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Abstract—In this paper, we incorporate the concept of 
fuzzy set theory into the support vector regression 
(SVR). In our proposed method, target outputs of 
training samples are considered to be fuzzy numbers 
and then, membership function of actual output 
(objective hyperplane in high dimensional feature space) 
is obtained.  

Two main properties of our proposed method are: (1) 
membership function of actual output can be obtained 
without pre-assumption on type of membership function 
of the bias term and the components of weight vector; 
(2) the membership function of target output can be 
each type of fuzzy number. 

Keywords-Fuzzy target output; Fuzzy weight; Fuzzy bias; 
Support vector regression (SVR). 

I. INTRODUCTION 
Regression analysis is a useful estimation method. This 

analysis is performed to evaluate the functional relationship 
between input (independent or explanatory) and output 
(dependent or response) variables, thus assuming that the 
difference between the observed and estimated dependent 
variables is due to random errors. Traditionally, the 
observations are assumed to be crisp.  

In many real-world applications, available information is 
often uncertain, imprecise, and incomplete and thus usually 
is represented by fuzzy sets or a generalization of interval 
data. For handling interval data, fuzzy regression analysis is 
an important tool and has been successfully applied in 
different applications such as market forecasting [1] and 
system identification [2]. Fuzzy regression, first developed 
by [3] in a linear system, is based on the extension principle. 
In the experiments that followed this pioneering effort, [4] 
used fuzzy input experimental data to build fuzzy regression 
models. A technique for linear least squares fitting of fuzzy 
variables was developed by [5, 6], giving the solution to an 
analog of the normal equation of classical least squares. A 
collection of relevant papers dealing with several approaches 
to fuzzy regression analysis can be found in [7]. In contrast 
to the fuzzy linear regression, there have been only a few 
articles on fuzzy nonlinear regression [8-16]. In this paper, 
we discuss multivariate fuzzy nonlinear regression by 
support vector machine. Support vector regression (SVR) 

[17-19] is used in the function estimation and time-series 
prediction applications.   

In [13], the concept of fuzzy set theory was incorporated 
into the SVR model. They proposed three models in their 
paper. In their first model, the bias term, the target output 𝑦𝑦𝑖𝑖 , 
and the components of input 𝑥𝑥𝑖𝑖 , were considered to be an 
especial type of fuzzy numbers, namely triangular fuzzy 
numbers. Pre-assumption on type of fuzzy target output and 
fuzzy input is a limitation and pre-assumption on type of the 
fuzzy bias term makes their model inaccurate. Indeed, 
membership function of the fuzzy bias term must be obtained 
according to fuzzy training data (input and target output). 
Moreover, the components of the weight vector, and the 
slack variables were considered to be crisp which is another 
limitation of this model. In their second model, the bias term 
were considered to be crisp. Thus, this model is also an 
especial case of the first model and has the limitations of the 
first model. Moreover, the first and the second models were 
solved only in the input space. Therefore, their model can be 
used only to estimate a linear function according to training 
data. In their third model, which was solved in high 
dimensional feature space, only the bias term and 
components of the weight vector were considered to be fuzzy 
numbers. In other words, the target output 𝑦𝑦𝑖𝑖  and the 
component of input 𝑥𝑥𝑖𝑖  were considered to be crisp. 

In [8], the concept of fuzzy set theory was also 
incorporated into the SVR model. In their proposed model, 
the bias term, the components of weight vector and the target 
output data 𝑦𝑦𝑖𝑖 , were considered to be triangular fuzzy 
numbers. Again, the pre-assumption on the type of fuzzy 
target output is a limitation and pre-assumption on type of 
the fuzzy bias term and the components of weight vector 
makes their model inaccurate.  

In our proposed method, the target output is considered 
to be an optional type of fuzzy number and the membership 
function of actual output (objective hyperplane in high 
dimensional feature space), the slack variables, the bias term 
and the components of weight vector are obtained based on 
Liu’s method [20]. 

Organization of this paper is as follows: In section 2, will 
be paid to some preliminaries and in section 3, our novel 
method will be explained. Section 4 shows experimental 
results. Finally, section 5 concludes the paper. 
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II. PRILIMINARIES 
Consider the following training set: 

{(𝑥𝑥𝑖𝑖 ,𝑦𝑦�𝑖𝑖), 𝑖𝑖 = 1, … ,𝑛𝑛}, 
where 𝑛𝑛 is the number of training samples. Formulation of 
SVR model is as follows: 

 

𝐽𝐽 =𝑚𝑚𝑚𝑚𝑚𝑚 1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑ (𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖)𝑛𝑛

𝑖𝑖=1

𝑠𝑠. 𝑡𝑡.�
𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝑏𝑏 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖  ,   𝑖𝑖 = 1, … ,𝑛𝑛;
𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖  ,   𝑖𝑖 = 1, … ,𝑛𝑛;
𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖 ≥ 0 ,   𝑖𝑖 = 1, … ,𝑛𝑛.

� (1) 

where 𝜉𝜉 = (𝜉𝜉1, … , 𝜉𝜉𝑛𝑛)𝑇𝑇; 𝜉𝜉 = (𝜉𝜉1, … , 𝜉𝜉𝑛𝑛)𝑇𝑇 ; ξi  and 𝜉𝜉𝑖𝑖  are slack 
variables of 𝑖𝑖-th training sample; 𝐶𝐶  is a penalty term, and 
𝑔𝑔(. ) is a mapping function that maps the input space to a 
high dimensional feature space. The constraints of this 
program allow a deviation between the target output 𝑦𝑦𝑖𝑖  and 
the value of the approximated function, 𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥) +
𝑏𝑏.  The slack variable 𝜉𝜉𝑖𝑖  is used for exceeding the output 
value by more than 𝜀𝜀 and 𝜉𝜉𝑖𝑖  for being more than 𝜀𝜀 below the 
output value. The penalty term 𝐶𝐶  determines the trade-off 
between the magnitude of the margin and the estimation 
error of training data.  
 

III. OUR PROPOSED METHOD 

A. Problem Definition 
Consider the following training set: 

 {(𝑥𝑥𝑖𝑖 ,𝑦𝑦�𝑖𝑖), 𝑖𝑖 = 1, … ,𝑛𝑛}. 
Suppose that the target outputs are approximately known and 
can be represented by fuzzy numbers 𝑦𝑦�𝑖𝑖  (𝑖𝑖 = 1, … ,𝑛𝑛). Let 
𝜇𝜇𝑦𝑦�𝑖𝑖  (𝑖𝑖 = 1, … . ,𝑛𝑛)  denote their membership functions. We 
have 
 𝑦𝑦�𝑖𝑖 = ��𝑦𝑦𝑖𝑖 , 𝜇𝜇𝑦𝑦�𝑖𝑖 �|𝑦𝑦𝑖𝑖𝜖𝜖𝜖𝜖(𝑦𝑦�𝑖𝑖) ��,   
where 𝑆𝑆(𝑦𝑦�𝑖𝑖) is the support of 𝑦𝑦�𝑖𝑖 . Formulation of SVR for 
such training data is as follows: 

 

𝐽𝐽 =𝑚𝑚𝑚𝑚𝑚𝑚 1
2
𝑤𝑤�𝑇𝑇𝑤𝑤� + 𝐶𝐶 ∑ (𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖)𝑛𝑛

𝑖𝑖=1

𝑠𝑠. 𝑡𝑡.�
𝑦𝑦�𝑖𝑖 − 𝑤𝑤�𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝑏𝑏� ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖 ,
𝑤𝑤�𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝑏𝑏� − 𝑦𝑦�𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖 ,
𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖 ≥ 0 ,   𝑖𝑖 = 1, … ,𝑛𝑛.

�  (2) 

where 𝑤𝑤�  is fuzzy weight vector; 𝑏𝑏�  is fuzzy bias and 𝜉𝜉𝑖𝑖  and 
𝜉𝜉𝑖𝑖(𝑖𝑖 = 1, … ,𝑛𝑛)  are fuzzy slack variables. Without loss of 
generality, 𝑦𝑦�𝑖𝑖  (𝑖𝑖 = 1, … ,𝑛𝑛)  are assumed to be fuzzy 
numbers. Based on the extension principle [21], we have 
 𝜇𝜇𝐽𝐽 (𝑗𝑗) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 𝑚𝑚𝑚𝑚𝑚𝑚�𝜇𝜇𝑦𝑦�𝑖𝑖(𝑦𝑦𝑖𝑖),∀𝑖𝑖|𝑗𝑗 = 𝐽𝐽( �𝑦𝑦)�, (3) 
where 𝐽𝐽(𝑦𝑦)  is the function of the program (1) and 𝑦𝑦 =
(𝑦𝑦1, … , 𝑦𝑦𝑛𝑛)𝑇𝑇  is its parameter. To drive 𝜇𝜇𝐽𝐽  using Eq. (3) is 
hardly possible. To find the membership function 𝜇𝜇𝐽𝐽 , it 
suffices to find the right shape function and left shape 
function of 𝜇𝜇𝐽𝐽 , which is equivalent to find the upper bound 
and the lower bound of objective function 𝐽𝐽 at each 𝛼𝛼-cut, 

named 𝐽𝐽𝛼𝛼𝑈𝑈  and 𝐽𝐽𝛼𝛼𝐿𝐿 , respectively [20]. These bounds can be 
determined from the following two-level mathematical 
programming models: 

 
𝐽𝐽𝛼𝛼𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑦𝑦

⎩
⎪
⎨

⎪
⎧𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤 ,𝑏𝑏 ,𝜉𝜉 ,𝜉𝜉�  1

2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑ (𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖)𝑛𝑛

𝑖𝑖=1

𝑠𝑠. 𝑡𝑡.�
𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝑏𝑏 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖 ,
𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖 ,
𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖 ≥ 0 ,   𝑖𝑖 = 1, … ,𝑛𝑛.

�
�

𝑠𝑠. 𝑡𝑡. (𝑦𝑦𝑖𝑖)𝛼𝛼𝐿𝐿 ≤ 𝑦𝑦𝑖𝑖 ≤ (𝑦𝑦𝑖𝑖)𝑈𝑈 ,   𝑖𝑖 = 1, … ,𝑛𝑛.

 (4) 

 

 
𝐽𝐽𝛼𝛼𝑈𝑈 =  𝑚𝑚𝑚𝑚𝑚𝑚

𝑦𝑦

⎩
⎪
⎨

⎪
⎧𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤 ,𝑏𝑏 ,𝜉𝜉 ,𝜉𝜉�  1

2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑ (𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖)𝑛𝑛

𝑖𝑖=1

𝑠𝑠. 𝑡𝑡.�
𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝑏𝑏 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖 ,
𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖 ,
𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖 ≥ 0 ,   𝑖𝑖 = 1, … ,𝑛𝑛.

�
�

𝑠𝑠. 𝑡𝑡. (𝑦𝑦𝑖𝑖)𝛼𝛼𝐿𝐿 ≤ 𝑦𝑦𝑖𝑖 ≤ (𝑦𝑦𝑖𝑖)𝛼𝛼𝑈𝑈 ,   𝑖𝑖 = 1, … ,𝑛𝑛.

 (5) 

 

B. Solving the Lower Bound Program 
The program (4) can be restated as follows: 

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤 ,𝑏𝑏 ,𝜉𝜉 ,𝜉𝜉�  1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑ �𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖�𝑛𝑛

𝑖𝑖=1

𝑠𝑠. 𝑡𝑡.

⎩
⎪
⎨

⎪
⎧𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝑏𝑏 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖  ,   𝑖𝑖 = 1, … ,𝑛𝑛;
𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖  ,   𝑖𝑖 = 1, … ,𝑛𝑛;
𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖 ≥ 0 ,   𝑖𝑖 = 1, … ,𝑛𝑛;
(𝑦𝑦𝑖𝑖)𝛼𝛼𝐿𝐿 ≤ 𝑦𝑦𝑖𝑖 ≤ (𝑦𝑦𝑖𝑖)𝛼𝛼𝑈𝑈 ,   𝑖𝑖 = 1, … ,𝑛𝑛.

� (6) 

The Lagrangian dual form of the program (6) is as 
follows:  

 
𝑚𝑚𝑚𝑚𝑚𝑚𝛿𝛿 ,𝛾𝛾 ,𝜃𝜃 ,𝛿𝛿� ,𝛾𝛾�,𝜃𝜃� 𝐿𝐿(𝛿𝛿, 𝛾𝛾,𝜃𝜃, 𝛿̂𝛿, 𝛾𝛾�,𝜃𝜃�)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝛿𝛿𝑖𝑖 , 𝛾𝛾𝑖𝑖 ,𝜃𝜃𝑖𝑖 , 𝛿̂𝛿𝑖𝑖 , 𝛾𝛾�𝑖𝑖 ,𝜃𝜃�𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, … ,𝑛𝑛,

  

where 𝛿𝛿 = (𝛿𝛿1, … , 𝛿𝛿𝑛𝑛)𝑇𝑇 , 𝛿̂𝛿 = (𝛿̂𝛿1, … , 𝛿̂𝛿𝑛𝑛)𝑇𝑇 , 𝛾𝛾 = (𝛾𝛾1, … , 𝛾𝛾𝑛𝑛)𝑇𝑇 , 
𝛾𝛾� = (𝛾𝛾�1, … , 𝛾𝛾�𝑛𝑛)𝑇𝑇 ,𝜃𝜃 = (𝜃𝜃1, … ,𝜃𝜃𝑛𝑛)𝑇𝑇 , 𝜃𝜃� = (𝜃𝜃�1, … , 𝜃𝜃�𝑛𝑛)𝑇𝑇  and 

 

𝐿𝐿�𝛿𝛿,𝛾𝛾,𝜃𝜃, 𝛿̂𝛿, 𝛾𝛾�,𝜃𝜃�� = 𝑖𝑖𝑖𝑖𝑖𝑖 �1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑ (𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖)𝑛𝑛

𝑖𝑖=1
�

− ∑ 𝛿𝛿𝑖𝑖𝑛𝑛
𝑖𝑖=1 �𝜀𝜀 + 𝜉𝑖𝑖 − 𝑦𝑦𝑖𝑖+𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝑏𝑏�

−∑ 𝛿̂𝛿𝑖𝑖𝑛𝑛
𝑖𝑖=1 �𝜀𝜀 + 𝜉𝜉𝑖𝑖 + 𝑦𝑦𝑖𝑖−𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝑏𝑏�

−∑ 𝛾𝛾𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝜉𝑖𝑖 − ∑ 𝛾𝛾�𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝜉𝜉𝑖𝑖
�−∑ 𝜃𝜃𝑖𝑖𝑛𝑛

𝑖𝑖=1 ((𝑦𝑦𝑖𝑖)𝛼𝛼𝑈𝑈 − 𝑦𝑦𝑖𝑖) − ∑ 𝜃𝜃�𝑖𝑖𝑛𝑛
𝑖𝑖=1 (𝑦𝑦𝑖𝑖 − (𝑦𝑦𝑖𝑖)𝛼𝛼𝐿𝐿 )�.

  

For the optimal solution, the following conditions are 
satisfied: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 → 𝑤𝑤 = ∑ (𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖)𝑔𝑔(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1 , (7) 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 →   ∑ (𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖) = 0𝑛𝑛
𝑖𝑖=1 , (8) 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜉𝜉𝑖𝑖

= 0 →  𝛿𝛿𝑖𝑖 = 𝐶𝐶 − 𝛾𝛾𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛,  (9) 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜉𝜉�𝑖𝑖

= 0 →  𝛿̂𝛿𝑖𝑖 = 𝐶𝐶 − 𝛾𝛾�𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛,  (10) 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

= 0 →  𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖 + 𝜃𝜃𝑖𝑖 − 𝜃𝜃�𝑖𝑖 = 0, 𝑖𝑖 = 1, … ,𝑛𝑛,  (11) 

 𝛿𝛿𝑖𝑖�𝜀𝜀 + 𝜉𝑖𝑖 − 𝑦𝑦𝑖𝑖+𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝑏𝑏� = 0,   𝑖𝑖 = 1, … ,𝑛𝑛, (12) 

 𝛿̂𝛿𝑖𝑖�𝜀𝜀 + 𝜉𝜉𝑖𝑖 + 𝑦𝑦𝑖𝑖−𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝑏𝑏� = 0,   𝑖𝑖 = 1, … ,𝑛𝑛,  (13) 
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 𝛾𝛾𝑖𝑖𝜉𝑖𝑖 = 0,   𝑖𝑖 = 1, … ,𝑛𝑛, (14) 

 𝛾𝛾�𝑖𝑖𝜉𝜉𝑖𝑖 = 0,   𝑖𝑖 = 1, … ,𝑛𝑛, (15) 
 𝜃𝜃𝑖𝑖((𝑦𝑦𝑖𝑖)𝑈𝑈 − 𝑦𝑦𝑖𝑖) = 0,   𝑖𝑖 = 1, … ,𝑛𝑛, (16) 
 𝜃𝜃�𝑖𝑖(𝑦𝑦𝑖𝑖 − (𝑦𝑦𝑖𝑖)𝛼𝛼𝐿𝐿 ) = 0,   𝑖𝑖 = 1, … ,𝑛𝑛, (17) 
 𝛿𝛿𝑖𝑖 , 𝛾𝛾𝑖𝑖 ,𝜃𝜃𝑖𝑖 , 𝛿̂𝛿𝑖𝑖 , 𝛾𝛾�𝑖𝑖 ,𝜃𝜃�𝑖𝑖 ≥ 0,   𝑖𝑖 = 1, … ,𝑛𝑛. (18) 

Using the above conditions, 𝐿𝐿(𝛿𝛿, 𝛾𝛾,𝜃𝜃, 𝛿̂𝛿, 𝛾𝛾�,𝜃𝜃�)  is 
transformed into  

 
∑ 𝜃𝜃�𝑖𝑖𝑛𝑛
𝑖𝑖=1 (𝑦𝑦𝑖𝑖)𝛼𝛼𝐿𝐿 − ∑ 𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖)𝛼𝛼𝑈𝑈𝑛𝑛

𝑖𝑖=1 − 𝜀𝜀∑ (𝛿̂𝛿𝑖𝑖 + 𝛿𝛿𝑖𝑖)𝑛𝑛
𝑖𝑖=1

− 1
2
∑ ∑ �𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖��𝛿𝛿𝑗𝑗 − 𝛿̂𝛿𝑗𝑗 �𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 )𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1 ,

   

where 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ) = 𝑔𝑔(𝑥𝑥𝑖𝑖)𝑇𝑇𝑔𝑔(𝑥𝑥𝑗𝑗 )  is a kernel function. Since 
𝛿𝛿𝑖𝑖 , 𝛾𝛾𝑖𝑖 ≥ 0, from Eq. (9) we have 0 ≤ 𝛿𝛿𝑖𝑖 ≤ 𝐶𝐶 . Also, since 
𝛿̂𝛿𝑖𝑖 , 𝛾𝛾�𝑖𝑖 ≥ 0, from Eq. (10) we have 0 ≤ 𝛿̂𝛿𝑖𝑖 ≤ 𝐶𝐶. Therefore, the 
Lagrangian dual form of the program (6) becomes as 
follows: 

 

𝑚𝑚𝑚𝑚𝑚𝑚𝛿𝛿 ,𝜃𝜃 ,𝛿𝛿� ,𝜃𝜃� ∑ 𝜃𝜃�𝑖𝑖𝑛𝑛
𝑖𝑖=1 (𝑦𝑦𝑖𝑖)𝛼𝛼𝐿𝐿 − ∑ 𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖)𝛼𝛼𝑈𝑈𝑛𝑛

𝑖𝑖=1

−𝜀𝜀 ∑ (𝛿̂𝛿𝑖𝑖 + 𝛿𝛿𝑖𝑖)𝑛𝑛
𝑖𝑖=1

− 1
2
∑ ∑ �𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖��𝛿𝛿𝑗𝑗 − 𝛿̂𝛿𝑗𝑗 �𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 )𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

𝑠𝑠. 𝑡𝑡.

⎩
⎪⎪
⎨

⎪⎪
⎧∑ (𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖) = 0𝑛𝑛

𝑖𝑖=1 ,
𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖 + 𝜃𝜃𝑖𝑖 − 𝜃𝜃�𝑖𝑖 = 0, 𝑖𝑖 = 1, … ,𝑛𝑛,

 

0 ≤ 𝛿𝛿𝑖𝑖 ≤ 𝐶𝐶,   𝑖𝑖 = 1, … ,𝑛𝑛,
0 ≤ 𝛿̂𝛿𝑖𝑖 ≤ 𝐶𝐶,   𝑖𝑖 = 1, … ,𝑛𝑛,
𝜃𝜃𝑖𝑖 ≥ 0,   𝑖𝑖 = 1, … ,𝑛𝑛,
𝜃𝜃�𝑖𝑖 ≥ 0,   𝑖𝑖 = 1, … ,𝑛𝑛,

�

  

which is a conventional quadratic program. From Eq. (12), if 
𝛿𝛿𝑖𝑖 > 0, 𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝑏𝑏 = 𝜀𝜀 + 𝜉𝜉𝑖𝑖 . From Eq. (9), if 𝛿𝛿𝑖𝑖 < 𝐶𝐶, 
𝛾𝛾𝑖𝑖 > 0 , and from Eq. (14), if 𝛾𝛾𝑖𝑖 > 0 , 𝜉𝜉𝑖𝑖 = 0.  Thus, if 
0 < 𝛿𝛿𝑖𝑖 < 𝐶𝐶,  
 𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝑏𝑏 = 𝜀𝜀, (19) 
where from Eq. (16), if 𝜃𝜃𝑖𝑖 > 0, 𝑦𝑦𝑖𝑖 = (𝑦𝑦𝑖𝑖)𝛼𝛼𝑈𝑈  and from Eq. (17) 
if 𝜃𝜃�𝑖𝑖 > 0, 𝑦𝑦𝑖𝑖 = (𝑦𝑦𝑖𝑖)𝛼𝛼𝐿𝐿 . 

Again, from Eq. (13), if 𝛿̂𝛿𝑖𝑖 > 0, −𝑦𝑦𝑖𝑖 + 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝑏𝑏 =
𝜀𝜀 + 𝜉𝜉𝑖𝑖 . From Eq. (10), if 𝛿̂𝛿𝑖𝑖 < 𝐶𝐶, 𝛾𝛾�𝑖𝑖 > 0, and from Eq. (15) 
if 𝛾𝛾�𝑖𝑖 > 0, 𝜉𝜉𝑖𝑖 = 0. Thus, if 0 < 𝛿̂𝛿𝑖𝑖 < 𝐶𝐶,  
 −𝑦𝑦𝑖𝑖 + 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝑏𝑏 = 𝜀𝜀. (20) 
where from Eq. (16), if 𝜃𝜃𝑖𝑖 > 0 , 𝑦𝑦𝑖𝑖 = (𝑦𝑦𝑖𝑖)𝛼𝛼𝑈𝑈  and from Eq. 
(17), if 𝜃𝜃�𝑖𝑖 > 0, 𝑦𝑦𝑖𝑖 = (𝑦𝑦𝑖𝑖)𝛼𝛼𝐿𝐿 . 

From Eq. (7), the approximated hyperplane or actual 
output is given by 

 
𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥) + 𝑏𝑏 = ∑ (𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖)𝑔𝑔(𝑥𝑥𝑖𝑖)𝑇𝑇𝑔𝑔(𝑥𝑥) + 𝑏𝑏𝑛𝑛

𝑖𝑖=1

= ∑ (𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖)𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) + 𝑏𝑏𝑛𝑛
𝑖𝑖=1 ,

  

where from Eq. (20) and Eq. (21) the bias satisfies 
𝑏𝑏 = (𝑦𝑦𝑖𝑖)𝑈𝑈 − 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝜀𝜀, for 0 < 𝛿𝛿𝑖𝑖 < 𝐶𝐶 and 𝜃𝜃𝑖𝑖 > 0,  (21) 
𝑏𝑏 = (𝑦𝑦𝑖𝑖)𝛼𝛼𝐿𝐿 − 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝜀𝜀, for 0 < 𝛿𝛿𝑖𝑖 < 𝐶𝐶 and 𝜃𝜃�𝑖𝑖 > 0,  (22) 
𝑏𝑏 = (𝑦𝑦𝑖𝑖)𝛼𝛼𝑈𝑈 − 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝜀𝜀, for 0 < 𝛿̂𝛿𝑖𝑖 < 𝐶𝐶 and 𝜃𝜃𝑖𝑖 > 0, (23) 
𝑏𝑏 = (𝑦𝑦𝑖𝑖)𝛼𝛼𝐿𝐿 − 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝜀𝜀, for 0 < 𝛿̂𝛿𝑖𝑖 < 𝐶𝐶 and 𝜃𝜃�𝑖𝑖 > 0. (24) 

In calculating bias, to avoid calculation errors, we 
average biases that satisfy Eq. (21)-(24).  

 

C. Solving the Upper Bound Program 
Consider the inner level of the upper bound program (5): 

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤 ,𝑏𝑏 ,𝜉𝜉 ,𝜉𝜉�  1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑ (𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖)𝑛𝑛

𝑖𝑖=1

𝑠𝑠. 𝑡𝑡.�
𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝑏𝑏 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖  ,
𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖  ,
𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖 ≥ 0 ,   𝑖𝑖 = 1, … ,𝑛𝑛.

�  (25) 

The Lagrangian dual form of the program (25) is as 
follows: 

 
𝑚𝑚𝑚𝑚𝑚𝑚𝛿𝛿 ,𝛾𝛾 ,𝛿𝛿� ,𝛾𝛾� 𝐿𝐿(𝛿𝛿, 𝛾𝛾, 𝛿̂𝛿, 𝛾𝛾�)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝛿𝛿𝑖𝑖 , 𝛾𝛾𝑖𝑖 , 𝛿̂𝛿𝑖𝑖 , 𝛾𝛾�𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, … ,𝑛𝑛,

 (26) 

where  

 

𝐿𝐿(𝛿𝛿, 𝛾𝛾, 𝛿̂𝛿, 𝛾𝛾�) = 𝑖𝑖𝑖𝑖𝑖𝑖 �1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑ (𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖)𝑛𝑛

𝑖𝑖=1
�

− ∑ 𝛿𝛿𝑖𝑖𝑛𝑛
𝑖𝑖=1 �𝜀𝜀 + 𝜉𝑖𝑖 − 𝑦𝑦𝑖𝑖+𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝑏𝑏�

−∑ 𝛿̂𝛿𝑖𝑖𝑛𝑛
𝑖𝑖=1 �𝜀𝜀 + 𝜉𝜉𝑖𝑖 + 𝑦𝑦𝑖𝑖−𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝑏𝑏�

�−∑ 𝛾𝛾𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝜉𝑖𝑖 − ∑ 𝛾𝛾�𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝜉𝜉𝑖𝑖�.

 (27) 

For the optimal solution, the following conditions are 
satisfied: 
 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0 → 𝑤𝑤 = ∑ (𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖)𝑔𝑔(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1 , (28) 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 →   ∑ (𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖) = 0𝑛𝑛
𝑖𝑖=1 , (29) 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜉𝜉𝑖𝑖

= 0 →  𝛿𝛿𝑖𝑖 = 𝐶𝐶 − 𝛾𝛾𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛,  (30) 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜉𝜉�𝑖𝑖

= 0 →  𝛿̂𝛿𝑖𝑖 = 𝐶𝐶 − 𝛾𝛾�𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛,   (31) 

 𝛿𝛿𝑖𝑖�𝜀𝜀 + 𝜉𝑖𝑖 − 𝑦𝑦𝑖𝑖+𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝑏𝑏� = 0,   𝑖𝑖 = 1, … ,𝑛𝑛, (32) 
 𝛿̂𝛿𝑖𝑖�𝜀𝜀 + 𝜉𝜉𝑖𝑖 + 𝑦𝑦𝑖𝑖−𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝑏𝑏� = 0,   𝑖𝑖 = 1, … ,𝑛𝑛, (33) 
 𝛾𝛾𝑖𝑖𝜉𝑖𝑖 = 0,   𝑖𝑖 = 1, … ,𝑛𝑛, (34) 
 𝛾𝛾�𝑖𝑖𝜉𝜉𝑖𝑖 = 0,   𝑖𝑖 = 1, … ,𝑛𝑛, (35) 
 𝛿𝛿𝑖𝑖 , 𝛾𝛾𝑖𝑖 , 𝛿̂𝛿𝑖𝑖 , 𝛾𝛾�𝑖𝑖 ≥ 0,   𝑖𝑖 = 1, … ,𝑛𝑛. (36) 

Using the above conditions, 𝐿𝐿(𝛿𝛿, 𝛾𝛾, 𝛿̂𝛿, 𝛾𝛾�) is transformed 
into  

 
∑ (𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖)𝑦𝑦𝑖𝑖 − 𝜀𝜀𝑛𝑛
𝑖𝑖=1 ∑ (𝛿̂𝛿𝑖𝑖 + 𝛿𝛿𝑖𝑖)𝑛𝑛

𝑖𝑖=1

− 1
2
∑ ∑ �𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖��𝛿𝛿𝑗𝑗 − 𝛿̂𝛿𝑗𝑗 �𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 )𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1 .

 (37) 

Since 𝛿𝛿𝑖𝑖 , 𝛾𝛾𝑖𝑖 ≥ 0 , from Eq. (30) we have 0 ≤ 𝛿𝛿𝑖𝑖 ≤ 𝐶𝐶 . 
Also, since 𝛿𝛿𝑖𝑖 , 𝛾𝛾�𝑖𝑖 ≥ 0, from Eq. (31) we have 0 ≤ 𝛿̂𝛿𝑖𝑖 ≤ 𝐶𝐶 . 
Thus, the Lagrangian dual form of the program (25) becomes 
as follows: 

 

𝑚𝑚𝑚𝑚𝑚𝑚𝛿𝛿 ,𝛿𝛿� ∑ (𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖)𝑦𝑦𝑖𝑖 − 𝜀𝜀𝑛𝑛
𝑖𝑖=1 ∑ (𝛿̂𝛿𝑖𝑖 + 𝛿𝛿𝑖𝑖)𝑛𝑛

𝑖𝑖=1

− 1
2
∑ ∑ �𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖��𝛿𝛿𝑗𝑗 − 𝛿̂𝛿𝑗𝑗 �𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 )𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

𝑠𝑠. 𝑡𝑡.�
∑ (𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖) = 0𝑛𝑛
𝑖𝑖=1 ; 

0 ≤ 𝛿𝛿𝑖𝑖 ≤ 𝐶𝐶,   𝑖𝑖 = 1, … ,𝑛𝑛;
0 ≤ 𝛿̂𝛿𝑖𝑖 ≤ 𝐶𝐶,   𝑖𝑖 = 1, … ,𝑛𝑛.

�
(38) 

Therefore, the upper bound program (5) can be restated 
as follows: 
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𝐽𝐽𝛼𝛼𝑈𝑈 =  𝑚𝑚𝑚𝑚𝑚𝑚

𝑦𝑦

⎩
⎪
⎨

⎪
⎧𝑚𝑚𝑚𝑚𝑚𝑚𝛿𝛿 ,𝛿𝛿� ∑ (𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖)𝑦𝑦𝑖𝑖 − 𝜀𝜀𝑛𝑛

𝑖𝑖=1 ∑ (𝛿̂𝛿𝑖𝑖 + 𝛿𝛿𝑖𝑖)𝑛𝑛
𝑖𝑖=1

− 1
2
∑ ∑ �𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖��𝛿𝛿𝑗𝑗 − 𝛿̂𝛿𝑗𝑗 �𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 )𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

𝑠𝑠. 𝑡𝑡.�
∑ (𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖) = 0𝑛𝑛
𝑖𝑖=1 ; 

0 ≤ 𝛿𝛿𝑖𝑖 ≤ 𝐶𝐶,
0 ≤ 𝛿̂𝛿𝑖𝑖 ≤ 𝐶𝐶,   𝑖𝑖 = 1, … ,𝑛𝑛.

�

�

𝑠𝑠. 𝑡𝑡. (𝑦𝑦𝑖𝑖)𝛼𝛼𝐿𝐿 ≤ 𝑦𝑦𝑖𝑖 ≤ (𝑦𝑦𝑖𝑖)𝛼𝛼𝑈𝑈 ,   𝑖𝑖 = 1, … ,𝑛𝑛,

 

 
or equivalently 

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦 ,𝛿𝛿 ,𝛿𝛿� ∑ (𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖)𝑦𝑦𝑖𝑖 − 𝜀𝜀𝑛𝑛
𝑖𝑖=1 ∑ (𝛿̂𝛿𝑖𝑖 + 𝛿𝛿𝑖𝑖)𝑛𝑛

𝑖𝑖=1

− 1
2
∑ ∑ �𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖��𝛿𝛿𝑗𝑗 − 𝛿̂𝛿𝑗𝑗 �𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 )𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

𝑠𝑠. 𝑡𝑡.

⎩
⎪
⎨

⎪
⎧∑ (𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖) = 0𝑛𝑛

𝑖𝑖=1 ; 
0 ≤ 𝛿𝛿𝑖𝑖 ≤ 𝐶𝐶,
0 ≤ 𝛿̂𝛿𝑖𝑖 ≤ 𝐶𝐶,
(𝑦𝑦𝑖𝑖)𝛼𝛼𝐿𝐿 ≤ 𝑦𝑦𝑖𝑖 ≤ (𝑦𝑦𝑖𝑖)𝛼𝛼𝑈𝑈 ,   𝑖𝑖 = 1, … ,𝑛𝑛.

�
 (39) 

The program (39) is a non-convex quadratic program 
with linear constraint and bounded variables. Therefore, its 
global optimal solution can be obtained using the 
reformulation-linearization/convexification technique (RLT) 
[22].  

From Eq. (32), if 𝛿𝛿𝑖𝑖 > 0 , 𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝑏𝑏 = 𝜀𝜀 + 𝜉𝜉𝑖𝑖 . 
From Eq. (30), if 𝛿𝛿𝑖𝑖 < 𝐶𝐶 , 𝛾𝛾𝑖𝑖 > 0 and if 𝛾𝛾𝑖𝑖 > 0 , from Eq. 
(34), 𝜉𝜉𝑖𝑖 = 0. Thus, if 0 < 𝛿𝛿𝑖𝑖 < 𝐶𝐶,  
 𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝑏𝑏 = 𝜀𝜀. (40) 

Also, from Eq. (33), if 𝛿̂𝛿𝑖𝑖 > 0 , −𝑦𝑦𝑖𝑖 + 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝑏𝑏 =
𝜀𝜀 + 𝜉𝜉𝑖𝑖 . From Eq. (31), if 𝛿̂𝛿𝑖𝑖 < 𝐶𝐶, 𝛾𝛾�𝑖𝑖 > 0 and if 𝛾𝛾�𝑖𝑖 > 0 from 
Eq. (35), 𝜉𝜉𝑖𝑖 = 0. Thus, if 0 < 𝛿̂𝛿𝑖𝑖 < 𝐶𝐶,  
 −𝑦𝑦𝑖𝑖 + 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝑏𝑏 = 𝜀𝜀. (41) 

From Eq. (28), the approximated hyperplane in feature 
space or actual output is given by 

 
𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥) + 𝑏𝑏 = ∑ (𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖)𝑔𝑔(𝑥𝑥𝑖𝑖)𝑇𝑇𝑔𝑔(𝑥𝑥) + 𝑏𝑏𝑛𝑛

𝑖𝑖=1

= ∑ (𝛿𝛿𝑖𝑖 − 𝛿̂𝛿𝑖𝑖)𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) + 𝑏𝑏𝑛𝑛
𝑖𝑖=1 ,

  

where from Eq. (40) and Eq. (41) the bias satisfies 
 𝑏𝑏 = 𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝜀𝜀, for 0 < 𝛿𝛿𝑖𝑖 < 𝐶𝐶, (42) 
 𝑏𝑏 = 𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑇𝑇𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝜀𝜀, for 0 < 𝛿̂𝛿𝑖𝑖 < 𝐶𝐶. (43) 

In calculating bias, to avoid calculation errors, we 
average biases that satisfy (42) and (43).  

 

D. Obtaining the Fuzzy Actual Output 
In the previous sub-section, we obtained 𝐽𝐽𝛼𝛼𝐿𝐿  and 𝐽𝐽𝛼𝛼𝑈𝑈  for 

some 𝛼𝛼 ∈ [0,1]. Therefore, the membership function of the 
fuzzy function 𝐽𝐽 was determined.  

The lower bound of fuzzy weight vector and fuzzy bias at 
𝛼𝛼-cut, namely 𝑤𝑤�𝛼𝛼𝐿𝐿 and 𝑏𝑏�𝛼𝛼𝐿𝐿 , are indeed the optimal solution of 
𝐽𝐽𝛼𝛼𝐿𝐿. Also, the upper bound of fuzzy weight vector and fuzzy 
bias at 𝛼𝛼 -cut, namely 𝑤𝑤�𝛼𝛼𝑈𝑈  and 𝑏𝑏�𝛼𝛼𝑈𝑈 , are indeed the optimal 
solution of 𝐽𝐽𝛼𝛼𝑈𝑈 . The lower and upper bound of fuzzy actual 
output or fuzzy hyperplane in high dimensional feature space 
𝑓𝑓(. ) at 𝛼𝛼-cut can be obtained as follows: 

 𝑓𝑓𝛼𝛼𝐿𝐿(𝑥𝑥) = 𝑤𝑤�𝛼𝛼𝐿𝐿
𝑇𝑇𝑔𝑔(𝑥𝑥) + 𝑏𝑏�𝛼𝛼𝐿𝐿 ,   

 𝑓𝑓𝛼𝛼𝑈𝑈(𝑥𝑥) = 𝑤𝑤�𝛼𝛼𝑈𝑈
𝑇𝑇𝑔𝑔(𝑥𝑥) + 𝑏𝑏�𝛼𝛼𝑈𝑈 .   

For a fuzzy set 𝐴𝐴 and for each 𝛼𝛼 ≤ 𝛽𝛽 ∈ [0,1], we have 
𝐴𝐴𝛼𝛼𝐿𝐿 ≤ 𝐴𝐴𝛽𝛽𝐿𝐿  and 𝐴𝐴𝛼𝛼𝑈𝑈 ≥ 𝐴𝐴𝛽𝛽𝑈𝑈 . The function 𝐽𝐽  satisfies this 
condition, but, the bias term 𝑏𝑏�  and actual output 𝑓𝑓(. ) don’t 
satisfy. Therefore, we change the bias term 𝑏𝑏�  and actual 
output 𝑓𝑓(. ) as follows to satisfy this condition: 
 𝑏𝑏�𝛼𝛼𝐿𝐿(𝑥𝑥) = min�𝑏𝑏�𝛼𝛼𝐿𝐿 ,𝑏𝑏�𝛽𝛽𝐿𝐿�, 
 𝑏𝑏�𝛼𝛼𝑈𝑈(𝑥𝑥) = max�𝑏𝑏�𝛼𝛼𝑈𝑈 , 𝑏𝑏�𝛽𝛽𝑈𝑈�, 
 𝑓𝑓𝛼𝛼𝐿𝐿(𝑥𝑥) = min�𝑓𝑓𝛼𝛼𝐿𝐿(𝑥𝑥), 𝑓𝑓𝛽𝛽𝐿𝐿(𝑥𝑥)�, 
 𝑓𝑓𝛼𝛼𝑈𝑈(𝑥𝑥) = max�𝑓𝑓𝛼𝛼𝑈𝑈(𝑥𝑥), 𝑓𝑓𝛽𝛽𝑈𝑈(𝑥𝑥)�, 
where 𝛼𝛼 ≤  𝛽𝛽 ∈ [0,1]. 
 

IV. EXPERIMENTAL RESULTS 
In this section, the proposed algorithm is utilized using 

some training samples. Here, for ease of evaluation, the 
target output 𝑦𝑦�𝑖𝑖  is considered to be symmetric triangular 
fuzzy numbers. Moreover, we use the Gaussian kernel 

function, namely 𝑘𝑘(𝑥𝑥, 𝑧𝑧) = 𝑒𝑒
‖𝑥𝑥−𝑧𝑧‖2

2𝜎𝜎2 . We set 𝐶𝐶 = 1000 , 
𝜎𝜎 = 0.2 and 𝜀𝜀 = 0.5.  

Figure 5 plots the lower bound and the upper bound of 
the fuzzy hyperplane in feature space (fuzzy actual output) at 
some distinct 𝛼𝛼  values. The lower bound and the upper 
bound of fuzzy hyperplane have been constructed based on 
the optimistic and the pessimistic value of target outputs, 
respectively. Therefore, as it can be seen, the lower bound of 
fuzzy hyperplane has less curvature than the upper bound of 
fuzzy hyperplane specially at 0-cut. 

Table 1 lists the 𝛼𝛼-cuts of the fuzzy function 𝐽𝐽, the fuzzy 
bias 𝑏𝑏�  and the fuzzy hyperplane 𝑓𝑓(𝑥𝑥) = 𝑤𝑤�𝑇𝑇𝑔𝑔(𝑥𝑥) + 𝑏𝑏�  for 
𝑥𝑥 = −0.5, 0 and 0.5, at some distinct values of 𝛼𝛼. The 𝛼𝛼-cut 
of 𝐽𝐽,𝑏𝑏�  and 𝑓𝑓(𝑥𝑥) represents the possibility that the objective 
function, bias and output will appear in the associated range, 
respectively. The 𝛼𝛼  value indicates the level of possibility 
and the degree of uncertainty of the obtained information. 
The greater the 𝛼𝛼 value, the greater the level of possibility 
and the lower the degree of uncertainty is. Different 𝛼𝛼-cuts 
of 𝐽𝐽,𝑏𝑏�  and 𝑓𝑓(𝑥𝑥)  show the different intervals and the 
uncertainty levels of 𝐽𝐽,𝑏𝑏� and 𝑓𝑓(𝑥𝑥), respectively. Specifically, 
𝐽𝐽,𝑏𝑏�  and 𝑓𝑓(𝑥𝑥), at 𝛼𝛼 = 0 have the widest interval indicating 
that 𝐽𝐽,𝑏𝑏�  and 𝑓𝑓(𝑥𝑥) will definitely fall into the corresponding 
range. At the other extreme end, the corresponding 
possibility level 𝛼𝛼 = 1 is the most possible value of 𝐽𝐽,𝑏𝑏� and 
𝑓𝑓(𝑥𝑥). 

Figure 6 plots the membership function of fuzzy bias, 
and Figure 7 plots the fuzzy hyperplane in feature space 
(fuzzy actual output) for 𝑥𝑥 = −0.5, 0 and 0.5. As it can be 
seen, however we used training samples whose target outputs 
were symmetric triangular fuzzy numbers, the membership 
function of the fuzzy bias is not triangular. Therefore, as it 
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was stated earlier, the pre-assumption on the membership 
function of fuzzy bias and the components of weight vector 

makes the model inaccurate. 

 

 
(a) 

 
(b) 

Figure 1.  (a) Lower bound of fuzzy hyperplane (b) Upper bound of fuzzy hyperplane (actual output) at α-cut.   
*: Core of training samples. 

 

TABLE I.  THE LOWER BOUND AND THE UPPER BOUND OF THE FUZZY FUNCTION J̃, THE FUZZY BIAS B� AND  
THE FUZZY HYPERPLANE F�(X) = W� T G(X) + B� FOR X = −0.5, 0 AND 0.5 AT SOME DISTINCT Α-CUT. 

𝛼𝛼 𝐽𝐽𝛼𝛼𝐿𝐿  𝑏𝑏�𝛼𝛼𝐿𝐿  

𝑓𝑓𝛼𝛼𝐿𝐿(𝑥𝑥) 

𝐽𝐽𝛼𝛼𝑈𝑈  𝑏𝑏�𝛼𝛼𝑈𝑈 

𝑓𝑓𝛼𝛼𝑈𝑈(𝑥𝑥) 

𝑥𝑥 = −0.5 𝑥𝑥 = 0 𝑥𝑥 = 0.5 𝑥𝑥 = −0.5 𝑥𝑥 = 0 𝑥𝑥 = 0.5 
0.0 
0.25 
0.5 
0.75 
1.0 

    0.3603 
    0.4789 
    0.6336 
    0.8283 
    1.0631 

    0.2607 
    0.2164 
    0.1921 
    0.1678 
    0.1435 

    0.0679 
   -0.0354 
   -0.1346 
   -0.2339 
   -0.3331 

    0.2586 
    0.2137 
    0.1886 
    0.1636 
    0.1385 

    0.2607 
    0.2181 
    0.1983 
    0.1786 
    0.1588 

    2.5722 
    2.0957 
    1.6858 
    1.3379 
    1.0631 

   -0.0740 
   -0.0161 
    0.0418 
    0.1193 
    0.1435 

   -0.7553 
   -0.6490 
   -0.5427 
   -0.4323 
   -0.3331 

   -0.3932 
   -0.2476 
   -0.1020 
    0.1134 
    0.1385 

   -0.2130 
   -0.1115 
   -0.0099 
    0.1390 
    0.1588 

 
 

Figure 2.  The membership function of the fuzzy bias b�.
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(a) 

 
(b) 

 

 
(c) 

Figure 3.  The membership function of the fuzzy hyperplane in feature 
space (fuzzy actual output) for (a) x = −0.5 (b) x = 0 (c) x = 0.5 
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