefore, 

with respect to (22), ߦଵ ൌ 0.  
Hence, if 0 ൏ ଵߜ ൏




 then 

(25)ܾ  ݀ ൌ ݕ െ ሻݔሺ்߮ݓ െ   .ሻݔሺ்߮ݎ
With respect to (19), if ߜଶ  0  then ሺ்߮ݓሺݔሻ  ܾሻ െ

ݕ ൌ ሺ்݈߮ሺݔሻ  ݁ሻ  ଶߦ . Furthermore, regarding (13) if 
ଶߜ ൏




 then ߛଶ	  0; therefore, with respect to (22), ߦଶ ൌ

0. Hence, if 0 ൏ ଶߜ ൏



 then: 

(26)ܾ െ ݁ ൌ ݕ െ ሻݔሺ்߮ݓ  ்݈߮ሺݔሻ.  
With respect to (20), if ߜଷ  0  then ݕ	 െ ሺ்߮ݓሺݔሻ 

ܾሻ ൌ ଷߦ . In addition, regarding (13), if ߜଷ ൏



  then  

	ଷߛ  0; therefore, with respect to (22),	ߦଷ ൌ 0. Hence, if 
0 ൏ ଷߜ ൏




 then: 

(27)ܾ ൌ ݕ െ   .ሻݔሺ்߮ݓ
Similarly, if  0 ൏ ସߜ ൏




 then:  

 (28)ܾ ൌ ሻݔሺ்߮ݓ െ   .ݕ
Hence, the upper bound of triangular fuzzy function ሚ݂ሺݔሻ 

is equal to: 

 
(29) 

ሺ்߮ݓሺݔሻ  ܾሻ  ሺ்߮ݎሺݔሻ  ݀ሻ ൌ
ሺ∑ ሺߜଵ െ ଶߜ  ଷߜ െ ,ݔሺܭସሻߜ ሻݔ  ܾ

ୀଵ ሻ 
ቀ
ଵ

௩
∑ ,ݔሺܭଷߜ ሻݔ

ୀଵ  ݀ቁ,  

where amount of ܾ  ݀  is obtained using (25). The lower 
bound of triangular fuzzy function ሚ݂ሺݔሻ is equal to: 

 
(30) 

ሺ்߮ݓሺݔሻ  ܾሻ െ ሺ்݈߮ሺݔሻ  ݁ሻ ൌ
ሺ∑ ሺߜଵ െ ଶߜ  ଷߜ െ ,ݔሺܭସሻߜ ሻݔ  ܾ

ୀଵ ሻ െ
ቀ
ଵ

௩
∑ ,ݔሺܭସߜ ሻݔ

ୀଵ  ݁ቁ,  

where amount of  ܾ െ ݁ is obtained using (26). The center of 
triangular fuzzy function ሚ݂ሺݔሻ is equal to: 

(31)ሺ்߮ݓሺݔሻ  ܾሻ 
൫ఝሺ௫ሻାௗ൯ି൫

ఝሺ௫ሻା൯

ଶ
,  

and the most probable function (peak of triangular fuzzy 
function) is equal to: 

 
(32) 

ሻݔሺ்߮ݓ  ܾ ൌ ∑ ሺߜଵ െ ଶߜ  ଷߜ െ

ୀଵ

,ݔሺܭସሻߜ ሻݔ  ܾ,
where ܾ can be calculated by (27) or (28). In fact, it can be 
stated that we obtained an interval function and a triangular 
fuzzy function. The support of triangular fuzzy function is 
equal to the support of interval function. Eq. (31) shows peak 
of triangular fuzzy function whereas (32) represents the 
center of interval function. 

V. EXPERIMENT 

In this section, we use the training data as used in [6], [7], 
[8] to verify the performance of our novel approach. The 
training data are generated by following equations: 
ݕ ൌ 0.2 sinሺ2ݔߨሻ  ݔ0.2

ଶ  0.3  ሺ0.1ݔ
ଶ  0.05ሻ݁,  

ݔ ൌ 0.02ሺ݇ െ 1ሻ,			݇ ൌ 1,2, … ,21,  
where noise ݁ is  a real number randomly generated in the 
interval ሾെ1,1ሿ. For our experiment, the parameters ݒ and ܥ 
were chosen 0.3 and 100 respectively. Two parameter values 
except ߪ  are similar for both models based on ݒ-SVIRN and 
our novel approach. Figure 1 shows the results of the 
experiment. From Figure 1 we recognize that our proposed 
method successfully could find not only the upper, center, 
and lower bounds of interval function but also the most 
probable output according to training data. 
 

VI. CONCLUSION 

In this paper, we proposed a novel approach which 
estimates simultaneously an interval function and a 
triangular fuzzy function.  Previous works estimate only an 
interval function. The estimated interval function of our 
proposed method is similar to the estimated interval function 
of recently proposed work ݒ-SVIRN. In ݒ-SVIRN, for the 
test sample ݔ, the centre of interval function is reported as 
the most probable value of output according to training 
samples. This method is useful when the noise of data along 
the ݕ-axis has a symmetric distribution. In such situation, the 
centre of interval function and the most probable value of 
function are identical. The center of triangular fuzzy function 
obtained by using our proposed method is the most probable 
value of function according to training samples which is 
important for us when the noise of training data along the ݕ-
axis is from an asymmetric distribution. 
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Figure 1.  Function estimation by using (A) our proposed method and (B) ݒ-SVIRN, for ߪ ൌ ߪ ,0.05 ൌ 0.075, and ߪ ൌ 0.1 respectively. 
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