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Abstract—In this paper, we obtain a general achievable rate
region and some certain capacity theorems for multiple-access
relay channel (MARC), using decode and forward (DAF) strategy
at the relay, superposition coding at the transmitters. Our general
rate region (i) generalizes the achievability part of Slepian-Wolf
multiple-access capacity theorem to the MARC, (ii) extends the
Cover-El Gamal best achievable rate for the relay channel with
DAF strategy to the MARC, (iii) gives the Kramer-Wijengaarden
anticipated rate region for the MARC, (iv) meets max-flow min-
cut upper bound and leads to the capacity regions of some
important classes of the MARC.

Index Terms—Multiple-access relay channel; decode and for-
ward strategy; superposition coding; degraded relay channel;
orthogonal components.

I. INTRODUCTION

THE relay channel was first introduced by Van der Meulen
[1]. In the Cover-El Gamal seminal paper [2], the relay

channel has been studied carefully. In [3], [4], the known
capacity theorems for the relay channel have been unified into
one capacity theorem. Relaying has been proposed as a means
to increase coverage area and transmission rate of wireless
networks. Relay nodes in cooperation with the users, act as a
distributed multi-antenna system. In [5], MARC is introduced,
where some sources communicate with one single destination
with the help of a relay node. In [6], [7], some capacity regions
were determined for the MARC.

A. Our Motivation and Work

In the literature, we had a general achievable rate for the
relay channel [2] and Slepian-Wolf multiple-access capacity
theorem [8]; also, extension of the general best rate for the
relay channel to a relay network [9], and capacities of special
relay channels [2], [10], [11].

In view of the above previous work and motivations, in
this paper, we obtain a general achievable rate region for
the multiple-access relay channel that might be considered
as (i) generalization of Slepian-Wolf multiple-access capacity
theorem to the MARC, (ii) extension of the Cover-El Gamal
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best achievable rate for the relay to the MARC. Also, our
achievable rate, (iii) includes the Kramer-Wijengaarden antic-
ipated achievable rate region for the MARC and, (iv) meets
max-flow min-cut upper bound and leads to the capacity region
for some important classes of the MARC.

B. Paper Organization

The rest of the paper is organized as follows: In section II,
we have preliminaries and some definitions . In the section III,
we introduce and prove the main theorem. The results of the
main theorem are studied in section IV. Finally, we conclude
the paper in section V.

II. PRELIMINARIES

A. Notation

In this paper, we use the following notations: random
variables (r.v.) are denoted by uppercase letters and lowercase
letters are used to show their realizations. The probability
distribution function (p.d.f) of a r.v. X with alphabet set X
is denoted by PX(x) where x ∈ X ;P(X|Y )(x|y) denotes the
conditional p.d.f of X given Y , where y ∈ Y . A sequence of
r.v.’s (Xk,1, · · · , Xk,n) with the same alphabet set X is denoted
by Xn

k and its realization is denoted by (xk,1, · · · , xk,n), where
k is the index of the kth sender. The set of all ε-typical n-
sequences Xn with respect to the p.d.f PX(x), is denoted by
Anε (X).

B. Slepian-Wolf Multiple-Access Channel Capacity Region

For the discrete memoryless multiple-access channel (MAC)
(X1 × X2, p(y|x1, x2),Y) with three independent uniformly
distributed messages (Slepian and Wolf situation), the capacity
region for this channel is given by the set of rate triples
(R0, R1, R2) such that

R1 ≤ I(X1;Y |X2, S) (1a)
R2 ≤ I(X2;Y |X1, S) (1b)

R1 +R2 ≤ I(X1, X2;Y |S) (1c)
R0 +R1 +R2 ≤ I(X1, X2;Y ) (1d)

for some p(s)p(x1|s)p(x2|s).
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Fig. 1: A two-source multiple-access relay channel

C. Multiple-Access Relay Channel

In multiple-access relay channel, some sources communi-
cate with one single destination with the help of a relay node.
An example of such a channel model is the cooperative uplink
of some mobile stations to the base station with the help of
the relay in a cellular based mobile communication system.
Fig. 1 shows a two-source discrete memoryless MARC which
is defined by (X1×X2×XR, p(yR, yD|x1, x2, xR),YR×YD),
where YD and YR are the channel outputs of the receiver
and the relay, respectively; Xk, (k = 1, 2) and XR are the
channel inputs which are sent by the transmitter and the relay,
respectively.

D. Kramer-Wijengaarden Multiple-Access Relay Channel
Achievable Rate Region

In [8], Kramer and Wijengaarden anticipated the following
achievable rate region for multiple-access relay channel:

R1 ≤ min
(
I(X1;YR|X2, XR), I(X1, XR;YD|X2)

)
(2a)

R2 ≤ min
(
I(X2;YR|X1, XR), I(X2, XR;YD|X1)

)
(2b)

R1 +R2 ≤ min
(
I(X1, X2;YR|XR), I(X1, X2, XR;YD)

)
(2c)

where

p(x1, x2, xR) = p(x1)p(x2)p(xR|x1, x2) (3)

E. Special Classes of Multiple-Access Relay Channel

1) Multiple-Access Degraded Relay Channel (MADRC): In
multiple-access degraded relay channel, all channels between
senders and relay are better than direct channels, such that for
MADRC, we have:

p(x1, x2, xR, yR, yD) =

p(x1, x2, xR)p(yR|x1, x2, xR)p(yD|xR, yR) (4)

2) Multiple-Access Reversely Degraded Relay Channel
(MARDRC): In multiple-access reversely degraded relay chan-
nel, all channels between senders and receiver are better than
channels between senders and relay, hence, we have:

p(x1, x2, xR, yR, yD) =

p(x1, x2, xR)p(yD|x1, x2, xR)p(yR|yD, xR) (5)

3) Multiple-Access Semi-Deterministc Relay Channel
(MASDRC): If YR = g(X1, X2, XR) and the senders know
the each other messages, then YR is known at the senders

(assuming that the senders know the first symbol of XR),
hence, we have:

p(x1, x2, xR, yR, yD) =

p(x1, x2, xR, yR)p(yD|x1, x2, xR, yR) (6)

4) Multiple-Access Relay Channel with Orthogonal Com-
ponents (MARCO): Xk (k = 1, 2) is divided to orthogonal
components (XRk, XDk) and these components are sent from
the senders to the relay (XRk) and from the senders and relay
to the receiver (XDk, XR). A discrete memoryless multiple-
access relay channel is said to have orthogonal components if
the channel input-output distribution can be expressed as

P (yD, yR, xR1, xR2, xD1, xD2, xR) = P (yR|xR1, xR2, xR)

P (yD|xD1, xD2, xR)P (xR)

2∏
k=1

P (xRk|xR)P (xDk|xR) (7)

III. MAIN THEOREM

Theorem. A general achievable rate region for two-source
multiple-access relay channel is given by

⋃
{(R0, R1, R2) :

R1 ≤ min
(
I(U1, X1;YD|U0, U2, X2, XR) + I(XR;YD), (8a)

I(U1;YR|U0, U2, XR) + I(X1;YD|U0, U1, U2, X2, XR)
)

R2 ≤ min
(
I(U2, X2;YD|U0, U1, X1, XR) + I(XR;YD), (8b)

I(U2;YR|U0, U1, XR) + I(X2;YD|U0, U1, U2, X1, XR)
)

R1 +R2 ≤ min
(
I(U1, U2, X1, X2;YD|U0, XR) + I(XR;YD),

I(U1, U2;YR|U0, XR) + I(X1, X2;YD|U0, U1, U2, XR)
)

(8c)

R0 +R1 +R2 ≤ min
(
(I(X1, X2, XR;YD), (8d)

I(U0, U1, U2;YR|XR) + I(X1, X2;YD|U0, U1, U2, XR)
)
}

where the union is taken over all p(x1, x2, xR, u0, u1, u2) for
which

p(x1, x2, xR, u0, u1, u2) =

P (xR)P (u0)

2∏
k=1

P (uk|u0, xR)P (xk|u0, uk, xR) (9)

A. Proof of the Theorem

We split every message wk into two parts w′k and w′′k with
respective rates R′k and R′′k . We consider B blocks, each of
n symbols. We use superposition coding. In each block, b =
1, 2, · · · , B + 1, we use the same set of codebooks:

C = {xnR(m), un0 (j), u1(j,m, l1), u2(j,m, l2),

x1(j,m, l1, q1), x2(j,m, l2, q2)}
m = (m1,m2) ∈ [1 : 2nR

′
1 ]× [1 : 2nR

′
2 ] R = R′1 +R′2,

j ∈ [1 : 2nR0 ], lk ∈ [1 : 2nR
′
k ], qk ∈ [1 : 2nR

′′
k ], k = 1, 2.

Now, we proceed with proof of achievability using
a random coding technique. Random codebook genera-
tion: First, fix a choice of P (u0, u1, u2, xR, x1, x2) =
P (xR)P (u0)

∏2
k=1 P (uk|u0, xR)P (xk|u0, uk, xR)
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1) Generate 2nR independent identically distributed n-
sequence xnR, each drawn according to P (xnR) =∏n
t=1 P (xR,t) and index them as xnR(m), m ∈ [1 : 2nR].

2) Generate 2nR0 independent identically distributed n-
sequence un0 , each drawn according to P (un0 ) =∏n
t=1 P (u0,t). Index them as un0 (j), j ∈ [1 : 2nR0 ].

3) For each {xnR(m), un0 (j)}, generate 2nR
′
k , k = 1, 2,

conditionally independent n-sequence unk , each
drawn according to P (unk |xnR(m), un0 (j)) =∏n
t=1 P (uk,t|xR,t(m), u0,t(j)). Index them as

unk (j,m, lk), lk ∈ [1 : 2nR
′
k ].

4) For each {xnR(m), un0 (j), u
n
k (j,m, lk)}, generate

2nR
′′
k , k = 1, 2, conditionally independent

n-sequence xnk , each drawn according
to P (xnk |xnR(m), un0 (j), u

n
k (j,m, lk)) =∏n

t=1 P (xk,t|xR,t(m), u0,t(j), uk,t(j,m, lk)). Index
them as xnk (j,m, lk, qk), qk ∈ [1 : 2nR

′′
k ].

5) Partition the sequence (unk , x
n
k ), k = 1, 2, into 2nR bins,

randomly.
6) Partition the sequence (un1 , x

n
1 , u

n
2 , x

n
2 ) into 2nR bins,

randomly.
7) Partition the sequence (un0 , u

n
1 , x

n
1 , u

n
2 , x

n
2 ) into 2nR

bins, randomly.
Encoding: Encoding is performed in B + 1 blocks. The
encoding strategy is shown in table I.

1) Source Terminals: The message w0 and w′k are split
into B equally sized blocks w0,b, w

′
k,b , k = 1, 2,

b = 1, . . . , B. Similarly, w′′k is split into B equally
sized blocks w′′k,b, k = 1, 2, b = 1, . . . , B. In
block b = 1, · · · , B + 1, the kth encoder sends
xnk,b(w0,b, w

′
k,b−1, w

′
k,b, w

′′
k,b) over the channel.

2) Relay Terminal: After the transmission of block b is
completed, the relay has seen ynR,b. The relay tries to
find w̃0,b, w̃′1,b and w̃′2,b such that(
un1,b(w̃0,b, ŵ

′
1,b−1, w̃

′
1,b), u

n
2,b(w̃0,b, ŵ

′
2,b−1, w̃

′
2,b),

xnR,b(ŵ
′
1,b−1, ŵ

′
2,b−1), u

n
0,b(w̃0,b),

ynR,b

)
∈ Anε (U1, U2, XR, U0, YR) (10)

where ŵ′1,b−1 and ŵ′2,b−1 are the relay terminal’s esti-
mate of w′1,b−1 and w′2,b−1, respectively. If one or more
such w′1,b and w′2,b are found, then the relay chooses one
of them, and then transmits xnR,b+1(ŵ

′
1,b, ŵ

′
2,b) in block

b+ 1.

3) Sink Terminal: After block b, the receiver has
seen ynD,b−1 and ynD,b and tries to find w̃0,b−1,
w̃′1,b−1, w̃

′
2,b−1, w̃′′1,b−1 and w̃′′2,b−1 such that(

xnR,b(w̃
′
1,b−1, w̃

′
2,b−1), y

n
D,b

)
∈ Anε (XR, YD) (11)

and(
un1,b−1(w̃0,b−1, ŵ

′
1,b−2, w̃

′
1,b−1),

un2,b−1(w̃0,b−1, ŵ
′
2,b−1, w̃

′
2,b−1), u

n
0,b−1(w̃0,b−1),

xn1,b−1(w̃0,b−1, ŵ
′
1,b−2, w̃

′
1,b−1, w̃

′′
1,b−1),

xn2,b−1(w̃0,b−1, ŵ
′
2,b−2, w̃

′
2,b−1, w̃

′′
2,b−1),

xnR,b−1(ŵ
′
1,b−2, ŵ

′
2,b−2), y

n
D,b−1

)
∈ Anε (U1, U2, U0, X1, X2, XR, YD) (12)

Decoding and error Analysis: It can be shown that the relay,
after determining xnR from ynR, uses jointly decoding and can
decode reliably if

R′1 ≤ I(U1;YR|XR, U2, U0) (13)
R′2 ≤ I(U2;YR|XR, U1, U0) (14)

R′1 +R′2 ≤ I(U1, U2;YR|XR, U0) (15)
R0 +R′1 +R′2 ≤ I(U0, U1, U2;YR|XR) (16)

and the receiver decodes xnR, un0 and other messages with
arbitrarily small probability of error if

R′′1 ≤ I(X1;YD|U0, U1, U2, X2, XR) (17)
R′′2 ≤ I(X2;YD|U0, U1, U2, X1, XR) (18)

R′′1 +R′′2 ≤ I(X1, X2;YD|U0, U1, U2, XR) (19)
R′1 +R′′1 − I(XR;YD)

≤ I(U1, X1;YD|U2, U0, X2, XR) (20)
R′2 +R′′2 − I(XR;YD)

≤ I(U2, X2;YD|U1, U0, X1, XR) (21)
R′1 +R′′1 +R′2 +R′′2 − I(XR;YD)

≤ I(U1, U2, X1, X2;YD|U0, XR) (22)
R0 +R′1 +R′′1 +R′2 +R′′2 − I(XR;YD)

≤ I(U0, U1, U2, X1, X2;YD|XR) (23)
Therefore, by fully considering (13)-(23), the theorem is

proved.

IV. THE RESULTS OF THE THEOREM

For the multiple-access relay channel, the achievable rate
regions and for some special cases, the capacity regions have
been found in the following:

A. Achievability Region of Slepian-Wolf Multiple-Access
Channel

Suppose that Xk, k = 1, 2, sees a source of rate Rk, and
in addition, all Xk see a common source of rate R0. All three
sources are independent. To obtain the achievable rate region
let U0 = S and Uk = Xk. With removing the relay, we obtain
achievability of (R0, R1, R2) according to the (1a)-(1d).

B. The anticipated Rate Region of Kramer-Wijengaarden
Work

The Kramer-Wijengaarden anticipated achievable rate re-
gion for MARC in accordance with our definition, is multiple-
access degraded relay channel which is discussed in the next
section (C-1).

C. Capacity Region of Some Special Classes of Multiple-
Access Relay Channel

1) The Capacity Region of Multiple-Access Degraded Relay
Channel: With substitution Uk = Xk or Uk = fk(Xk) (fk is
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TABLE I: Encoding Strategy
Block1 Block2 · · · Block B+1

un
0,1(w0,1) un

0,2(w0,2) · · · un
0,B+1(1)

xn
R,1(1, 1) xn

R,2(w
′
1,1, w

′
2,1) · · · xn

R,B+1(w
′
1,B , w′

2,B)

un
1,1(w0,1, 1, w′

1,1) un
1,2(w0,2, w′

1,1, w
′
1,2) · · · un

1,B+1(1, w
′
1,B , 1)

un
2,1(w0,1, 1, w′

2,1) un
2,2(w0,2, w′

2,1, w
′
2,2) · · · un

2,B+1(1, w
′
2,B , 1)

xn
1,1(w0,1, 1, w′

1,1, w
′′
1,1) xn

1,2(w0,2, w′
1,1, w

′
1,2, w

′′
1,2) · · · xn

1,B+1(1, w
′
1,B , 1, 1)

xn
2,1(w0,1, 1, w′

2,1, w
′′
2,1) xn

2,2(w0,2, w′
2,1, w

′
2,2, w

′′
2,2) · · · xn

2,B+1(1, w
′
2,B , 1, 1)

reversible), k = 1, 2, and U0 = φ in (8a)-(8d) then MARC
is an MADRC ((X1, X2) → (XR, YR) → YD) and there
exists p(x1, x2, xR, u0, u1, u2) = p(x1, x2, xR) such that for
MADRC, we have:

p(x1, x2, xR, yR, yD) = (24)
p(x1, x2, xR)p(yD|xR, yR)p(yR|x1, x2, xR)

R1 ≤ min
(
I(X1;YR|X2, XR), I(X1, XR;YD|X2)

)
(25a)

R2 ≤ min
(
I(X2;YR|X1, XR), I(X2, XR;YD|X1)

)
(25b)

R1 +R2 ≤ min
(
I(X1, X2;YR|XR), I(X1, X2, XR;YD)

)
(25c)

It is shown in [7] that achievable rate in (25a)-(25c) meets
its outer bound; therefore, the above achievable rate is the
capacity region.

2) The Capacity Region of Multiple-Access Reversely De-
graded Relay Channel: In multiple-access reversely degraded
relay channel Uk = XR, k = 1, 2, and U0 = φ. We
have (X1, X2) → (XR, YD) → YR. Consequently, MARC
is an MARDRC and there exists p(x1, x2, xR, u0, u1, u2) =
p(x1, x2, xR) such that for MARDRC, we have:

p(x1, x2, xR, yR, yD) = (26)
p(x1, x2, xR)p(yD|x1, x2, xR)p(yR|yD, xR)

It is easy to show that the capacity region for MARDRC is as
follows

R1 ≤ I(X1;YD|X2, XR) (27a)
R2 ≤ I(X2;YD|, X1, XR) (27b)

R1 +R2 ≤ I(X1, X2;YD|XR) (27c)

3) The Capacity Region of Multiple-Access Semi-
Deterministic Relay Channel: If YR = g(X1, X2, XR)
and the senders know the each other messages, then YR
is known at the senders and according to the lemma
in [3] and [4], Uk, k = 1, 2, is also a function of
Xk, k = 1, 2, and XR and we have Uk = YR, then there
exists, p(x1, x2, xR, u0, u1, u2) = p(x1, x2, xR, yR) such that
for MASDRC, we have:

p(x1, x2, xR, yR, yD) = p(x1, x2, xR, yR)p(yD|x1, x2, xR, yR)
We obtain achievability of (R1, R2) as follows,

R1 ≤ I(X1;YD|YR, X2, XR) (28a)
R2 ≤ I(X2;YD|YR, X1, XR) (28b)

R1 +R2 ≤ min
(
H(YR|XR) + I(X1, X2;YD|YR, XR)

I(YR, X1, X2;YD|XR) + I(XR;YD)
)

(28c)

It is easy to show that this rate is also an outer bound for
MASDERC.

4) The Capacity Region of Multiple-Access Relay Channel
with Orthogonal Components: In [6], the capacity region of
MARCO was obtained. If Xk = (XRk, XDk), k = 1, 2,
and Uk = XRk, k = 1, 2; therefore, the capacity region is
obtained as following:

R1 ≤ min
(
I(XD1, XR;YD|XD2), (29a)

I(XR1;YR|XR2, XR) + I(XD1;YD|XD2, XR)
)

R2 ≤ min
(
I(XD2, XR;YD|XD1), (29b)

I(XR2;YR|XR1, XR) + I(XD2;YD|XD1, XR)
)

R1 +R2 ≤ min
(
I(XD1, XD2, XR;YD), (29c)

I(XR1, XR2;YR|XR) + I(XD1, XD2;YD|XR)
)

where

P (xR1, xR2, xD1, xD2, xR)

= P (xR)

2∏
k=1

P (xRk|xR)P (xDk|xR) (30)

V. CONCLUSION

We obtain a general achievable rate region and some certain
capacity theorems for the MARC. Our general rate region
generalizes the achievability part of Slepian-Wolf multiple-
access capacity theorem to the MARC, extends the Cover-
El Gamal best achievable rate for the relay channel with
DAF strategy to the MARC, gives the Kramer-Wijengaarden
anticipated rate region for the MARC, meets max-flow min-
cut upper bound and leads to the capacity regions of some
important classes of the MARC such as MADRC, MARDRC,
MASDRC and MARCO.
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