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Comparison of Liao’s optimal HAM and

Niu’s one-step optimal HAM

for solving integro-differential equations

Jafar Saberi-Nadjafi1 and Hossein Saberi-Jafari2

Abstract

In this paper, the Liao’s optimal homotopy analysis method is com-

pared with the Niu’s one-step optimal homotopy analysis method for

solving one system of linear Volterra integro-differential equations and

one integro-differential equation. The results reveal that the Liao’s op-

timal HAM has more accuracy to determine the convergence-control

parameter than the one-step optimal HAM suggested by Zhao Niu.
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1 Introduction

In 1992, Liao [5], for the first time, used the concept of homotopy to obtain

analytic approximations of a nonlinear eqution

N [u(t)] = 0, (1)
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by constructing a one-parameter family of equations called the zeroth-order

deformation equation,

(1− q)L[φ(t, q)− u0(t)] = qN [φ(t, q)] (2)

where q ∈ [0, 1] is an embedding parameter, N is a nonlinear operator, u(t) is

an unknown function, u0(t) is an initial guess and L is a linear operator. At

q = 0 and q = 1, we have φ(t, 0) = u0(t) and φ(t, 1) = u(t), respectively. So, if

the Taylor series

φ(t, q) = u0(t) +
+∞
∑

m=1

um(t)q
m, (3)

where

um(t) =
1

m!

∂mφ(t, q)

∂qm

∣

∣

∣

∣

q=0

, (4)

converges at q = 1, we have the so-called homotopy-series solution

u(t) = u0(t) +
+∞
∑

m=1

um(t), (5)

which must satisfy the governing equation(1). However, Liao [6, 3] found that

the above approach breaks down if the Taylor series (3) diverges at q = 1. So,

to overcome this restriction, in 1997, he introduced [6] a nonzeroth auxiliary

parameter c0, to construct a two-parameter family of equations, i.e. the zeroth-

order deformation equation:

(1− q)L[φ(t, q)− u0(t)] = c0qN (t, q) (6)

This auxiliary parameter is also known as a convergence-control parameter

[7]. Now, the homotopy-series solution (5) is not only dependent upon the

embedding parameter q but also the convergence-control parameter c0. From[3,

6, 8] we find out that the convergence-control parameter c0, can provide us a

convenient way to ensure the convergence of homotopy series solution and also

adjust and control it’s convergence region. A simple way of selecting c0 is

to plot the curve of homotopy-series solution’s derivatives (“c0-curves”) with

respect to c0 in some points [3, 9, 1]. So, if the homotopy-series solution

is unique, all of them converge to the same value and hence there exists a

horizontal line segment in it’s figure that corresponds to a region of c0 called

the valid region of c0. It is a pity that the so-called “c0-curves” approch can not
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give the optimal value of c0, to obtain the fastest convergent series. so, during

these years, some approches suggested in order to determine the optimal value

of c0. In 2008, Marinca et al. [11, 12] introduced the so-called “homotopy

asymptotic method” which is similar to the homotopy analysis method. This

approach is based on a homotopy equation

[1− q]L[φ(t, q) + g(t)] = H(t, q)N [φ(t, q)], (7)

where

H(t, q) = qc1 + q2c2 + ...+ qmcm(t), (8)

is a nonzero auxiliary function for q 6= 0,and H(0, t) = 0. ci, i = 0..m − 1

are auxiliary constants and cm(t) is a function of t and u(t) is an unknown

function. Choosing the control-parameter cm(t) depends on the given problem.

for example, in [10, 12] he used H(q) = qc1 + q2c2 + q3c3, and in [11] he

assumed that H(q, t) = qc1 + q2(c2 + c3e
−2t). In Marinca’s approach, at the

Mth order of approximation, a set of nonlinear algebric equations about c1,

c2, ...,cm must be solved in order to find their optimal values and this leads to

have a time-concuming approach. However, too many unknowns parameters

greatly increase the cpu times and thus make the approach time-consuming.

In 2009, to overcome this disadvantage, Zhao Niu [15] and Shijun Liao [4]

suggested two new approaches. In this paper, we apply these approaches

to solve one system of linear Volterra integro-differential equations and one

integro-differential equation, and then, compare the obtained solutions.

2 Preliminary Notes

2.1 A one-step optimal HAM

Consider the equation (1),

N [u(t)] = 0,

Niu et al. [15] employed the Liao’s [8] zeroth-order deformation equation

(1−B(q))L[φ(t, q)− u0(t)] = c0A(q)N [φ(t, q)] (9)
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where A(q) and B(q) are the deformation functions satisfying

A(0) = B(q) = 0, A(1) = B(1) = 1.

The Taylor series of A(q) and B(q) read

A(q) =
+∞
∑

m=1

µmq
m, B(q) =

+∞
∑

m=1

σmq
m,

which are convergent for |q| ≤. He set H(q) = c0A(q) and B(q) = q in this (8)

equation to construct the zeroth-order deformation equation

(1− q)L[φ(t, q)− u0(t)] = H(q)N [φ(t, q)] (10)

where L is an auxiliary linear operator, q ∈ [0, 1] is the embedding parameter,

u0(t) an initial approximation of u(t), and H(q) is the convergence-control

function satisfying H(0) = 0 and H(0) 6= 0. Like Liao [6]-[8], defining the

vector −→um = {u0(t), u1(t), ..., um(t)}, differentiating the equation (10) m times

with respect to the embedding parameter q, then divide it by m! and finally

set q = 0, we have the so-called mth-order deformation equation

L[um(t)− χmum−1(t)] =
m
∑

k=1

ckRm−k(t) (11)

where

Rn(t) =
1

n!

∂nN [φ(t, q)]

∂qn
(12)

and

χm =

{

0, if m ≤ 1,

1, if m > 1.
(13)

Let ∆n(cn) denote the square residual error of the governing equation (1) and

express as

∆n(cn) =

∫

Ω

(N [ũn(t)])
2 dΩ, (14)

where
−→cm = c1, c2, ..., cm,

and

ũm(t) = u0(t) +
m
∑

k=1

uk(t).
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At the 1st-order of approximation, ∆1 is only dependent upon c1, so, the

optimal value of c1 is obtain by solving the nonlinear algebric equation

d∆1

dc1
= 0.

At the 2nd-order, since c1 is known, the square residual error ∆2 is only depen-

dent upon c2, thus we can gain the optimal value of c2 by solving the nonlinear

algebric equation
d∆2

dc2
= 0.

and so on.

2.2 Liao’s optimal HAM

This approch is based on the zeroth-order deformation equation (9) and

used the one-parameter deformation functions

A1(q, c1) =
+∞
∑

m=1

µm(c1)q
m, B1(q, c2) =

+∞
∑

m=1

σm(c2)q
m,

where |c1| < 1 and |c2| < 1 are constants, and

µ1 = (1− c1), µm = (1− c1)c
m−1
1 , m > 1,

σ1 = (1− c2), σm = (1− c2)c
m−1
2 , m > 1. (15)

So, the new zeroth-order deformation equation is

[1−B1(q, c2)]L[φ(t, q)− u0(t)] = c0A1(q, c1)N [φ(t, q)], q ∈ [0, 1]. (16)

Note that c1 and c2 are the convergence-control parameters. Like the previous

approach, differentiating the equation (16) m times with respect to the em-

bedding parameter q, then dividing it by m! and finally setting q = 0, we have

the mth-order deformation equation

L

[

um(t)−
m−1
∑

k=1

σm−k(c2)uk(t)

]

= c0

m−1
∑

k=0

µm−k(c1)δk(t).

Liao [4] found out that, when we use more than one unknown parameters, the

cpu time increases exponentially so that the square residual error ∆n (14) is
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often inefficient in parctice. So, to decrease the cpu time,he introduced the

so-called average residual error

Em =
1

K

K
∑

j=0

[

N

(

m
∑

k=0

uk(j∆x)

)]2

, (17)

where ∆x = 1

K
. Now we solve some examples and then we will compare the

obtained results.

3 Applications

Example 3.1. Consider the following system of linear Voltra integro-differential

equations [16]

{

u
′

1 = 1 + t+ t2 − u2(t)−
∫ t

0
(u1(s) + u2(s))ds, u1(0) = 1,

u
′

2 = −1− t+ u1(t)−
∫ t

0
(u1(s)− u2(s))ds, u2(0) = −1,

(18)

with exact solutions u1(t) = t + exp(t) and u2(t) = t − exp(t). We assume

that the solution of above system can be expressed by a set of base function

{exp(nt)|n ≥ 0} in the form

u(t) =
+∞
∑

i=0

ait
i (19)

where ai are coefficients to be determined. We choose auxiliary linear operator

L [φi(t, q)] =
∂φi(t, q)

∂t
,

with the property

L[bi] = 0,

where bi are constant. From (18) we define the nonlinear operators

N1[φ1(t, q)] =
∂φ1(t, q)

∂t
− (1 + t+ t2) + φ2(t, q) +

∫ t

0

(φ1(s, q) + φ2(s, q))ds

N2[φ2(t, q)] =
∂φ2(t, q)

∂t
+ (1 + t)− φ1(t, q) +

∫ t

0

(φ1(s, q)− φ2(s, q))ds
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according to the boundary conditions (18) and Eq. (19), the initial approxi-

mations should be in the form u1,0(t) = exp(t), u2,0(t) = −exp(t). From (12)

and (18), we have

R1,n(t) =u
′

1,n−1 − (1− χn)(1 + t+ t2) + u2,n−1 +

∫ t

0

(u1,n−1 + u2,n−1)ds

R2,n(t) =u
′

2,n−1 + (1− χn)(1 + t)− u1,n−1 +

∫ t

0

(u1,n−1 − u2,n−1)ds

where the prime denotes differentiation with respect to the t. Now, the solution

of the mth order deformation equation (11) becomes

ui,m(t) = χmui,m−1(t) +

∫

ckRi,m−k(t)dt+ bi, m ≥ 1, i = 1, 2,

where the constants bi are determined by the initial conditions

u1,m(0) = 0, u2,m(0) = 0.

So, the first several approximations can be obtained as follows :

ũ1,1(t) =exp(t)− c1(t+ 0.5t2 + 0.3333t3),

ũ2,1(t) =− exp(t)− c1(t− 0.5t2),

ũ1,2(t) =exp(t) + 0.912522t+ 0.208289t2 + 0.221517t3−

0.008266t5 − c2(t+ 0.5t2 + 0.3333t3),

ũ1,2(t) =− exp(t) + 0.912522t− 0.208289t2 + 0.082667t3 − 0.008266t5 − c2(t− 0.5t2).

It is found that

∆1,1(t) =
37

10
+ 3287

315
c1 +

336059

45360
c21,

∆2,1(t) =
1

3
+ 23

90
c1 +

4687

9072
c21,

∆1,2(t) =0.104904− 1.617464c2 + 7.408708c22,

∆2,2(t) =0.078324− 0.225431c2 + 0.516645c22.

and so on.

At the 1th-order of approximation, in order to determine the optimal value

of c1, each of the equations in (18) is solved separately. So, the obtained values

and corresponding square residual errors are,

c1 = −0.704233, ∆1,1(t) = 0.0256897, ∆2,1(t) = 0.409589,
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Figure 1: c0-curve of 4th-order approximation for Example 3.1

for the first equation, and

c1 = −0.247322, ∆1,2(t) = 1.572389, ∆2,2(t) = 0.301731,

for the second one. So, the minimum of the ∆1,2 and ∆2,2 is correspond to the

optimal value of c1. Thus, c1 = −0.704233 is chosen. This procedure lead to

the best approximate solution of the system. The 4th-order of approximate

solution is obtained as follows

ũ1,4(t) =exp(t) + 0.907434t+ 0.082059t2 + 0.958009e− 1t3 − 0.104494e− 1t4−

0.103389e− 1t5 + 0.6966315e− 3t6 + 0.394245e− 3t7 − 0.271121e− 5t9,

ũ2,4(t) =− exp(t) + 0.907434t− 0.082059t2 + 0.4109446e− 1t3 + 0.104494e− 1t4−

0.615912e− 2t5 − 0.6966315e− 3t6 + 0.195207e− 3t7 − 0.271121e− 5t9,

Now, we apply the Liao’s optimal HAM. First consider Figure 1, the c0-curve

of the 4th-order approximation of Example 3.1. It is obvious that the best

region of c0 is −1.5 ≤ c0 ≤ −0.5. Note that in this approach we have at most

three unknown convergence-control parameter c0, c1, c2. Now we compare the

different cases of these parameters.
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Figure 2: Residual of 4th-order approximation of Example 3.1

Optimal c0 in case of c1 = c2 = 0 :

This case, is the traditional HAM which was used by Liao (5). In case of

c1 = c2 = 0 there is only one unknown convergence-control parameter c0, thus,

the optimal value of c0 is found by the minimum of E4, with K = 15, as shown

in Table 2. Figure 2 is shown the residual of the 4th-order approximation of

this system of equations. The 4th-order of approximate solution through this

approach is obtained as follows

ũ1,4(t) =exp(t) + 0.999994t+ 0.227256e− 3t2 + 0.234468e− 2t3 − 0.705523e− 2t4−

0.985020e− 2t5 + 0.470348e− 3t6 + 0.782842e− 3t7 − 0.900634e− 5t9,

ũ2,4(t) =− exp(t) + 0.999994t− 0.227256e− 3t2 + 0.2193178e− 2t3 + 0.104494e− 1t4−

0.702811e− 2t5 − 0.470348e− 3t6 + 0.648456e− 3t7 − 0.900634e− 5t9, .

Tables 3, 4 shows the fourth approximations of the solutions of system (18)

via Liao’s optimal approach in two ways and it’s comparison with the one-step

optimal HAM, HVIM [16] and the exact solutions of (18).
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Table 1: Square residual error for Example 3.1

order M cn ∆1 ∆2 cpu(s)

1 −0.7042 0.2569e− 1 0.4096 0.094

2 0.1092 0.1663e− 1 0.5987e− 1 0.094

3 0.3667e− 1 0.5691e− 2 0.2925e− 1 0.094

4 0.2266e− 1 0.3091e− 2 0.1343e− 1 1.172

Table 2: Average residual error for Example 3.1

order M c0 E1 E2 cpu(s)

1 −0.7018 0.2925e− 1 0.4357 0.125

2 −0.9180 0.1346 0.2308e− 3 0.141

3 −0.9326 0.1217e− 3 0.5986e− 2 0.296

4 −0.9326 0.5008e− 3 0.9106e− 6 1.420

The first way of calculation of c0 is exactly the same as we determine c1 in

one-step optimal approach. But here, we introduce a good way to determine

c0. In this way, at each order of approximation, we solve E1−E2 = 0, then, put

the solutions in both E1 and E2. One that gives less residual, is the optimal

one. The approximate solutions are denote by “∗” in Tables 3, 4.

This way, gives better approximations of the solutions than the first way

as shown in Tables 3, 4. Besides, through these Tables we find that the one-

step optimal HAM is not suitable approach to determine convergence-control

parameters for system of equations.

Optimal c1 = c2 in case of c0 = −1 :

Here, we assumed that c0 = −1 and investigate the optimal value of c1 = c2.

In this case, at the 4th-order of approximation, we obtained E1 = 0.621164e−3,

E2 = 0.574729e−2 in 3.869s which is not better than the corresponding order’s

residuals in Table 2. Using more than one convergence-control parameter is

not suggested for solving system of equations, because, it becomes more and

more complicated to determine the optimal values.
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Table 3: Comparison of u1 given by OHAM, one-step optimal, HVIM, exact

for Example 3.1

ti u1,4OHAM u1,4one step optimal u1,4HVIM u1,4exact u∗

1,4OHAM*

0 1 1 1 1 1

0.2 1.421415 1.406918 1.421400 1.421402 1.421403

0.4 1.891730 1.873689 1.891734 1.891824 1.891793

0.6 2.421067 2.414699 2.421423 2.422119 2.421754

0.8 3.021051 3.045654 3.022583 3.025541 3.023801

1 3.705187 3.783876 3.709226 3.718281 3.712749

Table 4: Comparison of u2 given by OHAM, one-step optimal, HVIM, exact

for Example 3.1

ti u2,4OHAM u2,4one step u2,4HVIM u2,4exact u∗

2,4OHAM*

0 −1 −1 −1 −1 −1

0.2 −1.021386 −1.042854 −1.021400 −1.021402 −1.021407

0.4 −1.091615 −1.139148 −1.0917347 −1.091825 −1.091948

0.6 −1.221366 −1.297474 −1.221423 −1.222119 −1.222963

0.8 −1.423969 −1.528951 −1.422583 −1.425541 −1.428827

1 −1.716126 −1.848026 −1.709226 −1.718281 −1.727631

Example 3.2. Consider the nonlinear integro-differential equation [2]

u
′

(t) = −1 +

∫ t

0

u2(s)ds, (20)

for t ∈ [0, 1] with the boundary condition u(0) = 0.

Consider high-order deformation equation (11) subject to the um(0) = 0,

where

Rn(t) = u
′

n + (1− χn+1)−

∫ t

0

n
∑

j=0

uj(s)un−j(s)ds.

The initial approximation should be in the form u0(t) = −t.

So, the 2th-order of approximate solution via one-step optimal HAM is
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obtained as follows

ũ2(t) =− t+ 0.083234t4 − 0.003699t7.

and

ũ2(t) =− t+ 0.083039t4 − 0.003548t7,

is the 2th-order of approximation which is obtained by OHAM. The compari-

son between residuals via two approaches is shown in Table 5.

Table 5: Comparison between residuals, via two approches for Example 3.2

order M cn ∆n cpu(s) c0 E cpu(s)

1 −0.945677 0.447006e− 5 0.062 −0.942067 0.588916e− 5 0.032

2 0.571303e− 3 0.718753e− 8 0.062 −0.965568 0.182630e− 8 0.109

3 0.260778e− 4 0.219308e− 10 0.062 −0.971777 0.247549e− 12 0.281

4 0.147745 0.872873e− 13 0.062 −0.973225 0.671736e− 16 1.404

Optimal c0 in case of c1 = c2 = 0 :

The optimal values of c0 are shown as Table 5. It is obvious that, in this

example, the optimal HAM when c1 = c2 = 0 has more accuracy than the

one-step HAM.

Other cases of these convergence-control parameters is not suggested, because,

the obtained residuals are not better than this case (Optimal c0 in case of

c1 = c2 = 0). For example, in case of c0 = −1, c1 = 0.002572, c2 = 0 we have

E = 0.349442e− 7.

4 Conclusion

In this article, first, we have described Liao’s optimal analysis method and

Niu’s one-step optimal analysis method, then we have applied these methods

for solving one system of linear Volterra integro-differential equations and one
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integro-differential equation. In order to illustrate the differences between

these methods, we solve two examples. The results compared show that, in

both examples, liao’s approach gives better approximations than the Niu’s

approach. In example1, we have introduced a simple way to determine the

optimal value of convergence-control parameter in system of equations.
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