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Bottom rack intake is one of the most appropriate hydraulic structures for diverting water in steep rivers. The problems
of corrosion and deformity of the bottom racks in the long term inspires a new system of bottom intake in which a filled
trench of porous media replaces the bottom racks. In this article, the hydraulic characteristics of this intake are investi-
gated in an experimental model designed in a two-storey channel. The lower channel is used to convey diverted water
through the porous media, and the upper one is used to carry the remaining flow to downstream. Measurements of the
diverted discharge were performed for different rates of flow, grain size distributions, and surface slopes of intake. Results
show that the diverted discharge increases whenever the surface slope of bottom intake decreases, the inflow discharge
increases and or coarse grains are used in the intake. The empirical equation for estimating the discharge coefficient (C4)
of bottom intake shows that the Cq of porous media intake is about 0.1. To calculate the diverted discharge of intake, an
empirical-theoretical relation has been proposed. The theoretical predictions in comparison with the experimental results

have shown good consistency.

1. INTRODUCTION

Waterdiversionby bottomintake is oneof the mostcom-
mon methodsof water corveyancefrom a river to side
channelsTrashrackis onekind of bottomintake thatis
often adoptedin relatively small mountainrivers,where
steerslopesjrregularbedconfigurationjnstanttransport,
andrapidfloodspreventthe useof gateddams(Bouvard,
1992).Bottomracksarealsousedin the constructionof
debrisflow brealers (Mizuyamaand Mizuno, 1994).1n
some cases,prismatic channelsupgradingdownstream
and with a perforatedbottom are usedas enepgy dissi-
paters(Viparelli, 1963). Generally diversion structures
are designedto divert the maximum dischage of wa-
ter. Moreover, in critical conditions,wherethe entirebed
loads passover the streambed intake, the longitudinal
barsare usedfor bottom intakesto reduceclogging ef-
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fects (Righetti and Lanzoni, 2008). However, corrosion
anddeformity of the bars,clogging,andmaintenancare
thecommonproblemsof bottomracks,which make them
unusablén thelongterm.

To solve theseproblems,a new systemof bottomin-
take with porousmediais introduced.lt is obvious that
diversionof a specifiedamountof dischage throughthe
porousmediain comparisorto the bottomracksrequires
a muchlarger structure.However, it is believed that this
kind of waterintake doesnothave ary inconsisteng with
the river morphologybecausehe granularmaterialsthat
areusedin theintake aresimilar to bedmaterials.

The first hydraulic descriptionof bottomintakeswas
provided by Orth et al. (1954), investigating flows on a
20% slopingchannel,andby Drobir (1981),with proto-
type structuredeadingto optimumrack slopesof 20%to
30%.
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NOMENCLATURE
A surface area of porous media intake?jm V' theoretical flow velocity in porous
B width of porous media intake (m) media (m/s)
C,  discharge coefficient (dimensionless) V,  actual velocity in the porous media (m/s)
dso  mean grain size of porous media (m) Vv, flow velocity in upstream channel (m/s)
Fry  Froude number of upstream flow Vo flow velocity in diversion channel (m/s)
(dimensionless) ye1  critical depth at the beginning of
g gravitational acceleration (/s the intake
hy energy loss in porous media (m) yeo  Critical depth at the end of the intake
L length of porous media intake (m) yo  hormal depth of the upstream channel
n porosity of specimen (dimensionless) y1. flow depth at the beginning of the intake
P, mean diameter of grain sizes for y2. flow depth at the end of the intake
n = 1-4 (m) 1 water depth in upstream (m)
Q inflow discharge to the porous mediais) yo  water depth in diversion channel (m)
Qg diverted discharge of porous media Z, elevation of upstream channel (m)
intake (n/s) Z5  elevation of downstream channel (m)
Q.- remain discharge on upper channel of
porous media intake (#s) Greek Symbols
Q: inflow discharge (#s) Y slope of the bottom intake (dimensionless
Sp surface slope of porous media intake p water density
(dimensionless) { relative diverted discharge (dimensionless

In bottom intakes, introducing a relationshipto es-
timate the diverted flow dischage still needsmore re-
searchGenerally the rate of changeof the diverteddis-
chageperunitwidthis givenby therelationship(Righetti
andLanzoni,2008)

dgq

e Cywn/2gY Q)
wheredq is the dischage per unit width divertedalong
apieceof grid of lengthdz; C,, is the dischage coefi-
cient; w is the void ratio, thatis, the ratio of the open-
ing areato the total area;and Y is the suitablevalue
of the hydraulic head.To estimatethe flow dischage
through a bottom rack, different relationshipsare pro-
posedin the literature that confirm that the valuesas-
sumedby C, are strictly linked to the definition of the
hydraulichead Differentapproachebave beenproposed
in the literatureto evaluateC, andY . Studiesshav that
different parametersare usedto definethe relevant hy-
draulic headY in Eg. (1), including specificflow head
of the flow approachinghe rack, local flow depth,and
local value of the meanflow depthalongthe channel.
Accordingly, thereis no univocal definition of the rele-
vanthydraulic headto beintroducedin Eq. (1) (Righetti
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and Lanzoni, 2008). Theoreticalanalysesassumethat
the flow field above the rack can be treatedas one-
dimensional(Venkataramaret al., 1979), and another
assumptiorusually employed is that enegy dissipation
alongtherackis eithernggligibly small (Bouvard, 1953;
Mostkow, 1957) or balanceshe bottom slope (Noseda,
1955). The measurementsf free surfacevelocitiescar

ried out by Brunellaet al. (2003) confirm that dissipa-
tive effects are negligible, excepttoward the end of the
rack (Righettiand Lanzoni,2008). Basedon the experi-

mentalstudies,Subramaya and Shukla(1988)and Sub-
ramarya (1990, 1994) classifiedthe flows over horizon-
tal andslopingracksof roundedbars,summarizedn Ta-

ble1.

Despitedifferencedetweerbottomintakeswith trash
racksandthe newv systemwith porousmedia,thereare
some hydraulic similarities. For instance,as the main
flows in both intakes are spatially varied flows with de-
creasingdischage, similar surface profiles can be pre-
dictedin both systemsHowever, the diverteddischage
of bottomrack intake is in orifice form, while in porous
mediaintake, it variesbasedntheflow regime.Whenthe
granulamaterialarefiner, boththe hydraulicandfriction
resistancesf flow increasewhich consequentlyeadsto
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TABLE 1: Types of water surface profiles on the bottom rack intake (Subramanya

and Shukla, 1988)

Upstream flow | Flow on bottom intake | Downstream flow | Profile type

Hydraulic jump Supercritical Subcritical Al
Subcritical Hydraulic jump Subcritical A2
Subcritical Subcritical Subcritical A3

Hydraulic jump Supercritical Supercritical Bl
Subcritical Hydraulic jump Supercritical B2

a decreasef flow velocity andanincreaseof watersur
faceprofile (Leps,1973).

In the seepagéow hydraulicof the porousmedia,the
flow velocityis definedin two methodsThefirst relation-
shipis

Q

V= Z (2)

whereV is the apparentelocity in porousmedia; @ is
the inflow dischage to the porousmedia;and A is the
surfaceareaof bottomintake towardtheinflow dischage.
Theotherrelationshipis (Li etal., 1998)

vV_Q

V:—:i
L) nA

®3)

whereV, is theactualvelocity in the porousmediaandn
is the porosityof the porousmedia.

This articlereportson the flow simulationof a bottom
intake with afilled trenchof porousmediain an experi-
mentalmodelunderdifferenthydraulicconditionsof pure
water flow. During the experiments,the hydraulic con-
ductwity of the porousmediais investicated.The exper
imentsinvolve a numberof variables hamely dischage,

AV

Q—=

surfaceslopeof the bottomintake, andtype of granular
material. Thegranulamaterialusedin the new systemof
waterintake canbefoundeasilyin thefield. Maintenance
andhighercompatibilitywith theriver morphologyin the
long term are consideredas major advantagesRecogni-
tion of the effective parametersn applicabilityof porous
mediaintake andproviding conditionsto improve the ef-
ficiengy of diverteddischage of this systemarethe main
aimsof thisresearch.

2. EXPERIMENTAL SETUP

The experimentalsetupusedfor simulatingthe flow di-
versionthrough porousmediais shovn in Fig. 1. The
setupconsistedf a flumewith 10 m in length,0.3m in
width, and0.5m in depth(Fig. 2), in which a galvanized
rectangulabox of 20 cmlength,30 cmwidth, and10cm
heightwasfilled with coarsegranularmaterial. The box,
which is shavn in Fig. 1, wassetat a distanceof 5.0 m
from the upstreamentranceof theflume.

At the immediate downstream of the box, the flume
consisted of a two-storey channel. The role of the lower

Ah

10 cm (0%)
H=12 cm (10%)
14 cm (20%)

..||4

d ’

FIG. 1: Sketchof waterintake frameastrenchof porousmediawith differentheights.
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FIG. 2: Longitudinalsectionof the experimentaketup.

channelwasto corvey thediverteddischage @) ;, andthe
role of theupperonewasto carrytheremainingdischage
Qv

A rectangularweir was set at the end of the upper
flume to measure@),.. The diverted and remainingdis-
chageswerecollectedin atanklocatedbelow the flume
and pumpedto the stilling chamber which was located
at the upstreamof the inlet section.The total dischage
Q: was measureddy an orifice meterlocatedimmedi-
ately downstreamof the pumpanddoublechecled by a
rectangulamveir at the endof the stilling chamberThen
thedivertedflow wascalculatecbasedn thefactthatthe
divertedand remaineddischageswere equalto the to-
tal dischage. The maximumsurfaceslopeof the box is
usuallyrestrictedto 20%, asstatedin the literature(e.g.,
Brunellaetal., 2003).

In the presentwork, the slopesof 0%, 10%, and20%
were usedfor the upper surface slope of the specimen
(Fig. 1). To preventary movementof the materialdown-
stream,the vertical faceof the box of granularmaterial
wascoveredwith anumberof horizontalbars,andalso,a
miniaturewire netwassetover the upperface.

Longitudinalslopeof the flumewassetas0.005in all
runs.In eachrun, the diverteddischage andflow depths
of the upperandlower flumes(hydraulic gradient)were
measured.

100% omnmmmmmeeee e

T5% o eweceeadewenalea bbbl b f b

—e—P4

1(I)O
Grain Size (mm)
FIG. 3: Grainsizedistribution of porousmedia.

50% -

Passing Particles (%)

G )3 7A SR R

0%

1 10

3. EXPERIMENTAL RESULTS

The resultsof relative diverteddischage 1\, definedby
Eq. (4), areshavnin Fig. 4:

wz@xmo

Qt
whereQ), is diverteddischage of porousmediaand@; is
total dischage.

Accordingto Fig. 4, it is obviousthatin all casesthe
dischageincrementeadsto thedecremenbf 1. It is be-
lieved that the water conveyancethrough porousmedia

(4)

Efficiency of the porous media intake was examined lyrelatedto a power of headloss, Ah. However, by in-

four different types of gravel with average diametéy|

creasingAh, the amountof diverteddischage will not

8.5, 11.5, 14.5, and 17.5 mm and symbol P1, P2, P3, ancdreasdinearly at constanwaluesof 1{. Thevariationof
P4, respectively (Fig. 3). Other variables are three slogetative diverteddischage is almostbetween100% and
of intake and eight different discharges between 3.4 129%,which occurin lowerandhigherdischages,respec-

and 23.8 L/s.
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tively. For coarsegrain sizes,asthe void space®f spec-
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FIG. 4: Effectof grainsizedistribution on variationsin differentsurfaceslopes.
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imensarelarger, muchwateris corveyedto the diverted
channelandconsequently) will increaseThe differ-

encesin differentsurfaceslopes(Table 2) shav thatthe
efficiengy of bottom intake in water diversionfor S, =

20% is lessthantwo other slopes.Furthermore the re-

sultsof zerosurfaceslopeof theintake, thatis, S, = 0%,

shaw betterperformancehans, = 10%.Theseesultsare
in agreemenwith the obsenationsof RighettiandLan-

zoni (2008).They have statedthatasthe surfaceslopeof

bottomintake increasesthe entranceangleof streamline
to intake will decreaseandtherebythe verticalvectorof

entrancevelocity in comparisorto the horizontalvector
will decreaseBecauseof the horizontalvelocity vector
increasemostof the flow passesver the intake, anda

small percentagef it will divert to the intake channel.
In Table 2, the minimum and maximumvaluesof { are
givenfor differentsizedistributionsandsurfaceslopesof

porousmedia.

3.1 Water Surface Profile

The water surface profiles on the bottom intake with
porousmediaagreewell with Subramapa and Shuklas
(1988)researchon bottomrack intakes.However, in the
presentstudy mostof the profilesaretype B1. The hy-
draulic featuresand typical water surface profiles ob-
senedin experimentsare shovn in Table 3 and Fig. 5,
respectiely.

The mentionedparametersn Table 3 andFig. 5 are
definedasfollows: y, is thenormaldepthof theupstream
channely . is theflow depthat the beginning of thein-
take; y.1 is the critical depthat the beginning of the in-
take; yo. is theflow depthattheendof theintake; andy.o
is thecritical depthatthe endof theintake.

Figure 6 shows the water surfaceprofilesin different
dischagesfor graintypeP3andsurfaceslopesS, = 10%.
It is obsened that the water surface slope of the lower
dischageson bottomintake is greaterthanthe slopeof
higherdischages.This is likely becausef low flow ve-

TABLE 2: \Variation of{ (%) for different grain types
and surface slopes
Sp
Grain type 0% 10% 20%

P1 22.9-88 | 22.4-86.5| 20.6-84.5
P2 24.6-91.2| 24.1-89 | 21.2-88
P3 27.4-98.5| 26.3-98.5| 23.5-99
P4 29.1-99 | 27.4-100| 25.8-100
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locity in low dischages,which leadsto more water di-
versionof intake, andaccordingly thewaterdepthon the
endpointof intake is lower thanthefirst point.

Comparingwater surface profiles in Fig. 7 for two
graintypesP1landP4with Q; = 6.2L/s andS, = 10%
shavsthattheflow depthontheintake with coarsegrain
sizeis lower, which indicatesthatin this situation,much
waterdivertsto the diversionchannelln Fig. 8, it is seen
thatin lower surfaceslopesof intake, theflow velocity is
lower, andthusmorewateris corveyedto divertedchan-
nels and water surface slopeson the bottom intake are
lower.

Moreover, in a lower surface slope, most of the in-
flow dischage divertsto the diverted channelfrom the
beginning point of the intake. Accordingto Righettiand
Lanzoni(2008),in waterintake with lower surfaceslope,
much water is divertedto the diverted channelbecause
the vertical componentof the velocitiesis higher than
the flow above the intake andtendsto have a magnitude
comparablevith the horizontalcomponentThe vertical
componentdecreasesnoving dovnstreamalong the in-
take, thusimplying that the diverteddischage tendsto
decreaselndeed,the magnitudeof the dowvnward rota-
tion experiencedby the velocity vector nearthe bottom
decreasegprogressiely asone movestoward the end of
theintake and,for a givenvalue of the approachindglow
depth,asthe FroudenumberincreasesMoreover, local-
ized end effectsinducedby the cunatureof the stream-
line detachingfrom the upstreamedgeof the intake and
by the rear stagnatiorpoint could leadto a reductionof
the diverteddischage with respecto theoreticalpredic-
tions. Experimentatesultsshowv thatasthe surfaceslope
of bottomintake increasesthe inflow velocity to intake
increasesoo.

3.2 Diverted Discharge of Bottom Intake with
Porous Media

Accordingto Fig. 9, the simplified specificenegy equa-
tion (Bernoulli) for incompressiblenorviscous steady
flow alongthe bottomintake is asfollows:

2 2

Vi Vs
Yy1+21+ 5o =Y+ 22t

h
2g 29+ !

®)

whereh; is the total headloss betweenupstreaniflow
andbottomintake. Experimentaresultsshav thatV;? /2g
is ignorablein comparisorwith V2 /2¢g, andthe velocity
equationcanbewritten as
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FIG. 5: Differenttypesof watersurfaceprofileson bottomintake with porousmedia.
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FIG. 7: Watersurfaceprofilesfor graintypesPlandP4(Q, = 6.2 L/s, S, = 10%.)

21— h
V2\/29(l/1y2) <1+ - f>
Y1 — Y2

Theresultingerror of this simplificationwill be con-
(6) sideredin the dischage coeficient. Assumingthat the
outflow andinside flow velocity of intake arethe same,

In this equation,h; and z; arenearto eachother and themeanflow velocity canbe obtainedasfollows:

thus(z1 — h¢/y1 — y2) canbe omitted. It seemshatby
passinglow throughthe porousmediaandthe headloss, V=29 (y1 — y2) (7
the outflow velocity of porousmediais lessthanthein-

flow. However, becaus®f the heightdifferencedbetween Consideringthe continuity equationand Eq. (3), the di-
upstreamanddivertedchannebedsandtheforcegravity, verteddischage of bottomintake with porousmedia,per
theheadlosseffect on outflow velocity is negligible. unit width andunit length,is asfollows:

TABLE 3: The hydraulic results of the water surface profiles

Yie Yel Yoe Ye2 Frq Upstream Flow kind Downstream | Profile
(mm) | (mm) | (mm) | (mm) | Upstream flow on intake flow type
475 | 50.94| 25 31.41 0.94 Subcritical Supercritical | Hydraulic jump| Al
215 | 23.57 5 0.75 Subcritical | Hydraulic jump Subcritical A2
485 | 50.94| 29 36 1.08 Supercritical| Supercritical | Hydraulic jump Bl
265 | 35.18| 14 | 12.86 111 Supercritical| Hydraulic jump Subcritical B2

Special Topics & Reviews in Porous Media — An International Journal
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FIG. 9: Hydrauliccharacteristicef theflow in the bottomintake with porousmedia.

dq

wheren is the porosity of the porousmedia, C; is the
dischage coeficient of the porousmediaintake, and V'
is the meanflow velocity. Thedischagedivertedperunit
width is obtainedby integratingEq. (8):

qd = OdanV (9)

where L,, is the lengthof porousmedia(index p relates
to porousmedia).Substitutingflow velocity from Eq. (7)
into Eq. (9), thedischagedivertedfrom theintake finally
obtainsas

Qd = CdanB

29 (1 — e
g (y1 —y2) — Qa dnCOS‘Y

x B (10)

29 (y1 — y2)

Volume 2, Number 4, 2011

where(y; — y2) is thewatersurfacedifferencen theup-
streamchannelandintake channel g is the gravitational
constant,B is theintake width, L is the horizontallength
of intake, andy is theanglewhich the porousmediaaxis
x formswith thehorizontal Equation(10) canbeusedfor
bottomintakeswith andwithout surfaceslope.

3.3 Discharge Coefficient

Dimensionaknalysisndicateghatthe physicallaw gov-
erningthe outflov alongtheintake is asfollows:

F(p7g7V17y1an7d507L7Sp7Re) =0 (11)

wherep is waterdensity g is the gravitational constant,
V1 is the upstreanflow velocity, y; is the upstreanflow
depth,n is the porosity of the porousmedia, ds is the
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meandiameterof grains,L is theintake length, S, is the
surfaceslopeabore porousmedia,andReis theReynolds
number In Eq. (11), the effects of surfacetensionand
fluid compressibilityareignored.

To recognizeall the effective parametersn diverted
dischagethroughporousmedia,y;, V1, andp areconsid-
eredasthefundamentalariablesandthe Buckinghams
II theoremis applied.Therefore

non

= 12
ke 12)

Cd:(b< aFT17n7‘S’p7Re>
whereFr; = Vl/, /gy is theupstreanfFroudenumber
Thebestnonlinearfit to thedatawith thecoeficient of

determination?? = 0.918is foundto be

075 0.509
Fri ( )
2.10.363
8.518 Y1
nee (Sp + L)

In Fig. 10, a correlationbetweerthe calculatecandmea-
suredCy valuesis presentedAll of the dischage coefi-
cientsof the porousmedialie in therangeof 0.06 < Cy
< 0.14.1t shouldbe notedthat Eq. (13) is notdependent
on Reynoldsnumber which is, in this case,in the range
of 2000 < Re < 6000. Actually, flow in the upstream
channels turbulent.

Y1
dso

Cy=3.625x 1075 (13)

4. CONCLUSIONS

The bottom intake structures can be used to divert the flow
of a steep mountainous river. In this study, an experimen-

0-14- ----- :----lr---"----r----‘l----:--o-
R = 0.918 : .
012 o oD
- Lo P Ko
O 04 q-crmecrrercina 0.
E " 1] L} n :o L] :
E 0084 --noibonsl
= Lo S
E 0.064---drebaQuP e b deein
0 S
R R R IRRL FLRY
0.02 4+ - opfemmtmmndmn it
0 L T L] L L] T :
0 002 0.04 0.06 0.08 0.1 0.12 0.14
Estimated Cd

FIG. 10: Comparisorbetweencalculatedand measured
Cy.
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tal modelof a new systemof bottomintake with a filled

trenchof porousmediais designedto simulatethe hy-

draulic characteristicef the divertedflow. A large num-
ber of experimentsunder different hydraulic conditions
involved a numberof variables,namely dischage, sur

faceslopeof the bottomintake, type of granulamaterial,
werecarriedout. The mostimportantresultscanbelisted
asthefollowing.

1. By increasingheinflow dischage,the diverteddis-
chage increasedoo; however, for larger valuesof
the dischage, the ratio of the divertedto the up-
streamflow approacheafinal constanwalue.

. Grainsizeof the porousmediahasa greatinfluence
onthedivertedflow. By increasinghegrainsize,the
void space®f granulamaterialincreaseandconse-
quently thedivertedflow increases.

. By increasinghesurfaceslopeof bottomintake with
porousmedia,theentranceangleof streamlingo in-
take will decreaseandtherebytheverticalvectorof
entrancevelocity in comparisonto horizontal vec-
tor will decreaseBecausef the horizontalvelocity
vectorincreasemostof the flow passe®verthein-
take, anda small percentagef it will divert to the
intake channel.

4. The water surface profile dependson inflow dis-
chage, the surfaceslopeof bottomintake, andthe
porosity of the granularmaterial. Curvaturesof the
free surfacetend to increasewith decreasinglow
depthand surfaceslope of bottomintake and with

increasinghe sizedistribution of porousmedia.

. Accordingto the proposedlischage coeficient, in-
creasef F'ry andy;/dso anddecreasef n andsum-
mationof y; /L andS, leadto C; increases.
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