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Abstract: In this paper we develop an efficient method based on the Spectral Collocation Method (SCM) 
and the Variational Iteration Method (VIM) that can be used for the efficient numerical solution of 
nonlinear stiff/nonstiff two-point Boundary Value Problems (BVPs). The method derived here has the 
advantage that it does not require the solution of nonlinear systems of equations. We derive the method 
which requires one evaluation of the Jacobian and one LU decomposition per step. Some numerical 
experiments on nonlinear stiff/nonstiff problems and on well-known nonlinear BVPs like the Van der Pol 
and convective-radiative conduction problems which have been extensively studied show the efficiency 
and accuracy of the method. 
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INTRODUCTION 
 
 In this paper, we first investigate the approximate 
solution of the nonlinear second-order BVPs with linear 
boundary conditions of the type (we assumed that the 
problem has the unique solution on [a,b])  
 

                     

F(x,y,y,y ) = 0 , a x b
y(a)= , y(b)= ,

′ ′′ ≤ ≤
α β

 

(1) 

 
by a new spectral method proposed in this work, which 
is a combination of the Variational Iteration Method 
(VIM) [5, 12] and the (pseudo) Spectral Collocation 
Method (SCM) [2, 13]. This novel hybrid spectral VIM 
is then developed for solving the nonlinear kth-order 
BVPs with nonlinear two-point boundary conditions. 
Here a, b, α and β are the real constants and F is a 
nonlinear continuous function with respect to their 
arguments. These BVPs arise in engineering, applied 
mathematics  and  several  branches  of  physics and 
have  attracted  much  attention. However, it is difficult 
to  obtain  closed-form solutions for BVPs, especially 
for nonlinear problems. In most cases, only 
approximate solutions (either numerical solutions or 
analytical solutions) can be expected. Some numerical 
methods   such   as   finite   difference  method  [4], 
finite element method [3] and shooting method [11] 
have been developed for obtaining approximate 
solutions to BVPs. 

 It is  well  known  that, if (1) is stiff, explicit 
methods generally may provide a good approximation 
of  the  solution  only  if  the  number  of  nodes is 
chosen  very  large  and  this  choice  is  usually 
unfeasible  from  the  computational  point  of  view. 
For  this  reason,  implicit  methods  are  generally  used 
to face such problems, but they require to solve a 
nonlinear system of equations. Obviously this 
represents  a  serious  drawback  if  the  number  of 
nodes is large. 
 The strategy that will be pursued in this work rests 
mainly on establishing an effective algorithm, requiring 
no tedious computational work, based on the VIM and 
the SCM for solving (1). Unlike implicit methods, the 
method extracted in this paper does not require the 
solution of nonlinear systems of equations. This can be 
considered as a merit of this method over implicit 
methods. To demonstrate the utility of the proposed 
method, in this study, some nonlinear examples are 
given and are solved using the new method and 
compare the obtained results with the numerical results. 
In all cases, the present technique performed 
excellently. 
 

VARIATIONAL ITERATION METHOD 
 
 In this section, we first describe the new version of 
the VIM [5] for solving (1). Then the local convergence 
is discussed in details. 
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Analysis of the VIM: The VIM provides the solution 
of (1) as a sequence of approximations. The method 
gives  rapidly  convergent  successive  approximations 
of  the  exact  solution  if  such  a  solution exists, 
otherwise approximations can be used for numerical 
purposes. The idea of the VIM is very simple and 
straightforward.  To  explain  the  basic  idea  of  the 
VIM, we first consider (1) as  
 

                         L[y(x)] N[y(x)]=g(x)+  (2) 
 
where L with the property L[u] ≡ 0 when u ≡ 0 denotes 
the so-called auxiliary linear operator with respect to y, 
N a nonlinear continuous operator with respect to y and 
g(x) is the source term. Next we construct a explicit 
iterative process for (2) as [5]:  
 

                    n 1 n nL[y (x) y ( x ) ] = A[y (x)]+ − −  (3) 

 
with the boundary conditions  
 

                       n 1 n 1y (a)= and y ( b ) =+ +α β  (4) 

where  
 

               
n n n

n n n

A[y (x)]=L[y (x)] N[y (x)] g(x)
F(x,y (x ) , y (x),y (x))

+ −
′ ′′≡

 (5) 

 
and the subscript n denotes the nth iteration and y0(x) is 
the initial guess, which can be freely chosen with 
possible unknown constants, or it can also be solved 
from its corresponding linear nonhomogeneous 
equation i.e.,  
 

0L[y(x)]=g(x)  

 
 It should be emphasized that we could construct a 
family of implicit iterative processes for (2) as follows:  
 

   n 1 n n n 1L[y (x) y ( x ) ] = (L[y (x)] N[y (x)] g(x))+ +− − + −
 

(6) 

 
 Accordingly, the  successive  approximations yn(x), 
(n≥1)  of  the VIM equations (3) will be readily 
obtained. Consequently, the exact solution may be 
obtained by using  
 

                              
n

n
y(x)= y ( x )lim

→ ∞  
(7) 

 
 Therefore, the (n+1) th-order VIM equations (3) 
form a set of linear ordinary differential equations and 
can be easily solved, especially by means of symbolic 
computation software such as Maple, Mathematica, 
Matlab and others. 

 
Convergence theorem: The variational iteration 
formula, (3), makes a recurrence sequence {yn{x}}. 
Obviously, the limit of the sequence will be the solution 
of (1) if the sequence is convergent. In the following, 
we give a proof of convergence of the VIM, which 
details can be found in [5]. Here we suppose that for 
every n, yn∈C2[a,b] and (m)

n{y },(m 1,2)=  is uniformly 

convergent. 
 
Theorem: If the sequence (7) converges, where yn(x) is 
produced by the variational iteration formulation of (3), 
then it must be the exact solution of the problem (1).  
 
Proof: If the sequence yn(x) converges, we can write  
 

                             
n

n
Y(x)= y ( x )lim

→∞  
(8) 

and it holds  

                             
n 1

n
Y(x)= y (x)lim +

→∞
 (9) 

 
 Using (8), (9) and the definition of L, we can easily 
gain  
 

     
n 1 n n 1 n

n n
L[y (x) y ( x ) ] = L [y (x) y ( x ) ] = 0lim lim+ +

→∞ →∞
− −  (10) 

 
From (10) and according to (3), we obtain  
 

           
n 1 n n

n n
L [y (x) y ( x ) ] = A[y ( x ) ] = 0lim lim+

→∞ →∞
− −  (11) 

 
The relation (11) gives us  
 

                              
n

n
A[y ( x ) ] = 0lim

→∞
 (12) 

 
 From (12) and continuity of the operator F, it 
follows that  
 

     

n n n n
n n

n n n
n n n

A[y (x)]= F(x,y (x),y (x),y (x))lim lim

=F(x, y (x),( y (x)),( y ( x ) ) )lim lim lim

=F(x,Y(x),Y(x),Y (x))

→∞ →∞

→ ∞ →∞ →∞

′ ′′

′ ′′

′ ′′

 (13) 

 
From equations (12) and (13), we get  
 

              F(x,Y(x),Y(x),Y ( x ) ) = 0 , a x b′ ′′ ≤ ≤  (14) 
 
 On the other hand, in view of (1), (4) and (9), it 
holds that 
 

n 1
n

Y(a)= y ( a ) =lim +
→∞

α
 

and 
                     n 1

n
Y(b)= y ( b ) =lim +

→ ∞
β  (15) 
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 Therefore, according to the above expressions, (14) 
and (15), Y(x) must be the exact solution of the 
problem (1) and this ends the proof.  
 It is clear that the convergence of the sequence (7) 
depends upon the initial guess y0(x) and the auxiliary 
linear operator L. Fortunately, the VIM provides us 
with great freedom of choosing them. Thus, as long as 
y0(x) and L are so properly chosen that the sequence (7) 
converges in a region a≤x≤b, it must converge to the 
exact solution in this region.  
 

A SPECTRAL VARIATIONAL  
ITERATION METHOD 

 
 Before describing the new method, we point out 
that in order to solve a nonlinear two-point BVP using 
the (pseudo)spectral collocation method, because of the 
nonlinearity, it is no longer enough simply to invert the 
corresponding differentiation matrix. Instead, we can 
iteratively solve the problem via an explicit or implicit 
scheme with a stopping criterion [13]. In the implicit 
scheme, one obtains a nonlinear system of equations to 
be solved; this can be accomplished by a Newton-
Krylov iteration (with a suitable preconditioner). The 
computational cost of this approach may be very high if 
the number of nodes is large. Note that this 
implementation may lead to divergent results. 
 On the other hand, since the VIM method 
presented above, the variational iteration formula (3) or 
(6), provides the solution as a sequence of iterates, its 
successive iterations may be very complex, so that the 
resulting integrations in its iterative relation may be 
impossible  to  perform  analytically.  In  this  section, 
we will overcome this shortcoming of the original VIM 
for solving (1) by proposing a new spectral VIM. As 
will be shown in this paper later, the new method will 
be very simple to implement and save time and 
calculations.  
 Consider basis functions ϕk that are polynomials of 
degree N-1 satisfying ϕk(xj) = δk,j for the Chebyshev 
nodes (note that x1 = 1 and xN = -1)  
 

                  
j

(j 1)
x =cos( ), j=1 , , N

N 1
− π

−
K  (16) 

 
 The polynomial (the unknown function y(x) is 
approximated as a truncated series of polynomials)  
 

                     

N

j 1 j
j=1

p(x) y(x)= (x)y+φ∑;  (17) 

 
interpolates the points (xj,  yj), that is, p(x) = y. The 
values of the interpolating polynomial's rth derivative at 
the nodes are  

 

                                
(r) (r)p ( ) = Dx y  (18) 

 
where  the i, jth element of the differentiation matrix 
D(r) is ( r )

k j( x )φ . Note that D(r) ≠ (D(1))r. 

 Generally, in order to solve the problem (1) using a 
(pseudo)spectral collocation scheme, the interpolating 
polynomial is required to satisfy the differential 
equation at the interior nodes. The values of the 
interpolating polynomial at the interior nodes (m = 2: 
N-1 ≡ {2,3,…,N-2, N-1}) are p(xm) = ym = Im,:y and the 
derivative values are ( r ) ( r )

m m,:p ( ) = Dx y . Boundary 

conditions that involve the values of the interpolating 
polynomial can be handled by using the formulas  
 

          N N N,: 1 1 1,:p( ) = = I and p( ) = = Ix y y x y y  (19) 

 
 The  references  [1, 14]  provide  two  useful  
Matlab  functions  for  spectral  collocation, chebdift 
and  chebintt.  The  function  call  [x, DM] = chebdift 
(N, M, a, b) directly computes the transformed 
differentiation matrices for r = 1,2,…,M, where 
0<M≤N-1 and nodes on the arbitrary interval [a,b], 
where  the  subarray  DM(:,:,r)  contains  the  N×N 
matrix DM(r). The column vector x contains the 
transformed Chebyshev nodes with x1 = b and xN = a. 
The function call p = chebintt (y,x) directly evaluates 
the  polynomial  that  interpolates  the  data  vector  y  
at the transformed Chebyshev nodes on the arbitrary 
interval [a,b].  
 As a result, requiring no change of the variables, 
we can straightforwardly solve the problem (1). Here 
we present a simple iterative procedure for solving the 
problem (1). 
 Now, by using Eqs. (16)-(19), the VIM equation 
(6) and the boundary conditions (4) are transformed 
into the following matrix equations:  
 

           

n 1 n n n 1
m m m m m

N

1

L[ ] = (L[ ] N[ ] g( ))
=
=

+ +− − + −
α
β

y y y y x
y
y

 (20) 

where  
n n
m m mL[ ] L( , )≡y x y

 
and  

n 1 n 1
m m mN[ ] N( , )+ +≡y x y

 
 
The iterative formula (20) can be readily written in 
terms of the single unknown yn+1 as follows. This 
makes it particularly cheap for the solution of BVPs 
since the procedure now will be explicit. Now, by 
expanding n 1

m mN( , )+x y  in Taylor series about n
my  (note 

that n 1 n n 1 n
m m m m= ( )+ ++ −y y y y ), we can obtain  
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n 1 n 1
m m m

n n 1 n n
m m m m n m m

m

N[ ] N( , )

N( , ) ( )N ( , )

+ +

+

≡

≈ + −
y

y x y

x y y y x y  (21) 

 
where n

m
N

y
 denotes the partial derivative of n

m mN( , )x y  

with respect to n
my . 

 Let I, 0 and diag denote the identity matrix of order 
N, the zero matrix of order N and a diagonal matrix of 
size N×N, respectively. By substituting the above 
matrix relations, the equations (20) can be collected 
into the single linear matrix equation, which is called 
the spectral VIM (SVIM)  
 

m,: m,:
n 1 n

N,: N,: N,: N,:

1,: 1,: 1,: 1,:

n n
m m m

N

1

L I diag(N ) L I diag(N )
I 0 = I 0

I 0 I 0

L[ ] N[ ] g( )

+

          
          + +          
                    

 + −
 − − α 
 − β 

y y

y y

y y x
y

y

(22) 

or compactly  
 

                             
n 1 n n= A[ ]+ −Ey Ey y  (23) 

 
where E = L+J and according to (5), the matrix L, the 
matrix J and the vector A[yn] are respectively as  
 

               

m,:

N,: N,:

1,: 1,:

L I diag(N )
= I and = 0

I 0

   
   
   
      

y

L J  (24) 

and  

                 

(1) (2)
m,:

n
N

1

I F( , ,D ,D )
A[ ] =

 
 − α 
 −β 

x y y y
y y

y
 

(25) 

 
 The linear system (23) can be solved by means of 
LU decomposition per step. Here the vector yn+1 is 
defined as: 
 

               
n 1 n 1 n 1 n 1

1 2 N={y (x ),y ( x ) , , y (x )}+ + + +y K
 

(26) 

 
 Using the SVIM algorithm above, we begin by 
choosing the best possible initial approximation that 
satisfies the boundary conditions (4). To this end, we 
may  determine  the  initial  approximation by solving 
the  linear  system  Ly0 = g where g = [g(xm), α,β]T (the 

 
superscript T denotes the transpose). Thus, starting 
from the initial approximation y0, we can use the 
recurrence formula (23) to successively obtain directly 
yn+1 for n≥0. 
 It should be emphasized that the main advantage of 
the  SVIM  algorithm  presented  here  is  its  simplicity 
and its accuracy in solving the nonlinear two-point 
BVPs subject to general boundary conditions. Assume 
that  we  want  to  solve  a  nonlinear second-order BVP 
as F(x,y,y′,y″) = 0 subject to the general two-point 
boundary condition G(y(a), y(b)) = 0 (with two 
nonlinear  equations)  using  the  SVIM  algorithm (23). 
In this case, the matrix L, the matrix J and the vector 
A[yn] of the iterative relation (23) to solve the above 
problem become:  
 

            

{ }
{ }

m,: FF

G Gm,:

I diag (N )L
= and =

L I diag (N )

          

y

y

L J  (27) 

and  

                 

(1) (2)
n m,:

N 1

I F( , ,D ,D )
A[ ] =

G( , )
 
 
 

x y y y
y

y y
 (28) 

with  
 

   

F F

G G

F(x,y,y,y ) : L [y(x)] N [y(x)]=g(x)
G(y(a),y(b)): L [y(a),y(b)] N [y(a),y(b)]=bc

′ ′′ ≡ +
≡ +

 (29) 

 
 where  m = 2:  N – 1,  m={1,N} ,  y1  =  y(b)  and 
yN = y(a), LF and  LG are the auxiliary linear operators 
of  the  differential  equation  F  and boundary condition 
G and NF and NG the nonlinear operators of F and G, 
respectively.  
 Now suppose that we want to solve a nonlinear 
kth-order BVP as F(x,y,y′,…,y(k)) = 0 subject to the 
general two-point boundary condition G(y(a), y(b)) = 0 
(with k≥3 nonlinear equations) using the SVIM 
algorithm (23). In this case, the matrixes L and J and 
the vector A[yn] of the iterative relation (23) to solve 
the above problem become:  
 

            

{ }
{ }

m,: FF

G Gm,:

I diag (N )L
= and =

L I diag (N )

          

y

y

L J  (30) 

and   

          

              

(1) (k)
n m,:

N 1

I F( , ,D , , D )
A[ ] =

G( , )
 
 
 

x y y y
y

y y
L

 (31) 

 
where y1, yN, LF, LG, NF and NG are as noted above and  

 

                                       

i 1 : N i {i 1,i 2, , N (i 1),N i},   k = 2 i
m = i 1 : N (i 1) {i 1,i 2, ,N (i 2),N (i 1)}, k = 2i 1

2i 1 :N i {2i 1,2i 2, , N (i 1),N i},     k = 2 i 1

+ − ≡ + + − + −
 + − + ≡ + + − + − + +
 + − ≡ + + − + − +

K
K
K

 (32) 
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and  

          

{1, ,i} {N, ,N (i 1)},  k=2i
m = {1, ,i} {N, ,N i},           k = 2 i 1

{1, ,2i} {N, ,N (i 1 )} ,k=2i 1

∪ − −
 ∪ − +
 ∪ − − +

K K
K K
K K

 (33) 

 
(note that m m={1, ,N}∪ K ). Here bc is a k-by-1 vector, 
that is, the values of right hand side of boundary 
conditions.  
 

NUMERICAL EXPERIMENTS 
 
 In this section, to give a clear overview of the 
content of this study, several nonlinear two-point BVPs 
will be tested by the proposed SVIM algorithm, which 
will ultimately show the efficiency of this method. We 
mention that all tests here are started from y0 = L-1g as 
noted before, performed in Matlab with machine 
precision 10-16 and terminated when the current iterate 
satisfies ||yn+1-yn||∞≤10-15, where yn is the solution vector 
of the nth SVIM iteration. 
 Before considering our numerical results, we 
indicate that the nonlinear problems analyzed here 
become increasingly stiff as the corresponding 
parameters within the frame of equations are increased. 
 Example 1 (Van der Pol equation) In this example 
we consider the following nonlinear second-order 
boundary value problem  
 

                
2y (y 1)y y = 0 , 0 x 1′′ ′+ µ − + ≤ ≤  (34) 

 
with the boundary conditions y(0) = 2 and y(1) = 0.  
 In order to solve the equation (34) using the SVIM 
algorithm (23), according to (2) and (29), we choose  
 

 
2

F FL [y(x)]=y y, N [y(x)]= (y 1)y andg(x) 0′′ ′+ µ − ≡  (35) 
 
and  

G

y(0)
L [y(a),y(b)]=

y(1)
 
 
 

 

 

                 
G

0 2
N [y(a),y(b)]= and b c =

0 0
   
   
   

 (36) 

with  

( ) ( )(1) 2 (1)
F Gy y

0
N = 2 yD y (y 1)D and N =

0
 

µ + −  
 

 

 

 To show the efficiency of the SVIM algorithm, 
here we plotted the solution of (34) for different values 
of µ, as shown in Fig. 1. 
 Example 2 (Convective-radiative conduction 
equation) In this example we consider the following 

nonlinear second-order boundary value problem [8] 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y
x

¹ = 1000

¹ = 100

¹ = 10

¹ = 1

 
 
Fig. 1: The numerical comparisons of the SVIM 

solution (symbols) when N = 5(µ = 1), N = 10 
(µ = 10),  N  =  20  (µ  =  100)  and  N  =  110 
(µ = 1000) with the numerical finite-difference 
solution (lines) for different values of µ in 
Example 1 

 

        
2 2 4

1 1 2y'' M y y yy y =0, 0 x 1′ ′′− + ε + ε − ε ≤ ≤  (37) 

 
with   the   linear  boundary  conditions  y ′(0)  =  0  and 
y (1) = 1.  
 In order to solve the equation (37) using the SVIM 
algorithm (23), according to (2) and (29), we choose  
 

2
FL [y(x)]=y M y′′ −  

 

          
2 4

F 1 1 2N[y(x) ]= y yy y andg(x) 0′ ′′ε + ε − ε ≡  (38) 

 
and  

G

y(0)
L [y(a),y(b)]=

y(1)

′ 
 
 

 

 

                   
G

0 0
N [y(a),y(b)]= and b c =

0 1
   
   
   

 (39) 

with  
 

( ) (1) (1) (2) (2) 3
F 1 1 1 2yN = 2 D (D y) D y yD 4 yε + ε + ε − ε

 
and 

( )G y

0
N =

0
 
 
 

 

 
 In Fig. 2 we have plotted the solution obtained 
using the SVIM algorithm when N = 25 versus the 
Matlab bvp4c solver solution for different values of M 
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for Example 2 with ε1 = 1 and ε2 = 1. 
 

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

x

y(
x
)

M = 1

M = 10

M = 100

 
 
Fig. 2: The numerical comparison of the SVIM 

solution (symbols) when N = 25 with the 
Matlab bvp4c solver solution (lines) for 
different values of M for Example 2 with ε1 = 1 
and ε2 = 1 

  
 Example 3 In this example we consider the 
following nonlinear second-order boundary value 
problem [6]  
 

                    y x y cos(y)=0,3 x 5′′ ′− − ≤ ≤  (40) 

 
with the nonlinear boundary conditions y(3)+y ′(5) = 7 
and y ′2(3)y(5) = 10.  
 In order to solve the equation (40) using the SVIM 
algorithm (23), according to (2) and (29), we choose  
 

  F FL [y(x)]=y xy,N[y(x) ]= cos(y)andg(x) 0′′ ′− − ≡  (41) 
 
and  

G

y(3) y(5)
L [y(a),y(b)]=

y(3)

′+ 
 ′ 

 

 

             

G

0
7

N [y(a),y(b)]= a n d b c =10
0

y(5)

 
  
  −    

 (42) 

with  

( ) ( )(1) (1)
F Gy y

3/2

0

N = D sin(D y)and N = 10
2y(5)

 
 
 
  

 

 
 Here, we have plotted the solution (y(x) and y′(x)) 
obtained using the SVIM algorithm when J ≡ 0 and N = 
10 versus the Matlab bvp4c solver solution in Fig. 3. 
 
Remark: It is interesting to point out that the user can 

consider  J ≡ 0  within the frame of the SVIM algorithm 
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Fig. 3: The numerical comparison of the SVIM 

solution when J ≡ 0 and N = 10 with the Matlab 
bvp4c solver solution for Example 3 

 
in solving the non-stiff BVPs (for instance, see 
Example 3).  
 

CONCLUSION 
 
 In this study we have proposed a new hybrid 
spectral variational iteration method for the solution of 
nonlinear non-stiff/stiff boundary value problems with 
general two-point boundary conditions. The obtained 
results demonstrate that the SVIM algorithm has the 
following advantages over the spectral-homotopy 
analysis method (SHAM) proposed in [9, 10]. The 
SVIM is more efficient than the SHAM as it does not 
depend on the calculation of the so-called homotopy 
polynomials. This new method is easy to implement, 
accurate when applied to the nonlinear two-point BVPs 
and avoids additional computational work. The SVIM 
works successfully in handling the two-point BVPs. 
This confirms our belief that the SVIM is a promising 
scheme in solving the nonlinear two-point BVPs and 
more promising because it can be utilized for a wider 
class of BVPs with high accuracy. 
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