
Computers & Industrial Engineering 62 (2012) 264–270
Contents lists available at SciVerse ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
An optimal procedure for minimizing total weighted resource tardiness
penalty costs in the resource-constrained project scheduling problem q

Mohammad Ranjbar a,⇑, Mohammad Khalilzadeh b, Fereydoon Kianfar b, Kobra Etminani c

a Department of Industrial Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111, Mashhad, Iran
b Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran
c Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

a r t i c l e i n f o
Article history:
Received 7 September 2010
Received in revised form 9 May 2011
Accepted 20 September 2011
Available online 25 September 2011

Keywords:
Resource-constrained project scheduling
Weighted tardiness
Branch-and-bound
0360-8352/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.cie.2011.09.013

q This manuscript was processed by Area Editor W
⇑ Corresponding author. Tel./fax: +98 511 8796778

E-mail addresses: m_ranjbar@um.ac.ir (M. Ranjb
edu (M. Khalilzadeh), kianfar@sharif.edu (F. Kian
(K. Etminani).
a b s t r a c t

We present an optimal solution procedure for minimizing total weighted resource tardiness penalty costs
in the resource-constrained project scheduling problem. In this problem, we assume the constrained
renewable resources are limited to very expensive equipments and machines that are used in other pro-
jects and are not available in all periods of time of a project. In other words, for each resource, there is a
dictated ready date as well as a due date such that no resource can be available before its ready date but
the resources are permitted to be used after their due dates by paying penalty cost depending on the
resource type. We also assume that only one unit of each resource type is available and no activity needs
more than it for execution. The objective is to determine a schedule with minimal total weighted resource
tardiness penalty costs. For this purpose, we present a branch-and-bound algorithm in which the branch-
ing scheme starts from a graph representing a set of conjunctions (the classical finish-start precedence
constraints) and disjunctions (introduced by the resource constraints). In the search tree, each node is
branched to two child nodes based on the two opposite directions of each undirected arc of disjunctions.
Selection sequence of undirected arcs in the search tree affects the performance of the algorithm. Hence,
we developed different rules for this issue and compare the performance of the algorithm under these
rules using a randomly generated benchmark problem set.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The resource-constrained project scheduling problem (RCPSP)
involves the non-preemptive scheduling of project activities sub-
ject to finish-start-type precedence constraints and renewable re-
source constraints in order to minimize the project duration. It is
shown in Blazewicz, Lenstra, and Rinnooy-Kan (1983) that the
RCPSP, as a job-shop generalization, is NP-hard in the strong sense.
A large number of exact and heuristic procedures have been pro-
posed to construct workable baseline schedules that solve this
problem; see Demeulemeester and Herroelen (2002), Kolisch and
Padman (2001) and Neumann et al. (2002) for recent overviews
and Herroelen (2005) for a discussion on the link between theory
and practice. In addition, Kolisch and Hartmann (2006) present a
classification and performance evaluation of different heuristic
and metaheuristic algorithms for the RCPSP. The RCPSP under
minimization of total weighted resource tardiness penalty cost
ll rights reserved.

illy Herroelen.
.
ar), khalilzadeh@mehr.sharif.
far), etminani@wali.um.ac.ir
(RCPSP–TWRTPC) is an applicable problem and a modified version
of the RCPSP in which all assumptions and constraints of the RCPSP
are held but the objective is different. We assume that the renew-
able resources such as labor are not limited and expensive but
there are a few renewable resources like especial types of crane,
tunnel boring machines, very expert human resources that should
be hired outside of the project. Since these limited renewable re-
sources are used in other projects, there is a dictated ready date
as well as a due date for each of them such that no resource can
be available before its ready date but these resources are permitted
to be used after their due dates by paying penalty cost, depending
on the resource type. We also assume there is at most one unit of
each limited resource type in each period of time of the project
horizon and no activity needs more than one unit for execution
while it may need more than one resource type. Bianco, Dell’Olmo,
and Speranza (1998) referred to the resources that can be assigned
to only one activity at a time as dedicated resources. The goal of
problem is to find a schedule with minimal total weighted resource
tardiness. The RCPSP–TWRTPC can also be considered as a modi-
fied version of the job-shop scheduling problem with minimization
of the total weighted tardiness in which the tardiness is proposed
for jobs and technical precedence relations are only among opera-
tions of a job. This problem is known to be strongly NP-hard since

http://dx.doi.org/10.1016/j.cie.2011.09.013
mailto:m_ranjbar@um.ac.ir
mailto:khalilzadeh@mehr.sharif.edu
mailto:khalilzadeh@mehr.sharif.edu
mailto:kianfar@sharif.edu
mailto:etminani@wali.um.ac.ir
http://dx.doi.org/10.1016/j.cie.2011.09.013
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

Table 1
Resource information of the example project.

Resource (r) qr dr wr Nr

1 1 18 3 {1,2,4,5}
2 4 22 4 {3,4,5,6}

5

5

0

β
4

M. Ranjbar et al. / Computers & Industrial Engineering 62 (2012) 264–270 265
the single machine problem 1k
P

wjTj had been proved to be
strongly NP-hard by Lenstra, Rinnooy, and Brucker (1977).

To the best of our knowledge, we are introducing the RCPSP–
TWRTPC for the first time and there is no previous work in the lit-
erature. The only related problems proposed in the literature are
scheduling problems in fields of project scheduling and machine
scheduling with objective functions linked to the tardiness. In all
of these problems, the issue of tardiness is proposed for activities
or jobs and not for resources or machines. Some of the proposed
exact algorithms are as follows: Vanhoucke, Demeulemeester,
and Herroelen (2001) have developed a branch-and-bound (B&B)
algorithm accompanied with an exact recursive search procedure
for the RCPSP under earliness/tardiness objective. Also, Nadjafi
and Shadrokh (2009) developed a B&B algorithm for the weighted
earliness–tardiness project scheduling problem with generalized
precedence relations. Singer and Pinedo (1998) presented a com-
putational study of two B&B techniques for minimizing the total
weighted tardiness in job shops. They compared the computational
results of two branching schemes, i.e. the operation insertion
branching scheme and the arc insertion branching scheme. Pan,
Chen, and Chao (2002) studied two-machine flow shop problem
with goal of minimizing tardiness and developed a B&B algorithm
for the problem. Also, Shim and Kim (2007) proposed a B&B algo-
rithm accompanied with efficient dominance properties and lower
bounds for scheduling on parallel identical machines to minimize
total tardiness. Furthermore, Liaw, Lin, Cheng, and Chen (2003)
developed a B&B algorithm for scheduling unrelated parallel ma-
chines to minimize total weighted tardiness. In the context of sin-
gle machine problems, Tian, Ng, and Cheng (2005) addressed single
machine total tardiness problem in which a number of distinct due
date are given. They identified some optimal properties and proved
that the problem is polynomially solvable.

Several heuristic algorithms are proposed for machine schedul-
ing problems with objective function related to the tardiness. Ess-
afi, Yazid, and Dauzère-Pérès (2008) presented a genetic local
search algorithm for minimizing total weighted tardiness in the
job-shop scheduling problem. Bilge, Kiraç, Kurtulan, and Pekgün
(2004) developed a tabu search algorithm for parallel machine to-
tal tardiness problem. Also, Bilge, Kurtulan, and Kiraç (2007) pro-
posed a tabu search algorithm for the single machine total
weighted tardiness problem.

The contributions of this article are fourfold: (1) we introduce
and formulate the RCPSP_TRWPTC by a disjunctive graph; (2) we
design a very fast heuristic procedure to develop an initial solu-
tion; (3) we develop a B&B algorithm based on arc insertion for
the proposed problem; (4) we develop seven rules for the sequence
of arc insertion and show, using computational experiments, that
the rules defined on the basis of duration and precedence relation
characteristics make the algorithm more efficient than other rules.

The remainder of this article is organized as follows. Problem
modeling and formulation are provided in Section 2. Section 3 pre-
sents our branch-and-bound algorithm. The computational exper-
iments are presented in Section 4. Finally, summary and
conclusions are given in Section 5.
0

0

1
3

1

2
2

1

3

4

2

4

6

1,2

1,2

6

3

2

7

α

1

Fig. 1. Graph of the example project.
2. Problem modeling and formulation

The RCPSP–TWRTPC can be represented by a disjunctive graph
G = (N, C, D). Graph G has an activity-on-node (AON) representation
in which N = {0, 1, . . . , n + 1} indicates the set of activities (nodes),
where dummy activities 0 and n + 1 represent start and end of
the project. The set of conjunctive arcs C = {(i, j); i ? j, i, j e N} con-
sists of arcs representing technical finish-to-start precedence con-
straints among activities, where i ? j implies activity j can be
started after finishing of activity i. Let R = {1, 2, . . ., m} the set for
constrained renewable resources and Nr the set of activities which
need one unit of resource r e R for execution. If there exists a re-
source rinR for which two activities i, j e Nr, there is a disjunctive
arc i ? j between nodes i and j. Thus we present the set of disjunc-
tive arcs as D ¼ fhi; ji; i$ j; i < j; 9r 2 R : i; j 2 Nrg. Since availabil-
ity of each resource is at most one unit in each period of time,
two activities i and j, where hi; ji 2 D cannot be processed in paral-
lel. For each activity i, the parameter di indicates its duration,
where d0 = dn+1 = 0. In addition, for each resource r, qr, dr and wr

show the ready date, due date and weight of this resource, respec-
tively. In order to embed the resource release dates in the graph
representation, we add one node corresponding to each resource
to the project network. For resource r, this node displays an activity
with duration qr which is direct successor of the start dummy
activity and direct predecessor of every activity i e Nr. We consider
these arcs as the elements of the set of conjunctive arcs C.

Table 1 shows the resource information of a RCPSP–TWRTPC in-
stance with n = 6 real activities, m = 2 resources and the corre-
sponding graph is depicted in Fig. 1. In this figure, the number
shown above each node indicates activity duration and the num-
ber(s) below indicate the resources required for activity execution.
The nodes labeled a and b correspond to ready times of resource 1
and 2, respectively. Precedence relations of each of these nodes
with dummy node 0 and its successors (the nodes which require
these resources) are depicted with bold arcs. Also, the disjunctive
arcs are depicted with dashed lines while conjunctive arcs are
shown as regular arcs. Any solution of a RCPSP–TWRTPC instance
is a vector S = (s1, s2, . . . , sn), where si is integer and shows the start
time of activity i. Given a policy for scheduling, such as earliest
time schedule, this solution S is equivalent to a selection r(D),
denoting a selection of disjunctive arcs from D, as long as the selec-
tion r(D) has one and only one arc from every pair i M j, and the
resulting graph G = (N, C, r(D)) is not cyclic. Conversely, any selec-
tion r(D) satisfying the above properties corresponds to a feasible
schedule. Let L(i, j) denote the length of the critical path (longest
path) from node i to node j in graph G = (N, C, r(D)) (if there is no
path between i and j, then L(i, j) is not defined). The (earliest) finish
time fi = si + di of activity i is equal to L(0, i), computed using the
algorithm of Bellman(1958) with complexity O|N|. The release time
of resource r shown by cr equals to cr ¼maxi2Nrffig and the tardi-
ness of this resource is computed as Tr = max {cr � dr, 0}. The total
weighted resource tardiness penalty cost is

Pm
r¼1wrTr .

266 M. Ranjbar et al. / Computers & Industrial Engineering 62 (2012) 264–270
The RCPSP–TWRTPC described above can be formulated as the
following integer programming using variables si, cr, Tr and Xij,
where for all hi; ji 2 D; Xij ¼ 1 if i ? j and Xij = 0 if j ? i.

minZ ¼
Xm

r¼1

wrTr ð1Þ

Subject to :

cr P si þ di for r ¼ 1; . . . ;m; i 2 Nr ð2Þ
Tr P cr � dr for r ¼ 1; . . . ;m ð3Þ
Tr P 0 for r ¼ 1; . . . ;m ð4Þ
si P qr for r ¼ 1; . . . ;m; i 2 Nr ð5Þ
sj � si P di for all ði; jÞ 2 C ð6Þ
sj � si P di �Mð1� XijÞ for all hi; ji 2 D ð7Þ
si � sj P dj �MXij for all hi; ji 2 D ð8Þ
si; cr ; Tr 2 Nþ for i ¼ 0;1; . . . ;nþ 1;

r ¼ 1;2; . . . ;m and Xij 2 f0;1g for all hi; ji 2 D ð9Þ

The objective function (1) represents the minimization of the
total weighted resource tardiness penalty costs. Constraint (2)
shows that the release time of each resource is not less than the
finish time of each activity which requires that resource. Constraint
sets (3) and (4) ensure that Tr is equal to max{Cr � dr,0}. Constraint
(5) makes the starting times of all activities greater than or equal to
the release dates of their corresponding resources. Constraint (6)
represents the technical precedence relations or conjunctive con-
straints while constraints (7) and (8) relate to the resource or dis-
junctive constraints in which M denotes a very big positive
number. Finally, constraint (9) ensure that variables si, cr and Tr

are non-negative integers and Xij is a binary variable.

3. A branch-and-bound algorithm

In this section we develop a depth-first B&B algorithm for the
RCPSP_TRWTPC. In this algorithm we first develop a heuristic
procedure to generate an initial solution, giving an upper bound
(UB) for the beginning of the B&B. Whenever a better new solu-
tion is obtained, the UB will be updated. Next, the branching,
based on the arc insertion scheme, is started. In order to prevent
the generation of infeasible or dominated solutions, we develop
some efficient bounding rules. At the end of this section, we
develop different rules for the sequence of arc insertion and
then show how this sequence may affect the efficiency of the
algorithm.
3.1. A heuristic procedure for an initial solution

In this procedure, resources are selected one by one and for
each selected resource r, a direction is fixed for each disjunctive
arc hi; ji, where i, j e Nr. In order to implement this procedure, we
first sort the resources based on a criterion that is a combination
of penalty costs, ready dates and due dates. For this purpose, for
each resource r e R, we define pr ¼ wr

dr�qr
and sort the resources

based on the non-increasing order of pr values. Intuitively, the re-
sources with higher weight of penalty costs and tighter availability
intervals (dr � qr) have higher priorities than others to be selected.
Then, starting from highest value of pr, for each resource r, we gen-
erate a priority list PLr for all activities i e Nr. In order to create PLr,
we first define tail qi for each activity i e N as a lower bound for the
time period between the completion of activity i and the project
deadline. A procedure for calculating tails is presented in Brucker,
Jurisch, and Kramer (1994). This procedure has time complexity
O|C| and calculates tails using

qi ¼maxfdj þ qj; ði; jÞ 2 Cg ð10Þ
Eq. (10) requires initialization which is given by qn+1 = 0. The prior-
ity list PLr is constructed based on the non-increasing order of qi val-
ues for i e Nr. As a tie breaker for both pr and qi, we sort them based
on the decreasing order of their indexes.

If the obtained PLr does not satisfy the precedence constraints
imposed by conjunctive arcs, it is called infeasible. If it is the
case, we next generate the precedence feasible list PLr that is a
modified version of PLr. The PFLr is generated from the PLr using
a procedure including |Nr| iterations, where |Nr| is the size of Nr.
At the beginning of this procedure, we consider a sub-network
consisting of all activities i e Nr. If two activities i and j belong
to this sub-network and there is at least a path from i to j in
the main network, we consider activity i as one of the predeces-
sors of activity j in the sub-network. We define the set of eligible
activities E to be all activities in the corresponding sub-network
that do not have any predecessor. The activity i⁄ e E having the
highest q-value is the first member of the PFLr. Then, we remove
i⁄ from the corresponding sub-network and update the set E.
Now, for every pair of activities i⁄ and j e N that hi�; ji 2 D, we
change the disjunctive arc i� $ j to the conjunctive arc i⁄? j.
This is repeated until the PFLr includes all activities i e Nr, i.e.
|N_r| iterations.

The procedure of making PFL is applied to all r e R on the order
of non-increasing pr. To prevent cycle creation, whenever the pro-
cedure is applied for certain r, the precedence relations on the
main network are updated and precedence feasible lists for
remaining resources are obtained using the updated precedence
relations.

For the example project, we have p1 = 0.176 and p2 = 0.222.
Since p2 > p1, we first select resource 2 for which N2 = {3, 4, 5, 6}.
The values of tails for activities 1 to 6 are as follows:
q1 = 7, q2 = 9, q3 = 3, q4 = 3, q5 = 0 and q6 = 0. For creation of PFL2,
we should consider the sub-network including activities 3,4,5
and 6. In this sub-network, activities 3 and 4 are the predecessors
of activities 6. Thus, at the beginning, we have E = {3,4,5}. Since
q3 = q4 > q5, we consider activity 3, having smaller index, as the first
member of the PFL2. As a result, we change the disjunctive arcs
3 M 4 and 3 M 5 to the conjunctive arcs 3 ? 4 and 3 ? 5 respec-
tively. Now, we update set E as E = {4,5} and select activity 4 as
the second member of the PFL2 in the next iteration. The outcome
of this selection is converting the disjunctive arc 4 M 5 to the con-
junctive arc 4 ? 5. In the next iteration, activity 5 is selected and
the conjunctive arc 5 ? 6 is added. By applying this procedure
on resource 1, the disjunctive arcs 1 M 2, 1 M 4 and 2 M 5 will be
converted to the conjunctive arcs 2 ? 1, 1 ? 4 and 2 ? 5 respec-
tively. The release time of resources will be c1 = 21 and c2 = 24.
Consequently, the weighted resource tardiness penalty cost of
the obtained solution equals 17.

3.2. Branching scheme

Our branching strategy is based on the arc insertion scheme in
which each node in the branching tree represents a selection of
disjunctive arcs r(DP), where DP is a subset of D. r(DP) has a con-
junctive arc for every pair in DP and the resulting graph
G = (N, C, r(DP)) is acyclic. Two child nodes are generated by
branching on a pair i M j that is not in DP; one node for i ? j and
another node for j ? i. Thus, in the worst case, for a problem with
|D| conjunctive arcs, our algorithm has 2|D| nodes.

3.3. A cycle detection procedure

The insertion of an arc introduces precedence relationships be-
tween two activities using a common resource. Suppose the arc
i ? j is in a selection r(DP) and a new arc j ? k is inserted. Then
the arc i ? k will be redundant while the arc k ? i cannot be

1 The order strength is the number of comparable intermediate activity pairs
divided by the maximum number, n(n�1)/2, of such pairs, and is a measure for the
closeness to a linear order of the technological precedence constraints in C (cfr
Mastor, 1970).

2 The resource factor shows how many number of resources are used, on the
average, by each of the activities.

M. Ranjbar et al. / Computers & Industrial Engineering 62 (2012) 264–270 267
selected because it would create a cycle. For instance, if the arc
1 ? 2 is in a selection r(DP) of the example project, due to the exis-
tence of arc 2 ? 4, then the arc 1 ? 4 will be redundant while the
arc 4 ? 1 creates the cycle 1 ? 2 ? 4 ? 1.

In order to detect whether there is any cycle in each node of the
search tree, we first define a path matrix PM(n+m+2)(n+m+2) in which
the PM(i, j) = 1 if there is a path from node i to node j in the graph
G = (N, C) and PM(i, j) = 0 otherwise. Since the graph G = (N,C), cor-
responding to the root node of the search tree, is acyclic, we mon-
itor and prohibit the cycle creation in each node of the search tree
using following procedure.

For every two activities hi; ji 2 D, we can change disjunctive arc
i M j to arc i ? j if PM(j, i) = 0. Obviously, if PM(j, i) = 1, arc i ? j
creates a cycle. Now, if PM(j,i) = 0 and we introduce arc i ? j, we
update PM using the following four rules: (a) PM(i, j) = 1, (b)
PMði; kÞ ¼ 1; 8k 2 sucðjÞ, (c) PMðl; jÞ ¼ 1; 8l 2 predðiÞ, and (d)
PMðl; kÞ ¼ 1; 8l 2 predðiÞ; 8k 2 sucðjÞ. In this four rules, pred(i)
and suc(i) indicate all (direct and indirect) predecessors and suc-
cessors of activity i respectively, initialized based on the set C
and may be updated whenever a new conjunctive arc is added.
Rule (a) shows that arc i ? j creates a path between nodes i and
j. Also, rule (b) indicates that arc i ? j builds a path between node
i and every node of suc(j) while rule (c) shows that this new added
arc creates a path between every node of pred(i) and node j. Finally,
by the last rule, arc i ? j builds a path between every node of pre-
d(i) and every node of suc(j). In the worst case, the time order of our
proposed procedure is O(n2), where PM is updated by rule (d).

Of course, instead of our developed method for the cycle detec-
tion, we could remove the unselected disjunctive arcs and check
the existence of any cycle using the Floyd–Warshall algorithm
(see e.g. Lawler (1976)) in each nodes of the search tree. Obviously,
our procedure is more efficient because the time order of the
Floyd–Warshall algorithm is O(n3) (Lawler (1976)). However, In
each node of the search tree, if a cycle is detected, that node should
be fathomed.

3.4. A lower bound

In this section, we develop a lower bound for the optimal solu-
tion based on the idea introduced by Stinson, Davis, and Khumaw-
ala (1978) in which a lower bound is computed for the project
makespan by considering both precedence and resource con-
straints. We construct the lower bound of the optimal solution
by building a lower bound for the release time of each resource
r e R. Each node of the search tree corresponds to a network,
named the current network, and includes a number of disjunctive
and conjunctive arcs. If we consider only the conjunctive arcs of
the current network and we calculate the earliest starting time
(esi) of each activity i e Nr using the critical path method (CPM),
the lower bound for cr, shown by lbr, can be obtained by

lbr ¼max
i2Nr

fesi þ di þ
X

j2Bi

djg ð11Þ

In this formula, Bi includes activities j e Nr for which esj P esi. To
justify Eq. (11), we note that the activities of set Nr needs at least
one common resource and cannot be executed in parallel. The lower
bound for the optimal solution (LB) can be easily obtained by
LB = wr max {lbr � dr, 0}. In each node of the search tree, if the corre-
sponding LB is more than the UB, that node should be fathomed.

3.5. Sequence of the arc insertion

For each selection r(D) of the disjunctive arcs with feasible
schedule, the sequence of the arc insertion does not affect the fea-
sibility or the solution quality but it may affect the efficiency of the
algorithm. In the search tree of B&B algorithm, we may find many
infeasible or dominated solutions. Thus, if we detect these solu-
tions earlier at higher levels of the search tree, we prevent the tree
from expanding and find optimal solution quicker. Since genera-
tion of infeasible or dominated solutions are common in arc inser-
tion, we have tested different rules for the sequence of arc
insertion to reduce the total CPU run time of the algorithm.

In the following we develop seven rules to determine the se-
quence of arc insertion. These rules are developed based on three
characteristics of activities, i.e. precedence relations, duration,
and resource requirements. In each rule, we define a value wr for
each disjunctive arc dr. The sequence of arc insertion is based on
the non-increasing order of qr values. As the first tie breaker, we
sort disjunctive arcs based on non-decreasing order of first index
of elements. As the second tie breaker, disjunctive arcs are sorted
based on increasing order of second index of elements.

Table 2 shows different rules and the contributing characteris-
tics. In rule 1, only precedence relations of activities are contribut-
ing. In this rule, kij equals total number of successors of activities i
and j. Similar to rule 1, in rules 2 and 3 only one characteristic is
contributing. In rule 2, kij equals the summation of durations of
activities i and j while in the rule 3 it equals the summation of pr

values for all r e Ri or Rj, where Ri indicates the set of required re-
sources for execution of activity i. Each of the rules 4–6 is based
on the contribution of two characteristics. In rule 4, precedence
relations and durations are contributing, the summation of tails
of activities i and j is considered as kij.

Two characteristics, precedence relations and resource require-
ments, are contributing in rule 5 in which kij equals the summation
of pr values for all r e Rk, where k is representative of all activities
belonging to at least one of the pred(i), pred(j), suc(i) or suc(j) and
having at least a common required resource with Ri or Rj. Rule 6
is based on the combination of two characteristics, durations and
resource requirements, while in the last rule all three characteris-
tics are contributing.

Table 3 illustrates the result of application of each rule on the
example project. This table shows kij for each disjunctive arc i M j
of the example project and the corresponding sequence of the dis-
junctive arcs.
4. Computational experiments

4.1. Benchmark problem sets

We coded our algorithm in Java and performed all computa-
tional experiments on a PC Pentium IV 3 GHz processor with
1024 MB of internal memory. We run the B&B algorithm with each
of the seven rules developed in the previous section. The B&B using
rule i; is referred to i = 1, 2, . . . , 7 as B&B(i).

In order to evaluate the performance of B&B(i) for i = 1, 2, . . . , 7,
we generated test problems using the random network generator
RanGen (Demeulemeester, Vanhoucke, & Herroelen, 2003). The
test problems are generated for full factorial of three parameters,
i.e. the number of activities (n), the network shape parameter order
strength1 (OS), and the resource factor2 (RF). We considered five val-
ues 20, 22, 24, 26 and 28 for n, three values 0.2, 0.35 and 0.5 for OS
and three values 0.1, 0.2 and 0.3 for RF. There are two reasons for
considering small values for RF. Considering higher values for RF
increases the computation time unreasonably while comparative
.

Table 2
Rules 1–7 for the sequence of the arc insertion.

Rule number kij Characteristics

Precedence relations Durations Resource requirements

1 |suc(i) [suc(j)| U

2 di + dj U

3
P

r2ðRi[RjÞpr U

4 qi + qj U U

5
P

k2ðpredðiÞ[predðjÞ[sucðiÞ[sucðjÞÞ;
Rk\ðRi[Rj Þ – ;

P
r2Rk

pr U U

6 di
P

r2Ri
pr þ dj

P
r2Rj

pr U U

7 di
P

r2Ri
pr þ dj

P
r2Rj

pr þ
P

k2ðpredðiÞ[predðjÞ[sucðiÞ[sucðjÞÞ;
Rk\ðRi[Rj Þ – ;

dk
P

r2Rk
pr U U U

Table 3
Results of application of rules 1–7 on the example project.

Rule number fk12; k14; k25; k34; k35; k45; k56g Sequence

1 {5,4,4,2,2,2,1} {h1, 2i, h1, 4i, h2, 5i, h3, 4i, h3, 5i, h4, 5i, h5, 6i}
2 {5,9,7,10,9,11,8} {h4, 5i, h3, 4i, h1, 4i, h3, 5i, h5, 6i, h2, 5i, h1, 2i}
3 {0.176,0.4,0.4,0.4,0.4,0.4,0.4} {h1, 4i, h2, 5i, h3, 4i, h3, 5i, h4, 5i, h5, 6i, h1, 2i}
4 {16,10,9,6,3,3,0} {h1, 2i, h1, 4i, h2, 5i, h3, 4i, h3, 5i, h4, 5i, h5, 6i}
5 {0.4,0.22,0.22,0.22,0.22,0.22,0.4} {h1, 2i, h5, 6i, h1, 4i, h2, 5i, h3, 4i, h3, 5i, h4, 5i}
6 {0.8,2.9,2.3,3.2,2.8,4.3,2.6} {h4, 5i, h3, 4i, h1, 4i, h3, 5i, h5, 6i, h2, 5i, h1, 2i}
7 {5.2,6.8,6.8,4.8,4.4,5.9,6.8} {h1, 4i, h2, 5i, h5, 6i, h4, 5i, h1, 2i, h3, 4i, h3, 5i}

268 M. Ranjbar et al. / Computers & Industrial Engineering 62 (2012) 264–270
results show the outcomes very similar to what presented in this pa-
per. We found this on the basis of considering values 0.25, 0.5 and
0.75 for RF and testing on a small set of instances. On the other hand,
in practice, the activities that need very expensive resources are not
really more than (almost) 30� of all activities of a project.

For each combination of n, OS and RF, we generated three test
instances giving rise to 135 test instances. We also set the number
of resource to m = 3. Also, for each resource r, we selected qr and wr

randomly from discrete uniform distributions U[1, n] and U[1,m],
respectively. In addition, for each resource r, we set dr to qr + cp,
where cp indicates the length of critical path.

The average number of disjunctive arcs for different values of n,
OS and RF is presented in Table 4. As it is expected, the number of
disjunctive arcs is increased by increasing n and RF and decreasing
OS.

4.2. Comparative Computational results

In this section, total CPU time for running a B&B algorithm is re-
ferred to as TTotal and the CPU time spent for finding optimal solu-
tion is referred to as TBest. The most important factor affecting TTotal

and TBest is the number of disjunctive arcs, presented in Table 4. TTo-

tal and TBest, expressed in seconds, are displayed in Table 5. Since
Table 4
Average number of disjunctive arcs.

OS RF n

20 22 24 26 28

0.2 0.1 3.7 4 6 6.7 5.3
0.2 14.7 21 25 36 28.7
0.3 32 36.7 50.3 67 73.7

0.35 0.1 2.3 3.3 4 6.3 7
0.2 14.7 14.7 18 21.7 31
0.3 24.3 32.7 46 47.3 60

0.5 0.1 3.3 3.3 2.3 3 3.3
0.2 11 11 12.3 16.3 16.7
0.3 18.3 22.3 30.7 34.3 49.3
TTotal for some of the B&B algorithms were very large, we limited
the TTotal to 1 h (3600 s). Thus, for the cases that TTotal is greater
than 3600 s, we consider them equal to 3600 s. The last row of Ta-
ble 5 indicates how many number of optimal solutions, shown by
No. Opt, are found in 1 h. If we look at Tables 2 and 5 together, we
can conclude that durations and precedence relations are more
important characteristics than resource requirements in determi-
nation of the arc insertion sequence. This conclusion is compatible
when we combine two characteristics durations and precedence
relations and obtain the best results, shown by B&B(4). If we com-
pare the results of B&B(4) and B&B(7), we see that contribution of
resource requirements characteristic in finding a rule for the se-
quence of arc insertion makes the results worse. Similar results
are obtained if we compare B&B(1) with B&B(5) and B&B(2) with
B&B(6).

In the following, we interpret the reason of efficiency ranking of
the B&B algorithms. The efficiency of our developed B&B algo-
rithms depends on the number of redundant disjunctive arcs and
fathomed nodes. There are two general rules for cutting nodes in
our B&B algorithms; cycle detection and lower bound. In the pro-
ject network, each disjunctive arc includes two nodes; begin node
and end node. In terms of cycle detection and redundant arcs,
wherever the number of input conjunctive arcs to the begin node
of a disjunctive arc increases or the number of output conjunctive
arcs from the end node of a disjunctive arc increases, the probabil-
ity of detecting cycle or finding redundant arcs will be raised. On
the other hand, cutting nodes based on the LB depends on both
activities duration and resource characteristics but it seems the
activities duration are more important.
Table 5
Summary results of the B&B algorithms.

B&B(1) B&B(2) B&B(3) B&B(4) B&B(5) B&B(6) B&B(7)

Avg. TBest 1.68 0.95 8.62 0.51 3.68 8.41 20.12
Avg.

TTotal

20.86 4.14 75.98 3.81 20.70 57.28 30.87

No.Opt 135 135 133 135 135 133 134

Table 6
Average TTotal in seconds for different values of n.

n 20 22 24 26 28

B&B(1) 0.02 0.03 1.23 4.38 98.63
B&B(2) 0.01 0.03 0.66 3.03 16.96
B&B(3) 0.07 0.06 14.33 10.25 355.21
B&B(4) 0.01 0.03 0.92 2.54 15.53
B&B(5) 0.04 0.05 2.88 18.12 82.39
B&B(6) 0.05 0.05 3.71 18.09 264.5
B&B(7) 0.05 0.06 2.67 2.81 148.76

Table 7
Average TTotal in seconds for different values of OS.

OS 0.2 0.3 0.4

B&B(1) 61.06 1.05 0.45
B&B(2) 10.48 1.09 0.85
B&B(3) 160.57 62.87 4.51
B&B(4) 10.27 0.71 0.44
B&B(5) 36.96 23.87 1.25
B&B(6) 91.09 79.27 1.48
B&B(7) 94.76 4.97 1.88

Table 8
Average TTotal in seconds for different values of RF.

RF 0.1 0.2 0.3

B&B(1) 0 0.05 62.53
B&B(2) 0 0.04 12.37
B&B(3) 0 0.22 227.73
B&B(4) 0 0.03 11.39
B&B(5) 0 0.06 62.03
B&B(6) 0 0.08 171.76
B&B(7) 0 0.06 92.58

Table 9
Performance of B&B algorithms for limited CPU run times.

CPU run
time

1 5 10 30 60

B&B(1) 5.55(125) 2.49(130) 1.07(132) 0.63(133) 0.51(134)
B&B(2) 5.51(121) 1.28(129) 1.02(131) 0.11(134) 0.00(135)
B&B(3) 13.41(116) 11.09(120) 8.98(125) 5.16(126) 3.08(129)
B&B(4) 3.27(126) 0.48(133) 0.12(133) 0.04(134) 0.00(135)
B&B(5) 6.86(121) 4.66(126) 3.11(129) 0.66(132) 0.39(133)
B&B(6) 12.83(116) 8.02(121) 7.05(122) 1.92(128) 1.53(131)
B&B(7) 12.18(121) 4.95(125) 1.52(129) 0.89(131) 0.64(133)

Table 10
Average percent deviation from optimal solution for different values of n.

n 20 22 24 26 28

APD 108.45 154.15 74.92 79.61 83.37

Table 11
Average percent deviation from optimal solution for different values of OS.

OS 0.2 0.35 0.5

APD 135.49 132.97 31.84

Table 12
Average percent deviation from optimal solution for different values of RF.

RF 0.1 0.2 0.3

APD 85.64 105.11 109.55

M. Ranjbar et al. / Computers & Industrial Engineering 62 (2012) 264–270 269
Tables 6–8 display TTotal obtained by each of B&B algorithms for
different values of n, OS and RF respectively. As it is expected, TTotal

is increased by increasing n and RF and by decreasing OS. This
behavior is consistent and does not depend on the type of B&B
algorithm.

In order to compare the performance of B&B algorithms for
short run times, we run each of the B&B algorithms for 1, 5, 10,
30 and 60 s. The results are shown in Table 9 in which each cell in-
cludes two values, average percent deviation from optimal solution
(APD) and No. Opt. Again, we see that B&B(4) outperforms other
B&B algorithms while B&B(2) and B&B(1) are the next best algo-
rithms, respectively.
4.3. Performance of the heuristic procedure

In this section, we evaluate the performance of the heuristic
procedure developed to generate the initial solution. For this pur-
pose, we computed the APD of the initial solutions from optimal
solutions for different values of n, OS and RF, shown in Tables
10–12 respectively. Table 10 implies that there is no relation be-
tween APD and number of activities while Tables 11 and 12 show
a trend. Table 11 indicates the APD is decreased by increasing of
the order strength while Table 12 indicates the APD is increased
by increasing of the resource factor.
5. Summary and conclusions

In this paper, we studied the problem of minimizing total
weighted resource tardiness penalty costs in the resource-con-
strained project scheduling. We showed the problem as a graph
including conjunctive and disjunctive arcs and we formulated it
as an integer programming model. As the solution approach, we
developed a first-depth branch-and-bound algorithm, based on
the arc insertion technique, for this problem. We also developed
a fast heuristic procedure for generation of initial solution and a
lower bound to accelerate the algorithm. A complete solution is ob-
tained when for each disjunctive arc, a direction is selected.
Although the sequence of arc insertion does not have any effect
on the value of optimal solution, but it affects the speed of the
algorithm. If infeasible or dominated solutions are found in the
higher level of the search tree, they are discarded to decreases
the generated nodes and run time of algorithm. We developed se-
ven rules for the sequence of arc insertion defined based on the
three characteristics of activities: precedence relations, durations
and resource requirements. The computations experiments show
that the best results are related to the rules defined based on the
combination of two characteristics, i.e. durations and precedence
relations of activities.

An important research direction that might be pursued in the
future is extension of developed rules in this work. Also, develop-
ing other exact, heuristic or metaheuristic algorithms for problem
defined in this paper can be an interesting research topic.

References

Bellman, R. E. (1958). On a routing problem. Quarterly Applied Mathematics, 16,
87–90.

Bianco, L., Dell’Olmo, P., & Speranza, M. G. (1998). Heuristics for multimode
scheduling problems with dedicated resources. European Journal of Operational
Research, 107, 260–271.

Bilge, Ü., Kiraç, F., Kurtulan, M., & Pekgün, P. (2004). A tabu search algorithm for
parallel machine total tardiness problem. Computers & Operations Research, 31,
397–414.

Bilge, Ü., Kurtulan, M., & Kiraç, F. (2007). A tabu search algorithm for the single
machine total weighted tardiness problem. European Journal of Operational
Research, 176, 1423–1435.

270 M. Ranjbar et al. / Computers & Industrial Engineering 62 (2012) 264–270
Blazewicz, J., Lenstra, J., & Rinnooy-Kan, A. (1983). Scheduling subject to resource
constraints – Classification and complexity. Discrete Applied Mathematics, 5, 11–24.

Brucker, P., Jurisch, B., & Kramer, A. (1994). The job-shop problem and immediate
selection. Annals of Operations Research, 50, 73–114.

Demeulemeester, E., Herroelen, W., 2002. Project scheduling: A research handbook.
Kluwer Academic Publishers.

Demeulemeester, E., Vanhoucke, M., & Herroelen, W. (2003). A random generator
for activity-on-the-node networks. Journal of Scheduling, 6, 13–34.

Essafi, I., Yazid, M., & Dauzère-Pérès, S. (2008). A genetic local search algorithm for
minimizing total weighted tardiness in the job-shop scheduling problem.
Computers & Operations Research, 35, 2599–2616.

Herroelen, W. (2005). Project scheduling-theory and practice. Production and
Operations Management, 14, 413–432.

Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for
resource-constrained project scheduling: An update. European Journal of
Operational Research, 174, 23–37.

Kolisch, R., & Padman, R. (2001). An integrated survey of deterministic project
scheduling. Omega, 29, 249–272.

Lawler, E. L. (1976). Combinatorial optimization: Networks and matroids. New York:
Holt, Rinehart and Winston.

Lenstra, J., Rinnooy, A. K., & Brucker, P. (1977). Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1, 343–362.

Liaw, C., Lin, Y., Cheng, C., & Chen, M. (2003). Scheduling unrelated parallel
machines to minimize total weighted tardiness. Computers & Operations
Research, 30, 1777–1789.
Mastor, A. A. (1970). An experimental and comparative evaluation of production
line balancing techniques. Management Science, 16, 728–746.

Nadjafi, B. A., & Shadrokh, S. (2009). A branch and bound algorithm for the weighted
earliness–tardiness project scheduling problem with generalized precedence
relations. Scientia Iranica, 16, 55–64.

Neumann, K., Schwindt, C., & Zimmermann, J. (2002). Recent results on resource
constrained project scheduling with time windows: Models, solution methods,
and applications. Central European Journal of Operations Research, 10, 113–148.

Pan, J. C., Chen, J., & Chao, C. (2002). Minimizing tardiness in two-machine flow
shop. Computers & Operations Research, 29, 869–885.

Singer, M., & Pinedo, M. (1998). A computational study of branch and bound
techniques for minimizing the total weighted tardiness in job shops. IIE
Transactions, 30, 109–118.

Shim, S. O., & Kim, Y. D. (2007). Scheduling on parallel identical machines to
minimize total tardiness. European Journal of Operational Research, 177,
135–146.

Stinson, J. P., Davis, E. W., & Khumawala, B. M. (1978). Multiple resource-
constrained scheduling using branch and bound. AIIE Transactions, 10, 252–259.

Tian, Z. J., Ng, C. T., & Cheng, T. C. E. (2005). On the single machine total tardiness
problem. European Journal of Operational Research, 165, 843–846.

Vanhoucke, M., Demeulemeester, E., & Herroelen, W. (2001). An exact procedure for
the resource-constrained weighted earliness–tardiness project scheduling
problem. Annals of Operations Research, 102, 179–196.

	An optimal procedure for minimizing total weighted resource tardiness penalty costs in the resource-constrained project scheduling problem
	1 Introduction
	2 Problem modeling and formulation
	3 A branch-and-bound algorithm
	3.1 A heuristic procedure for an initial solution
	3.2 Branching scheme
	3.3 A cycle detection procedure
	3.4 A lower bound
	3.5 Sequence of the arc insertion

	4 Computational experiments
	4.1 Benchmark problem sets
	4.2 Comparative Computational results
	4.3 Performance of the heuristic procedure

	5 Summary and conclusions
	References

