
ORIGINAL ARTICLE

DDC: distance-based decision classifier

Javad Hamidzadeh • Reza Monsefi •

Hadi Sadoghi Yazdi

Received: 5 September 2010 / Accepted: 22 October 2011 / Published online: 17 November 2011

� Springer-Verlag London Limited 2011

Abstract This paper presents a new classification method

utilizing distance-based decision surface with nearest

neighbor projection approach, called DDC. Kernel type of

DDC has been extended to take into account the effective

nonlinear structure of the data. DDC has some properties:

(1) does not need conventional learning procedure (as

k-NN algorithm), (2) does not need searching time to

locate the k-nearest neighbors, and (3) does not need

optimization process unlike some classification methods

such as Support Vector Machine (SVM). In DDC, we

compute the weighted average of distances to all the

training samples. Unclassified sample will be classified as

belonging to a class that has the minimum obtained dis-

tance. As a result, by such a rule we can derive a formula

that can be used as the decision surface. DDC is tested on

both synthetic and real-world data sets from the UCI

repository, and the results were compared with k-NN, RBF

Network, and SVM. The experimental results indicate

DDC outperforms k-NN in the most experiments and the

results are comparable to or better than SVM with some

data sets.

Keywords Distance-based classifier � Projection �
Kernel space � Nonlinear surface � k-nearest neighbor �
Support vector machine

1 Introduction

Classification is one of the most important goals of pattern

recognition. Classification is the process of determining the

label of unlabeled input sample among known labeled

samples. Classification can be done based on sample

properties. One of these properties is distance. Distance is

a numerical description of how far objects are. In the

Euclidean space <n, the distance between two points is

usually given by the Euclidean distance (2-norm distance).

Based on the other norms, different distances are used such

as 1-, p-, and infinity-norm. In classification, various dis-

tances can be used to measure closeness, such as the

Euclidean, Mahalanobis distance, or bands distance [1].

In the literature of data classification, there are some

methods that classifying based on distance between

unclassified input (test) and training samples. One of the

classifiers is Minimum Distance Classifier (MDC) [2]. It

classifies an unknown sample into a category to which the

nearest prototype to the pattern belongs. In this classifier, a

Euclidean distance is used as the metric. Senda et al. [3]

based on karhunen–loeve expansion omit the redundant

calculations of MDC.

In our proposed method, called DDC, similar to k-NN,

no explicit training procedure is required. But it presents a

decision boundary based on the training set. In the classi-

fication phase for determining the label of new sample, on

contrary of k-NN, the proposed decision boundary can be

used efficiently without any computational cost because it

does not need searching time to locate the k-nearest

neighbors. Thus, we survey two groups of classifiers as

follows: (1) Lazy learning algorithms and (2) Linear

decision boundary.

Lazy learning algorithms are learning methods in which

no training step is required. Thus, generalization beyond

J. Hamidzadeh (&) � R. Monsefi � H. Sadoghi Yazdi

Department of Computer Engineering,

Ferdowsi University of Mashhad, Mashhad, Iran

e-mail: Javad.Hamidzadeh@stu-mail.um.ac.ir

R. Monsefi

e-mail: monsefi@um.ac.ir

H. Sadoghi Yazdi

e-mail: h-sadoghi@um.ac.ir

123

Neural Comput & Applic (2012) 21:1697–1707

DOI 10.1007/s00521-011-0762-8

the training data is delayed until a test sample is ready to be

classified. The common used algorithms from this group

are 1-NN and k-NN [4]. In this group of algorithms, the

entire training data set must be saved in the memory to be

used in the test classification phase. In other words, for test

classification phase, training data are used as reference data

sets. As a result, the main disadvantage of lazy learning for

saving reference data sets is a large space requirement [5].

Another disadvantage is those lazy learning methods which

are usually slower than nonlazy learning algorithms

because they use all the reference data sets, i.e., compari-

son of each test sample with every prototype in the stored

memory makes the method computationally less pleasant

[5]. Some of the mentioned algorithms, such as k-NN,

required their parameters to be determined by users. More

often, the best choice of these parameters depend on the

data distribution.

The k-nearest neighbor algorithm (k-NN) is a method to

classify the objects based on closest training examples in

the feature space. k-NN is a type of instance-based learn-

ing, or lazy learning, where the function is only approxi-

mated locally and all computation is deferred until

classification [6]. The k-nearest neighbor algorithm is

among the simplest of all machine learning algorithms: an

object is classified by a majority vote of its neighbors, with

the object being assigned to the class which includes the

nearest prototype sample. If k = 1, then the object is

simply assigned to the class of its nearest neighbor [6].

Various distances can be used to measure the vicinity

(similarity), such as the Euclidean or Mahalanobis dis-

tance. Two major weaknesses of k-NN are memory usage

and computational time. DDC can overcome these draw-

backs. Domeniconi et al. propose an adaptive 1-NN clas-

sification method trying to minimize the estimation bias in

high dimensions. They estimated a metric for computing

neighborhoods based on Chi-squared distance analysis [7].

As a result, they introduced weighted Euclidean distance to

overcome heterogeneous input space for high dimensional

features. Thus, the neighborhoods are constricted along

most influential ones and hence, we can confront with

heterogeneous input space for high dimensional features.

Vincent et al. [8] discuss the reasons of weak performance

of k-NN in comparison with SVM classifier. They have

shown geometrically intuition as to why k-NN often per-

forms more poorly than SVM on classification tasks. They

also proposed modified k-NN algorithm to overcome this

problem.

Nowadays k-NN has been used in various artificial

intelligence tasks, such as pattern recognition, data mining,

computer vision, and bioinformatics. Various aspects of

k-NN development are investigated from algorithm type,

computational overheads, and theoretical analysis [9, 10].

To improve the classification performance of k-NN, it has

recently been proposed a variety of prototype condensing,

distance measure, and weighted NN techniques [11]. Sur-

vey of different methods for data reduction can be seen in

[12, 13]. Fast nearest neighbor classification has been

investigated by efficiently exploiting metric structure and

hardware resources [14]. Weighted NN aims to weigh the

discriminative capability of different features or different

nearest neighbors [15, 16].

Linear decision boundary is used to partition among the

sample data sets. Finding a linear decision boundary which

separates two classes of pattern vectors is a fundamental

problem in pattern recognition. Decision boundaries can be

used to enhance results of clustering algorithms [17]. Some

of algorithms represent a linear boundary for separating the

sample data in the training phase. Takada et al. [18] pro-

posed a geometric algorithm for finding all linear decision

boundaries separating two nonoverlapping classes of data

sets. LDA, Fisher LDA, Logistic regression, Perceptron,

and SVM are some linear discriminative classifier. Most of

these algorithms use optimization to describe decision

boundary. For example, SVM is the one of these algo-

rithms that suggests an optimal marginal boundary between

two classes of data samples [19]. In the training phase,

SVM used optimization process to find such an optimal

margin between two classes. The result of this optimization

is the determination of some data samples for two classes

as support vectors. The advantage of this method is

memory usage to save only these support vectors for usage

in the classification phase.

The kernel approach offers an alternative solution to

improve the computational power of linear learning

machines by mapping the data into a high dimensional

feature space. By using the kernel approach, some linear

classifiers can be extended to nonlinear classification. Kai

et al. [20] proposed kernel-based nearest neighbor algo-

rithm. They used polynomial and radial basis kernel

functions (RBF). Results of kernel-based nearest neighbor

algorithm are reasonable. Luxburg et al. [21] proposed

distance-based classification with the Lipschitz functions.

Their main goal is to propose a decision function which has

the small Lipschitz constant. In this way the inverse of the

Lipschitz constant can be interpreted as the size of sepa-

rating margin among classes. Thus, their goal is to propose

an algorithm to find the small Lipschitz constant. But there

are some problems to implement their algorithm effi-

ciently. Also, there are some practical problems to choose a

suitable subspace of the Lipschitz functions. As a result,

these problems have remained practically unsolved yet.

Kosinov et al. [22] proposed a new approach for finding

discriminative linear transformations from inter-observa-

tion distances. It is a nonparametric distance-based tech-

nique. Their method is used for two and multi-class

classifiers and it can be extended to a kernel-based

1698 Neural Comput & Applic (2012) 21:1697–1707

123

classification. There are some other works that use different

distance metrics [23]. Gaitanis et al. proposed a classifier based

on hamming distance metric applicable to binary patterns.

In this paper, we propose two decision surfaces, which

are a quadratic surface and kernel type of it; those can be

used to classify input objects in binary classification. One

of the major differences of k-NN among existing algo-

rithms and DDC is to save memory and computational time

for classification phase. In the training phase, the coeffi-

cient of the proposed decision surface can be obtained.

Then, this decision surface can be used in the classification

phase.

The remainder of the paper is organized as follows: In

Sect. 2, initially, we formulate a decision surface that is

based on distance, and then we present a geometrical

interpretation of the new proposed distance-based algo-

rithm. In Sect. 3, a kernel type decision surface has been

proposed for nonlinear classification. Section 4 shows

experimental results of the proposed method. Section 5

finalizes with our conclusions and future work.

2 The proposed method

In this section, we propose a surface based on distance

classifier. For the two given classes, we calculate the

average distances of all the training samples. Unclassified

sample will be classified as belonging to a class that has the

smaller average distance. As a result, by such a rule we can

derive a formula that can be used as the decision surface.

After which, we present a geometrical view of distance-

based classifier, and for a new unclassified sample, average

distance to each class is being defined.

2.1 Quadratic decision surface for the distance-based

classifier

In this section, we derive a formula for determining the

decision boundary between two classes of samples. If d(x,

xi) denoted distance of the test sample to xi of first class and

d̂ x; xj

� �
denoted distance of the test sample to xj of second

class, we can have the following equation for deriving

decision boundary. Operator � denoted as one proper field

operator. l1dðx; x1Þ � l2dðx; x2Þ � . . .� ln1
dðx; xn1

Þ ¼ l̂1

d̂ðx; x1Þ � l̂2d̂ðx; x2Þ � . . .� l̂n2
d̂ðx; xn2

Þ. In this equation,

li is a degree related to number of xi’s neighbors; in other

words, it is normalized number of neighbors of a sample of

a class in a neighborhood radius. Calculation method of l
vector is shown in Table 1. This degree accommodated for

noisy data. DDC is based on distance among unclassified

sample X and samples of two classes. Our goal is to

determine this boundary in such a way that the average

distances from two classes be equal (as shown in (1)).

1

n1

Xn1

i¼1

lidðx; xiÞ ¼
1

n2

Xn2

j¼1

l̂jd̂ðx; xjÞ ð1Þ

In Eq. (1), the average distance of X from all samples in

each class is considered. We can derive and determine a

decision surface. In (1), n1 and n2 are used as the number of

training samples for class one and two, respectively. We

can derive a quadratic equation as decision surface by

Eq. (1). In this way, we can present a quadratic formula as

decision surface for classifying new unclassified samples.

Therefore, we can improve efficiency of original k-NN by

introducing the proposed decision surface for K = N (N is

total training samples in each class). Also, we can decrease

memory usage. In the k-NN, using large space for saving a

large number of samples is another of its drawbacks. By

using the proposed decision surface, it is not necessary to

use a lot of memory for saving all training samples. Thus,

in spite of k-NN, the proposed method is not an online

algorithm. The deficiency of using (1) is when there is a big

difference between the numbers of samples of two classes.

Thus, to eliminate this deficiency, we should normalize the

volume of data in both classes. One suggested way to

overcome this problem is to divide both sides of (1) by the

number of training samples; as a result, Eq. (2) is given.

1

n1

1

n1

Xn1

i¼1

lidðx; xiÞ
 !

¼ 1

n2

1

n2

Xn2

j¼1

l̂jdðx; xjÞ
 !

ð2Þ

We use the Euclidean distance (2-norm distance). Thus,

by substitution distances with this norm, we have (3).

n2
2 �
Xn1

i¼1

li x� x2
i

�� �� ¼ n2
1 �
Xn2

j¼1

l̂j x� x2
j

���
��� ð3Þ

Then, by considering x� x2
i

�� �� ¼ ðx� xiÞTðx� xiÞ, after

manipulating the equation, we have,

Table 1 l vector calculation

1. Distance Matrix: It is a symmetric matrix of n*n dimensions, where n is the number of class instances. The element in row i and column j
of this matrix denotes the distance between sample i and j in their class or d(xi, xj).

2. Neighbor Counter Vector (NCV): It is a vector that maintain for each sample, the number of other samples within a certain given

distance. The element number i of NCV can be computed based on row number i of Distance Matrix.

3. l vector: Element number i in l vector is computed as: NCV(i)/Max(NCV), where Max(NCV) denotes the maximum value in NCV

vector. It is obvious that 0 B li B 1.

Neural Comput & Applic (2012) 21:1697–1707 1699

123

xT x n2
2

Xn1

i¼1

li

 !

� 2xT n2
2

Xn1

i¼1

lixi

 !

þ n2
2

Xn1

i¼1

lix
T
i xi

¼ xT x n2
1

Xn2

j¼1

l̂j

 !

� 2xT n2
1

Xn2

j¼1

l̂jxj

 !

þ n2
1

Xn2

j¼1

l̂jx
T
j xj

ð4Þ

Thus we have,

xT x n2
2

Xn1

i¼1

li�n2
1

Xn2

j¼1

l̂j

 !

�2xT n2
2

Xn1

i¼1

lixi�n2
1

Xn2

j¼1

l̂jxj

 !

þn2
2

Xn1

i¼1

lix
T
i xi�n2

1

Xn2

j¼1

l̂jx
T
j xj¼ 0 ð5Þ

The proposed decision boundary is derived where a, b,

and c are defined as in (6) to (8), respectively,

a ¼ n2
2

Xn1

i¼1

li � n2
1

Xn2

j¼1

l̂j

 !

ð6Þ

b ¼ 2 n2
2

Xn1

i¼1

lixi � n2
1

Xn2

j¼1

l̂jxj

 !

ð7Þ

c ¼ n2
2

Xn1

i¼1

lix
T
i xi � n2

1

Xn2

j¼1

l̂jx
T
j xj ð8Þ

FðxÞ ¼ axT xþ bxþ c ¼ 0 ð9Þ

A quadratic decision surface is shown in (9). Thus, to

classify a test sample such as x, it is sufficient to determine

the sign of Eq. (9). Input test sample cannot properly be

classified if the sign of decision surface is neither positive

nor negative. We define function G(x) as G(x) = sign

(F(x)). Thus, classification process can be done based on

Eq. (10). Here, x1 and x2 are class labels.

if G xð Þ\0 then x 2 x1

if G xð Þ[0 then x 2 x2

8
<

:
ð10Þ

Here, we have proposed a binary classification in (10). In

the next section, we present the geometrical interpretation

of DDC.

2.2 A geometrical interpretation of distance classifier

In this section, we present the geometrical interpretation of

DDC. First of all, some used definitions are addressed, and

then based on these definitions, a geometrical interpretation

of the proposed method (DDC) is presented.

Definition 2.2.1 The projection line is defined as a

drawing line between test sample and its closest sample

(1-NN). In Fig. 1, XB is the projection line between test

sample x and its closest sample B.

Definition 2.2.2 The equidistance projection of a given

sample onto the projection line is such that we draw a

circle with the test sample as the center of the circle with

the radius equal to distance(test_sample,data) crossed with

the projection line. distance(test_sample,data) denotes as

distance between test sample and the given sample. In

Fig. 1, A is a given sample and A0 is its equidistance pro-

jection of sample A on the projection line XB.

Definition 2.2.3 The average distance of a test sample to

a class is defined as the average of equidistance projection

of all the class’s samples on the projection line.

In Fig. 1, A and B are two given samples of the same

class. B is the 1-NN to the test sample X. The sum of

distances X from two data A and B is given in (11).

d1 þ d2 ¼ d1 þ XA
0 ð11Þ

All of the data should be projected on the projection line

and average of these projected distances is considered the

distance of all data to X. In other words, with respect to

1-NN to test sample X, all samples of class projected on the

aforementioned projection line passes from X to its 1-NN

and average of those projected distances is considered

distance X to the class. This projection can be done by

considering other samples in addition 1-NN to X. Based on

the position of the test sample X, projection line can be

different. As shown in Fig. 2, there are different projection

lines for different positions of the test sample X because

1-NN for the related X is in a different place.

Figure 3 shows the projected points of samples on

projection line that passes through the test sample X and its

1-NN.

Fig. 1 An equidistance projection of point A onto projection line XB,

where d2 = XA = distance(test_sample,data)

Fig. 2 Different equidistance projection lines based on different

X positions a A is 1-NN to X b B is 1-NN to X

1700 Neural Comput & Applic (2012) 21:1697–1707

123

The questions that may arise here are:-

1. What kinds of effects different lines have on the

classification process?

2. What can be the best shape for samples in order to

have the best classification process?

3. What is the effect of different numbers of samples in

each class?

If data at the two classes are shaped as two spheres with

equal radius, there will be similar projections lines regardless

of different X positions. And hence there are no problems for

different volumes of data for each class. In Fig. 4, XO1 and

XO2 are represented for average X distances to each of the

classes, respectively. As depicted in Fig. 4, X belongs to the

class x1, because XO1 \ XO2. In other words, X belongs to a

class that the average distance is minimized.

If the number of samples in each class is different, then

the average distance cannot be satisfactory as a distance

metric. As shown in Fig. 5, since radius of class x2 is

larger than class x1, the balance point is absorbed by class

x2. One approach to overcome this problem is the use of

different parameters for normalizing the number of sam-

ples in each class. For example, we can use number of

samples in each class for normalization. By dividing the

average distance to each class by the number of samples in

that class, we can reduce the effect of this absorption of the

balance point.

3 Kernel type decision surface

Kernel methods are powerful statistical learning techniques,

widely applied to various learning algorithms [24, 25]. Kernel

methods can be used to transform samples to a high dimen-

sional space. In the high dimensional space, various methods

were used to separate samples linearly. A mapping function

denoted by u can be used to transform samples to high

dimensional space. In kernel methods, a kernel function can be

used to operate without need to compute coordinates at the

high dimensional space. In machine learning, this usage of

kernel function is known as kernel trick. The kernel trick is a

method to use a linear classifier to solve a nonlinear problem by

mapping the original observations into a higher-dimensional

space to enable us to classify them with the linear classifier. In

other words, the linear classifier is subsequently used for linear

classification in the new space equivalent to nonlinear classi-

fication in the original space. Nonlinear information process-

ing algorithms can be designed by means of linear techniques

in implicit feature spaces [26]. By using kernel function, the

inner products between the images of the data can be substi-

tuted in the feature space. Therefore we have Eq. (12).

K x; yð Þ ¼ u xð Þ;uðyÞh i ¼ u xð ÞTuðyÞ ð12Þ

This operation can be done computationally which is

more efficient than the explicit computation of the

coordinates.

We use u to map sample features into high dimensional

space. Thus, by using Eq. (1) and Euclidean distance in the

high dimensional space, Eqs. (13) to (18) are derived to

obtain a kernel surface for DDC. We used radial basis

function (RBF) kernel as kernel function in DDC. There is

one adjustable parameter in RBF kernel.

n2 �
Xn1

i¼1

li uðxÞ � uðxiÞk k2¼ n1 �
Xn2

j¼1

l̂j uðxÞ � uðxjÞ
�� ��2

ð13Þ

Fig. 3 Projection of samples onto projection line

Fig. 5 The balanced point is absorbed by class x2

Fig. 4 Distances X from two classes are XO1 and XO2, respectively

Neural Comput & Applic (2012) 21:1697–1707 1701

123

n2 �
Xn1

i¼1

li ðuðxÞ � uðxiÞÞTðuðxÞ � uðxiÞÞ
� �

¼ n1 �
Xn2

j¼1

l̂j ðuðxÞ � uðxjÞÞTðuðxÞ � uðxjÞÞ
� �

ð14Þ

Since u xð Þ�uðxiÞð ÞTðuðxÞ�uðxiÞÞ¼u xð ÞTu xð Þ�2u xð ÞT

uðxiÞþuðxiÞTuðxiÞ and by using (12) we can derive (15).

n2 �
Xn1

i¼1

li k x; xð Þ � 2kðx; xi½ Þ þ kðxi; xiÞ�

¼ n1 �
Xn2

j¼1

l̂j½k x; xð Þ � 2kðx; xjÞ þ kðxj; xjÞ� ð15Þ

We use radial basis kernel as shown in (16).

K x; yð Þ ¼ e�
x�y2k k
2r2 ð16Þ

It is trivial to prove that K(x, x) = 1, therefore after

making some simplifications, we have (17).

n2

Xn1

i¼1

li � n2

Xn1

i¼1

likðx; xiÞ ¼ n1

Xn2

j¼1

l̂j � n1

Xn2

j¼1

l̂jkðx; xjÞ

ð17Þ

By substitution of (16) in (17) we can derive (18).

n1

Xn2

j¼1

l̂je
�

x�x2
jk k

2r2 � n1

Xn2

j¼1

l̂j þ n2

Xn1

i¼1

li

� n2

Xn1

i¼1

lie
�

x�x2
ik k

2r2 ¼ 0 ð18Þ

As a result of using kernel function, we have a nonlinear

decision surface as in (18).

A comparison between DDC and SVM hyperplane is

presented next. We consider (1) linear separable data and

(2) a nonlinear type. The SVM hyperplane formula and

DDC for linear separable data are shown in (19) and (20),

respectively.

f ðxÞ ¼
Xn1þn2

i¼1

aiyixix
T þ b ¼

Xn1

i¼1

aixix
T þ

Xn2

i¼1

aixix
T þ b

ð19Þ

aXT X þ bX þ c ¼ 0 ð20Þ

In (19), ai obtained from optimization process such as

Quadratic programming. Some of ai are zero. For those ai

that are nonzero, xi are called support vectors and these

data must be maintained for classification process. In our

decision surface coefficients a, b and c can be easily

obtained by Eqs. (6) to (8) without any optimization

process. After determining these coefficients, it is not

needed to store the training data. In the classification

process, Eq. (20) can be used for classifying new unknown

sample X. As a result, DDC can save memory usage and

time consumption in comparison with standard SVM.

The proposed algorithm is a binary classifier. It is a good

idea to extend it to multiclass classifier too. To this end, by

using Eq. (13), a discriminate function, gj (x) can be given

as in Eq. (21).

gjðxÞ ¼
Pnj

i¼1 li uðxÞ � uðxiÞk k2

nj

¼
Pnj

i¼1 li k x; xð Þ � 2kðx; xi½ Þ þ kðxi; xiÞ�
nj

¼
2 �
Pnj

i¼1 li 1� e�
x�xik k2

2r2

� �

nj
ð21Þ

In Eq. (21), nj is the number of samples in class j. For

classifying test sample X, gj (x) is computed for all classes

(i.e., j = 1…#classes) and then X will be assigned to the

class that has the minimum value of gj (x).

Equations (22) and (23) show SVM and the proposed

decision surface, respectively, for classifying nonlinear

separable data. As reported for standard SVM (kernel

version), most coefficients ai are nonzero [27, 28]. Hence

both methods are the same with respect to the memory

usage for storing the learning data. But it is required in

SVM to determine ai from an optimization process and it is

time consuming for large amount of data. In DDC, there is

no need to do such optimization. Equation (24) shows the

one output function in RBF network. In Eq. (24), k, Wji, ci,

and ri are used as the number of centers, the weights

connect the hidden and output layer, the center and the

bandwidth, respectively.

f ðxÞ ¼
Xn1þn2

i¼1

aiyiKðxi; x
TÞ þ b

¼
Xn1

i¼1

aiKðxi; x
TÞ þ

Xn2

i¼1

aiKðxi; x
TÞ þ b ð22Þ

n1

Xn2

j¼1

l̂je
�

x�x2
jk k

2r2 � n1

Xn2

j¼1

l̂j þ n2

Xn1

i¼1

li

� n2

Xn1

i¼1

lie
�

x�x2
ik k

2r2 ¼ 0 ¼ n2

Xn1

i¼1

li � n2

Xn1

i¼1

liKðx; xiÞ

þ n1

Xn2

j¼1

l̂jKðx; xjÞ � n1

Xn2

j¼1

l̂j ð23Þ

fjðxÞ ¼
Xk

j¼1

wjie
�

x�c2
ik k

2r2
i ð24Þ

By using kernel function, our proposed kernel surface is

similar to RBF networks. An RBF network consists of

three layers. These layers are: (1) the input layer, (2) the

hidden layer, and (3) the output layer. The input layer is

1702 Neural Comput & Applic (2012) 21:1697–1707

123

used to transform the attribute values of input data to each

of the units in the hidden layer [29]. Each unit in the hidden

layer produces an activation based on its RBF. Thus, the

centers of these associated RBFs are samples of DDC.

Each unit in the output layer computes a linear

combination of the hidden unit activations. The output

links of the hidden units are assigned by weight scalars.

These weights are the number of samples in DDC. The

reaction of RBF networks to a given input is determined by

the activation functions assigned to the hidden units and the

weights assigned to the output links of the hidden units.

Therefore, our proposed kernel surface is similar to RBF

networks in which the Gaussian centers are the samples

and the weights are the number of samples in each class

(see Fig. 6). By the way, n2

Pn1

i¼1 li � n1

Pn2

j¼1 l̂j is used as

the bias. Xi
j is denoted as sample number i of class number

j and ni is used as the number of samples in the class i.

4 Experimental results

In order to validate DDC, the experiments were conducted

on both synthetic and real-world data sets. In the following,

firstly, we present the results of our experiments on dif-

ferent synthetic data sets and secondly for showing the

performance of DDC, we used benchmark data sets from

the UCI repository [30]. In all the experiments, tenfold

cross-validation is used to evaluate the accuracy of DDC.

4.1 Experimental results on synthetic data sets

We generated synthetic data sets of two classes. We con-

sider the synthetic data sets in Fig. 7. In Fig. 7a, the

number of samples in class one and two is 80 and 90,

respectively. In Fig. 7b, the number of samples in class one

and two is 55 and 110, respectively.

In Fig. 7, there are two classes which are linearly sepa-

rable. As can be seen in Fig. 7a, our proposed surface deci-

sion has been used to classify with the error rate of zero

percent.

As the next experiment, we aim to show the effect of high

difference between the numbers of samples in each class. As

shown in Fig. 7b, we can nevertheless see this difference;

the proposed normalizing parameter in Eq. (2) creates no

major problem for the proposed decision surface.

In the next experiment, we generate one and two noisy

data, respectively, as depicted in Fig. 7c, d. The value of

error rate linearly increases with increasing of noisy data.

This value of error rate is sensible, because the classifier

cannot properly classify the noisy data. Figure 8 shows a

two-dimensional data set with 320 samples, whose coor-

dinates are uncorrelated. The samples are separated into

two classes, one containing 150 samples and the other 170

samples, both being Gaussian with lx = -2, ly = 0,

rx = 2, ry = 1 and with lx = 2, ly = 0, rx = 1, ry = 2,

respectively. There is some overlap between the two

classes. Samples with circle around them are test samples.

By using Eq. (18), as decision surface, the boundary

between two classes is shown. It is iso-contours with zero

value. The error rate for this boundary was 9.82 percent.

In order to classify nonlinear separable data, we per-

formed some other experiments on synthetic data sets. The

classes and the results of classification error rate are shown

in Fig. 9a, b. For these experiments, we used the Eq. (18)

as the decision surface. As shown in Fig. 9, the classifi-

cations have been done with error rate of zero percent.

As shown in previous experiments, DDC can be used to

classify linear and nonlinear separable data.

4.2 Experimental results on real-world data sets

The experiments reported in this section have been con-

ducted to evaluate the performance (accuracy and effi-

ciency) of DDC in comparison with the alternative data

classification methods. The alternative data classification

methods involved in the comparison included k-NN, RBF

Network, and SVM. For showing the performance of DDC,

we used the benchmark data sets from the UCI repository

[30]. The selected data sets and their related parameters are

Fig. 6 Kernel decision surface as RBF networks

Neural Comput & Applic (2012) 21:1697–1707 1703

123

listed in Table 2. In the Table 2, #samples, #features, and

#classes denote the number of data samples, the number of

the attributes, and the number of the classes, respectively.

Note that for data set glass, there is one missing class. That

is, in the original application there is one more class but in

the data set no samples are with this class.

On each data set, we compared DDC to k-NN, RBF

Network, and SVM classifiers. These experiments have

been performed in the Matlab R2008a on Intel processor

with 2.13GHZ and 4 GB RAM. In these experiments, the

SVM in Matlab with the radial basis kernel and the one-

against-one practice has been adopted for the SVM and

DDC, if the data set contains more than two classes of

objects [31, 32]. We also used k-NN in Matlab with

Euclidean distance. Tenfold cross-validation has been

conducted on the training set to determine the optimal

parameter values to be used in the testing phase for the

kernel function. For each data set, we estimate the gen-

eralized accuracy using different kernel parameters , in

{0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 0.8, 1, 2, 4, 8, 12, 16}. For the

SVM, cost parameter C in {0.1, 0.2, 0.4, 0.8, 1, 2, 4, 8, inf}

is considered. For k-NN algorithm, we reported the

parameter k that has been achieved the lowest error rate.

We have performed k-NN with parameter k in {1, 3, 5, …,

19}. We used Gaussian kernel for all algorithms and used

the tenfold cross-validation method to estimate the gener-

alization errors of the classifiers.

For DDC and k-NN, we scale data sets. Because we use

Euclidean distance, if one of the features of data sets has a

very wide range of possible values compared to the other

features, it will have a very large effect on the total distance

value, and the decisions will be based primarily upon this

Fig. 8 Using Eq. (18) as decision surface for classifying, with two

overlapped data classes

(b)(a)

-6 -4 -2 0 2 4
-4

-3

-2

-1

0

1

2

Feature1

F
ea

tu
re

2

 ErrorRate=0%

class1
class2

-3 -2 -1 0 1 2 3
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Feature1

F
ea

tu
re

2

 ErrorRate=0%

class1
class2

(d)(c)

Fig. 7 Using Eq. (9) as decision surface for classifying. in a and b, decision boundary for separating two classes with equal and different number

of samples, respectively, with zero error rate. In c and d, decision boundary for two classes with one and two noisy samples, respectively

1704 Neural Comput & Applic (2012) 21:1697–1707

123

single feature. To overcome this, we apply scale factors to

the features in the data sets. We scale each feature to have

the same standard deviation about its mean.

The experimental results are summarized in Tables 3

and 4. Note that the values in both tables denote the

error classification rates (in percent). For multiclass

Fig. 9 Using Eq. (18) as

decision surface with zero error

rates. In a and b, the decision

surface could separate two

nonlinear separable classes

Table 2 Data sets
No. Data set #samples #features #classes

1 Sonar 208 60 2

2 Heart 267 44 2

3 Ionosphere 351 34 2

4 Haberman 306 3 2

5 Liver 345 6 2

6 Diabetes 768 8 2

7 Wdbc 569 30 2

8 Iris 150 4 3

9 Glass 214 9 7

10 Ecoli 336 7 8

11 Segment 2,310 19 7

12 Satimage 4,435 36 6

13 Letter 15,000 16 26

14 Shuttle 43,500 9 7

Table 3 The classification

error rates (in percent) and their

parameter values for k-NN and

DDC classifiers

No. Data Set k-NN DDC Comparing DDC

with k-NN
K Rate , Rate

1 Sonar 1 16.83 0.4 11.06 Better than k-NN

2 Heart 9 20.22 0.75 17.60 Better than k-NN

3 Ionosphere 1 13.68 0.1 5.12 Better than k-NN

4 Haberman 19 24.18 12 24.18 Similar to k-NN

5 Liver 9 31.30 8 32.46 Similar to k-NN

6 Diabetes 7 30.99 4 29.43 Similar to k-NN

7 Wdbc 9 2.46 1 2.99 Similar to k-NN

8 Iris 13 2.0 0.3 2.67 Similar to k-NN

9 Glass 1 26.17 0.1 28.50 Weaker than k-NN

10 Ecoli 5 11.90 0.1 13.39 Weaker than k-NN

11 Segment 3 3.86 2 3.50 Similar to k-NN

12 Satimage 3 9.35 0.8 7.55 Better than k-NN

13 Letter 1 4.32 4 4.33 Similar to k-NN

14 Shuttle 1 2.16 0.8 2.20 Similar to k-NN

Neural Comput & Applic (2012) 21:1697–1707 1705

123

classification, we can use classification by pair wise cou-

pling. In this paper, we used the voting approach in com-

parison with the classifier output approaches for the

extension to two-class classifier to multiclass classifier.

As it can be seen, DDC has better performance relative

to k-NN and SVM in No. 1 and better results relative to

k-NN in No. 1, 2, 3, and 12 and better results relative to

SVM in No. 1, 7, and 12. We found DDC from viewpoint

of accuracy behave between k-NN and SVM algorithms in

the most situations. We also report the training time, testing

time for DDC and the SVM in Table 5. We found DDC

from viewpoint of training time is similar to k-NN (without

training time) and in the testing time is better than k-NN

and SVM algorithms. Of course, in Ecoli data set, we found

SVM give better testing time because of reducing support

vectors. So we need a sample reduction procedure for DDC

that we will pursuit in the future work.

5 Conclusions and future works

In this paper, a new method for classification without

learning phase has been presented. This new method is a

distance-based classifier, where we called it DDC. In DDC,

Table 4 : The classification error rates (in percent) and their parameter values for RBF Network, SVM, and DDC classifiers

No. Data set RBF Network SVM DDC Comparing DDC with RBF
Network and SVM

Rate C , Rate , Rate

1 Sonar 18.45 0.8 3.2 14.42 0.4 11.06 Better than each two algorithms

2 Heart 20.55 1 4.6 16.85 0.75 17.60 Similar to SVM

3 Ionosphere 6.80 2 4 3.99 0.1 5.12 Between SVM and RBF Network

4 Haberman 26.55 2 2 24.84 12 24.18 Similar to SVM

5 Liver 28.50 2 4 26.96 8 32.46 Weaker than RBF Network and SVM

6 Diabetes 30.45 4 4 27.08 4 29.43 Between SVM and RBF Network

7 Wdbc 5.68 4 2 4.92 1 2.99 Better than each two algorithms

8 Iris 4.67 0.2 2 3.33 0.3 2.67 Similar to SVM

9 Glass 31.84 4 2 28.50 0.1 28.50 Similar to SVM

10 Ecoli 15.80 4 4 12.80 0.1 13.39 Between SVM and RBF Network

11 Segment 6.02 2 1 2.60 2 3.50 Between SVM and RBF Network

12 Satimage 9.75 8 4 8.70 0.8 7.55 Better than each two algorithms

13 Letter 8.84 4 2 2.02 4 4.33 Between SVM and RBF Network

14 Shuttle 2.86 1 8 2.08 0.8 2.20 Similar to RBF Network and SVM

Table 5 : Training time, testing time, and number of support vectors of SVM (Times in ms)

No. Data set SVM K-NN DDC

Training time Testing time #SVs #SVs/training % Testing time l vector calculation

time

Testing

time

1 Sonar 40.8 2.5 186 89.42 8 1.2 6

2 Heart 1,317.2 2.3 176 65.92 9.5 1.5 7.5

3 Ionosphere 2,836.4 2.9 223 63.53 12.5 1.8 10.4

4 Haberman 55.3 3.2 276 90.20 8.4 1.65 6

5 Liver 188.4 3.3 307 88.99 9.2 1.72 6.8

6 Diabetes 162,481 9.6 646 84.11 24.4 2.10 19

7 Wdbc 16,675 3.7 321 56.41 23.2 2.23 19.6

8 Iris 667.5 8.3 64 36 15.3 0.87 14.49

9 Glass 926.3 38.0 125 58.41 30.1 1.46 31.33

10 Ecoli 5,541.3 50.6 101 30.06 63.5 1.67 64.02

11 Segment 856E5 345.56 896 43.10 98.45 4.53 75.45

12 Satimage 634E7 266.17 2,365 59.26 535.44 6.34 495.38

13 Letter 235E8 483.58 8,945 66.26 716.33 8.23 673.97

14 Shuttle 675E14 654.45 22,679 57.93 938.29 12.34 843.86

1706 Neural Comput & Applic (2012) 21:1697–1707

123

we proposed a decision surface for binary classification

process. An input test sample with respect to the decision

surface can be assigned to one of the two classes. For

multi-class classification, we used classification by pair

wise coupling. Here, the voting approaches in comparison

with the classifier output approach have been used for the

extension of two-class classifier to multi-class classifier.

Results obtained based on both synthetic and benchmark

data from the UCI repository show that the accuracy of

DDC is reasonable in comparison with the SVM and k-NN

algorithms. We found DDC from viewpoint of accuracy

behave between k-NN and SVM algorithms in the most

situations. Moreover, we excluded training phase in DDC.

To continue this work, we propose the following ideas.

To considering other distances such as Mahalanobis, or

new distances based on distribution of data for improving

performance of DDC. To have a good projection line, it

might be a spherical shape for sample data. By using some

methods such as kernel, we can have proper shape for data

samples in high dimensional space. Data reduction for

obtaining decision surface can be considered in the future

work.

References

1. Laguia M, Castro JL (2008) Local distance-based classification.

Knowl Based Syst 21:692–703

2. Bow ST (2002) Pattern recognition and image preprocessing, 2nd

edn. Marcel Dekker, New York

3. Senda S, et al. (1995) A fast algorithm for the minimum distance

classifier and its application to kanji character recognition. In:

Proceedings of the third international conference on document

analysis and recognition, vol 1, pp 283–286

4. Cover TM, Hart PE (1967) Nearest neighbor pattern classifica-

tion. IEEE Trans Inf Theory 13:21–27

5. Aha DW et al (1991) Instance-based learning algorithms. Mach

Lear 6:37–66

6. Duda RO et al (2001) Pattern classification. Wiley Interscience

Publication, New York

7. Domeniconi C et al (2002) Locally adaptive metric nearest-

neighbor classification. IEEE Trans Pattern Mach Intell 24:1281–

1285

8. Vincent P, Bengio Y (2002) K-local hyperplane and convex

distance nearest neighbor algorithms, vol 14. The MIT Press,

Cambridge

9. Dasarathy BV (1991) Nearest neighbor (NN) norms: NN pattern

classification techniques. IEEE Computer Society Press, Los

Alamitos

10. Shakhnarovich G, et al. (2006) (eds) Nearest-neighbor methods in

learning and vision: theory and practice. MIT press, Cambridge

11. Lam W et al (2002) Discovering useful concept prototypes for

classification based on filtering and abstraction. IEEE Trans

Pattern Mach Intell 24:1075–1090

12. Veenman CJ, Reinders MJT (2005) The nearest subclass classifier:

a compromise between the nearest mean and nearest neighbor

classifier. IEEE Trans Pattern Mach Intell 27:1417–1429

13. Olvera-Lo0pez JA et al (2010) A new fast prototype selection

method based on clustering. Pattern Anal Appl 13(2):131–141

14. Herrero JR, Navarro JJ (2007) Exploiting computer resources for

fast nearest neighbor classification. Pattern Anal Appl 10:265–275

15. Dudani SA (1976) The distance-weighted k-nearest-neighbor

rule. IEEE Trans Syst Man Cybern 6:325–327

16. Zuo W et al (2008) On kernel difference-weighted k-nearest

neighbor classification. Pattern Anal Appl 11:247–257

17. Bommanna KR et al (2010) Texture pattern analysis of kidney

tissues for disorder identification and classification using domi-

nant Gabor wavelet. Mach Vis Appl 21:287–300

18. Takada Y et al (1994) A geometric algorithm finding set of linear

decision boundaries. IEEE Trans Signal Process 42:1887–1891

19. Cortes C, Vapnik V (1995) Support-vector network. Mach Learn

20:273–297

20. Kai Y et al (2002) Kernel nearest neighbor algorithm. Neural

Process Letters 15:147–156

21. Luxburg UV, Bousquet O (2004) Distance-based classification

with Lipschitz functions. J Mach Lear Res 5:669–695

22. Kosinov S, Pun T (2008) Distance-based discriminant analysis

method and its applications. Pattern Anal Appl 11:227–246

23. Gaitanis N, et al. (1993) (eds) Pattern classification using a

generalized hamming distance metric. International conference

on neural networks

24. Pekalska E, Hassdonk B (2009) Kernel discriminant analysis for

positive definite and indefinite kernels. IEEE Trans Pattern Mach

Intell 31:1017–1031

25. Li X et al (2009) Kernel-based nonlinear dimensionality reduc-

tion for electrocardiogram recognition. Neural Comput Appl

18:1013–1020

26. Ruiz A, Lopez-de-Teruel PE (2001) Nonlinear kernel-based sta-

tistical pattern analysis. IEEE Trans Neural Netw 12:16–32

27. Downs T et al (2001) Exact simplification of support vector

solutions. J Mach Learn 2:293–297

28. Nefedov A et al (2009) Experimental study of support vector

machines based on linear and quadratic optimization criteria.

DIMACS Technical Report, no. 2009–18, June 2009

29. Orr MJL (1996) Introduction to radial basis function networks.

Center Cognitive Science University Edinburgh, UK, Edinburgh

30. Hettich S, et al. (1998) UCI Repository of machine learning

databases. Available: http://www.ics.uci.edu/mlearn/MLRepository.

html

31. Hastie T, Tibshirani R (1998) Classification by pairwise coupling.

Ann Stat 26(2):451–471

32. Tax DMJ, Duin RPW (2005) Using two-class classifiers for

multiclass classification. Pattern Recognition Group, Faculty of

Applied Science, Delft University of Technology, Delft

Neural Comput & Applic (2012) 21:1697–1707 1707

123

http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ics.uci.edu/mlearn/MLRepository.html

	DDC: distance-based decision classifier
	Abstract
	Introduction
	The proposed method
	Quadratic decision surface for the distance-based classifier
	A geometrical interpretation of distance classifier

	Kernel type decision surface
	Experimental results
	Experimental results on synthetic data sets
	Experimental results on real-world data sets

	Conclusions and future works
	References

