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Abstract This article presents a new method to construct multiple classifier system by
making diverse base classifiers using weight tuning. In the method presented, base classifiers
are multilayer perceptions which creates diverse base classifiers using a three-step proce-
dure. In the first step, base classifiers are trained for acceptable accuracy. In the second step,
a weight tuning process tunes their weights such that each one can distinguish one class of
input data from the others with highest possible accuracy. An evolutionary method is used to
optimize efficiency of each base classifier to distinguish one class of input data in this step.
In the third step, a new method combines the results of the base classifiers. As diversity is
measured and monitored throughout the entire procedure, it is measured using a confusion
matrix. Superiority of the proposed method is discussed using several known classifier fusion
methods and known benchmark datasets.

Keywords Combining classifiers · Classifier fusion · Classifier diversity ·
Multiple classifier system diversity

1 Introduction

Combination of classifiers as a unified system has demonstrated to perform better than single
classifiers [1,2]. As each classifier produces different errors in different regions of the input
space, performance of each base classifier in some regions of input space would be better than
other regions [3]. This property makes the combined system more accurate than single ones.
The classifier system formed by combining multiple different classifiers is called multiple
classifier system (MCS).
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62 M. Salkhordeh Haghighi et al.

Fig. 1 Hierarchy of MCS fusion methods

Nevertheless, the proper strategy for combining simple classifiers is the main issue in MCS
construction. As there is no best combination method to be used in all different applications,
various fusion approaches have been reported [1,4]. While a majority vote may be suitable if
only labels are available, continuous outputs such as posterior probabilities require average
or other linear combinations [5]. If the classifier outputs are interpreted as fuzzy membership
values, fuzzy approaches could be used. It is also possible to train the combiner separately,
using outputs of the base classifiers as new features [6]. One of the earliest works on MCS
dates back to Dasarathy and Sheela’s 1979 work, which discussed the idea of partitioning
the feature space using two or more classifiers [7].

Amongst the various approaches in categorizing MCS, one major category is the capa-
bility of being trained. They need additional training after the training process of the base
classifiers is completed. With no training capability, combiner training is not required once
the base classifiers have been trained individually. This is shown in Fig. 1.

Another class of MCS is those that develop the combiner during training of individual
classifiers. Some known trainable combiners are Weighted Average, Fuzzy Integral, Decision
Template, and Dempster Shafer. The most known non trainable combiners are Min, Max,
Median, Simple Mean, Product, OWA, and Majority Vote.

1.1 Diversity in MCS

It is well known that combination of the outputs of several classifiers is only useful if they
disagree on some inputs [8,9]. We refer to the measure of disagreement as the diversity of the
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Making Diversity Enhancement Based on Multiple Classifier System 63

Fig. 2 Types of diversity
measures

MCS. For regression problems, mean squared error is generally used to measure accuracy,
and variance is used to measure diversity. Constructing a diverse committee in which each
hypothesis is as different as possible, while maintaining consistency with the training data
is known to be a theoretically important property of a good MCS method [10]. Although
all successful construction methods encourage diversity to some extent, few have focused
directly on the goal of maximizing diversity.

There is however, no general agreement about how to quantify the notion of diversity
among a set of classifiers. As a starting point to quantify diversity, the measures can be cat-
egorized into two groups, pair wise and non pair wise [11] as shown in Fig. 2. To apply pair
wise measures, it is necessary to compute averages over the set of paired classifiers diversi-
ties. Non pair wise measures attempt to measure diversity of a set of classifiers directly, for
example based on variance entropy or some other measures.

On the other hand, diversity among classifiers can be analyzed from another point of view
on what is considered as the population. Suppose we have K classifiers each classifying every
one of the N items of input data (zi ). Thus, the population can be formed based on either
the data or the classifiers [12]. In Data based population, each individual in the population is
formed by outputs of base classifiers for one input data (zi ). In contrast, each individual in
classifier based population is formed by outputs of one classifier for all input data z [13].

Therefore, diversity within data population is the diversity of the MCS with N population
each one with K features with respect to a key item of input data. As a result, diversity can
be calculated by averaging over all input data space. In contrast, in classifier based popu-
lation, there are K populations each with N features; as a result, diversity would belong to
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64 M. Salkhordeh Haghighi et al.

Table 1 Relationship table
between classifiers i and j

D j is correct D j is incorrect

Di is correct a b

Di is incorrect c d

the outputs of one particular classifier for all different input samples. As a result, for the
classifiers to be diverse enough, this type of population has little importance.

1.2 Types of diversity measures

Diversity measures are mainly groups as following:

1.2.1 Statistical methods

Consider classifiers with outputs 0 or 1. Output is 1 when input data xi is classified correctly
and 0 otherwise. In such classifiers, correlation is computed based on Table 1 as a measure
of diversity. Entries of the table are the probabilities that each combination occurs. In this
table, sum of all the probabilities is equal to 1 (a + b + c + d = 1).

The correlation between classifiers Di and D j is calculated based on (1) [1].

ρi, j = ad − bc√
(a + b) (c + d) (a + c) (b + d)

(1)

Another statistical measure is Q_static. Using Table 1, the Q_static measure of diversity is
computed by Qi, j = ad−bc

ad+bc . For the classifiers that are statistically independent, the measure
is 0 and Qi, j ∈ [−1, 1]. Positive value of Q shows that the classifiers can recognize an object
similarly.

Interrater agreement (k) is also used as a statistical measure. If C class labels are avail-
able, k is defined on a C × C coincidence matrix M . The entry mk,swould be the proportion
of the dataset which classifier Di labels as wk while D j labels it as ws . The value of k

for the two classifiers is calculated by ki, j =
∑

k mk,k−ABC
1−ABC . In the equation, the value of

∑
k mkk is the observed agreement between the classifiers. The value of ABC is the agree-

ment by chance which is computed by
∑

k

(∑
s mk,s

) (∑
s ms,k

)
. Low values of k indicate

higher disagreement and higher diversity.

1.2.2 Disagreement and double fault measures

In another view, disagreement measure is the probability that the two classifiers have dis-
agreement on input data. Based on the Table 1, the diversity between classifier pair Di, j is
measured by Di, j = b + c. This measure is called disagreement measure. In contrast, double
fault measure is the probability that both classifiers decide incorrectly. Based on the Table 1,
it is computed by DFi, j = d .

1.2.3 Entropy measure

Diversity of ensemble for a particular input z j ∈ Z is maximized if [L/2] of classifiers make
the same decision on one class of input data while the other L − [L/2] classifiers make
different decisions on it. If they all agree or disagree in decision on some input, they cannot
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Making Diversity Enhancement Based on Multiple Classifier System 65

be diverse. One of the measures of this type of diversity is computed using equation (2). In
this equation, E ∈ [0, 1] , where 1 indicates the highest diversity.

E = 1

N

2

L − 1

N∑

j=1

min

{(
L∑

i=1

yi, j

)

,

(

L −
L∑

i=1

yi, j

)}

(2)

1.2.4 Kohavi–Wolpert variance

A decomposition formula is introduced by Kohavi and Wolpert [14]. If y is the predicted
class label for some input data x, the variance of y over different data sets is as (3). The value
of p(y = 1|z j ) is estimated as an average on different sets of test data.

V arx = 1/2(1 −
c∑

i=1

P(y = ωi |x)2) (3)

1.2.5 Agreement measure

Agreement measure is defined as (1-D) where D refers to disagreement measure [15]. To
define this measure, the following formulation is defined. The output of a classifier is defined
to be 1 if a pattern is correctly classified and 0 otherwise. Let the j th classifier output under
this labeling scheme be a k-dimensional binary vector given by ym, j where m = 1 . . . k.
Based on these definitions, equations (4)–(7) are defined. In these equations, y indicates
logical complement.

N 1,1
i, j =

k∑

m=1

ym,i and ym, j (4)

N 0,0
i, j =

k∑

m=1

ym,i and ym, j (5)

N 1,0
i, j =

k∑

m=1

ym,i and ym, j (6)

N 0,1
i, j =

k∑

m=1

ym,i and ym, j (7)

Equations (4) and (5) are the number of agreements between classifiers i and j in correct
and incorrect classifications respectively. Equations (6) and (7) are the number of disagree-
ments between classifiers i and j . Therefore, agreement measure is computed by (8):

Ai, j = 1 − N 0,1 + N 1,0

N 1,1 + N 0,0 + N 0,1 + N 1,0 (8)

1.2.6 Variance and covariance measures

The research done by Krogh and Vedelsby [10] has revealed that in a single data point the
quadratic error of the MCS estimator is guaranteed to be less than or equal to the average
quadratic error of the component estimators or base classifiers (9).
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66 M. Salkhordeh Haghighi et al.

( fens − d)2 =
∑

i

wi ( fi − d)2 −
∑

i

wi ( fi − fens)
2 (9)

In (14), fens is a convex combination of component estimator f computed as fens =∑
i wi fi and

∑
i wi = 1.

In these equations, fi is the i th MCS output and d is the desired output. The value of∑
i wi ( fi − d)2 is the weighted average quadratic error of ensemble members. The term∑
i wi ( fi − fens)

2 indicates the amount of variability among the MCS member’s response
for a specific pattern.

Geman et al. [16] showed that the Bias/variance decomposition for quadratic loss states
that the generalization error of an estimator can be broken down into two components: bias
and variance. These two usually work in opposition to one another meaning that attempts to
reduce the bias component will cause an increase in variance, and vice versa. The decompo-
sition is shown in (10).

E
{
( f − < d >)2} = E

{
( f − E { f })2} + (E { f } − < d >)2

→ M SE ( f ) = var ( f ) + bias( f )2 (10)

In the above equations, <d> is the expected value of the target point given the noise.
If the estimator is a convex combined MCS, the variance component can be broken down
further, as represented in equations (11)–(13) [17].

bias = 1

M

∑

i

(E { fi } − < d >) (11)

var = 1

M

∑

i

[
E

{
( fi − E{ fi })2}] (12)

covar = 1

M(M − 1)

∑

i

∑

j �=i

E
{
( fi − E{ fi })

(
f j − E{ f j }

)}
(13)

Therefore, mean square error is decomposed as (14).

E

⎧
⎨

⎩

[(
1

M

∑

i

fi

)

− < d >

]2
⎫
⎬

⎭
= bias

2 + 1

M
var +

(

1 − 1

M

)

covar (14)

It is therefore obvious that the MSE of an MCS depends on the amount of error correlation
between MCS members, summarized in the covariance component. It is expected to decrease
the covariance without any increases in the bias or variance components. In (14) bias and
variance are both positive, while the covariance can be negative.

1.3 Diversity creation methods

Diversity creation methods are categorized into explicit and implicit as shown in Fig. 3.
Explicit methods have special attention to optimize some diversity metrics during MCS cre-
ation. For instance, Boosting [18] is an explicit method as it directly manipulates the training
data distributions to ensure some form of diversity in the MCS, even if there is no guarantee
to be the proper diversity.
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Making Diversity Enhancement Based on Multiple Classifier System 67

Fig. 3 Examples of diversity creation methods

Fig. 4 Various parameters affecting diversity

Implicit diversity creation methods have neither special attention to diversity nor diversity
measures during MCS creation. An example of implicit methods is bagging [19]. This method
randomly samples training data for training of each MCS member with replacement to pro-
duce different MCS members. There is no measuring process to ensure having acceptable
diversity.

1.3.1 Diversity parameters

Various categories of the parameters affecting diversity are namely initial weights, training
data used, architecture of the base classifiers, and training algorithms [20] which are shown
in Fig. 4.
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68 M. Salkhordeh Haghighi et al.

Fig. 5 Effectiveness of different
parameters in diversity creation

The methods using different initial weights, introduce different starting points; therefore
the points they converge at are different. Starting each MCS member with different random
initial weights will increase the probability of following a different path with respect to the
other members. This is the most common way to generate an MCS, but is not necessarily an
effective way of generating enough diversity.

Some of the methods used for creating diversity attempt to use different training data to
train each MCS member. This approach divides training data space by two different strate-
gies. One strategy selects all features but a subset of input samples for training each MCS
member. The other strategy selects all input data samples but a subset of features for training
each MCS member. However, some other methods use a pre processing function on features,
for example logarithm, to map input data on a different plane which are called distortion
methods [21]. Duin and Tax [22] found that combining the results of one type of classifier on
different feature sets is far more effective than combining the results of different classifiers
on one feature set.

Nevertheless, some of the methods used for creating diversity, use different structures for
each member. Works have been done on the number of hidden layers and the number of
neurons in each layer. Partridge and Yates [23] showed that the number of hidden nodes after
initial weights attains least positive effect on creating diversity in neural network MCS. They
investigated the effect of using different MCS members utilizing MLP and RBF which were
found to be more effective than hidden nodes adjustments. Figure 5 shows effectiveness of
different strategies in making diversity.

To gain more diverse classifiers, one type of Bagging is called Random Forest [24]. The
MCS consists of decision trees built on bootstrap samples. Another method for building
diverse classifiers is Random Subspaces method [25]. In this method, each MCS member
is constructed based on a different subset of features randomly selected from the original
feature set. In this method, the individual classifiers can be built in parallel, independent of
each other.

1.3.2 Special diversity creation methods

Rodriguez and Kuncheva [26] introduced a combined method for creation of accurate and
diverse MCS based on principal component analysis (PCA) called Rotation Forest. In this
method, input feature set F is split randomly into preferably K disjoint subsets. For each of
these subsets, PCA produces weights for features of these K sets stored in a separate matrix
called rotation matrix Rα . The matrix is used to generate different training sets by rearranging
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Making Diversity Enhancement Based on Multiple Classifier System 69

its columns. Then, training data set for each classifier Di is produced by equation X × Rαi ,

where X is the training data matrix and Rαi is the same as Rα except that the columns of Rα

are rearranged to produce training data for i th classifier. The method uses PCA to increase
both accuracy and diversity.

However, some methods use special properties of fuzzy clustering to produce training
data. It is to be noted that the MCS produced should be not only accurate but also diverse
enough in almost all input space. Since accuracy and diversity are inversely related to each
other, increasing accuracy alleviates diversity and vice versa. Therefore, MCS creation meth-
ods should balance between these two properties. One of the fuzzy methods used for creating
MCSs is introduced by Zhang and Lu [27]. In their research, bootstrap weights for training
data are produced based on FCM method and definition of entropy such that new training
data for each classifier can be obtained. Hence, the amount of fuzzy information in each input
data Xi is determined by entropy measure I n f o (Xi ) = −∑c

j=1 μi, j log2 μi, j .

After calculating membership values μi, j by FCM, the value of in f o (xi ) is zero if one
μi, j equals 1 while all the others are zero. Therefore, xi can be easily labeled. If each μi, j of
xi is 1/c, worst case happens and in f o (xi ) is maximized causing difficulty in labeling xi .
If one weight is calculated for each training instance according to in f o (xi ) then each base
classifier is built based on the weighted bootstrap samples and the original dataset.

In this article, a new combined method is introduced to increase diversity during MCS
construction. This article is organized in the following sections. Section 2 describes details of
the proposed new method. Section 3 examines the efficiency based on some known datasets
while comparing the results with those obtained by other fusion methods. Section 4 provides
a conclusion and some ideas for future work.

2 Disjoint class diversity enhancement method (DICDEM)

The proposed method is categorized as explicit as during MCS creation, diversity is contin-
uously monitored based on some criteria. The MCS is incrementally created by training one
base classifier in each step.

2.1 Motivation

As mentioned, accuracy and diversity are two important items during MCS construction
which are in contrast to each other. In the method, the motivation is that both accuracy and
diversity are considered during MCS creation. In contrast to existing methods, in our new
method, emphasis is on both diversity and accuracy. To do this, in a hierarchical approach,
each base classifier is trained first such that desired accuracy is achieved. Second, each base
classifier is assigned to one of the classes of input data. Third, weights of each base classifier
are tuned such that maximum accuracy in detecting the assigned class of data is gained while
keeping accuracy of detecting the other classes. This adjustment process increases diversity
of MCS because each base classifier is trained more to detect one class of data. This process
is shown in Fig. 6.

2.2 Description of the DICDEM method

Since different training sets have the most influence on diversity, in the first step, structure
of all the base classifiers is the same. Therefore, all the base classifiers in the MCS have the
same number of hidden layers and nodes. For example, monitoring diversity and accuracy
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70 M. Salkhordeh Haghighi et al.

Fig. 6 Construction of diverse base classifiers

during creation of ensemble systems may use expression Fitness (i) = accuracy (i)+α ×
diversi t y(i) to measure fitness of classifier i according to these parameters [28] in which
α indicates degree of influence of diversity. The value of diversi t y(i) is the contribution of
classifier i diversity to the total MCS diversity.

This method basically focuses on the distribution of data in each class, training procedure
of base classifiers and their outputs. One key idea to have more diverse classifiers is to train
them such that each base classifier can distinguish data of one class from all others more
accurately. For training such diverse classifiers, DICDEM uses a three step procedure. In the
method, accuracy and diversity are considered in a stepwise manner. After gaining accept-
able accuracy, focus will go on diversity. This stepwise procedure ensures enough attention
to both of them.

In step 1 of DICDEM, each base classifier is trained with training data. In this step, it
is expected to increase efficiency or accuracy of each base classifier for training data. To
have more diverse classifiers while keeping accuracy, in step 2 each base classifier is tuned
for distinguishing one class of training data more efficiently than others. As a result, if one
classifier is adjusted for one class of data, for a C class dataset, C base classifiers are required.
In step 2, the process of tuning each base classifier for distinguishing one class among others
is done by tuning network weights obtained in step 1. A special evolutionary algorithm is
used for tuning the weights of each trained base classifier. Basic strategy is to keep accuracy
while increasing diversity. After tuning each base classifier, in step 3, the final combiner is
trained to combine results of the tuned base classifiers. Training of the combiner is necessary
if one of the trainable combiners is used for combining outputs of the base classifiers. This
procedure is shown in Fig. 7.

2.3 Evolutionary algorithm

Once the base classifiers are trained, it is time to tune each of them for distinguishing one class
of input data from the others. Since the base classifiers are NNs, the number of hidden layers
and the number of neurons in hidden layers are also effective in diversity. These parameters
are, therefore, set for all the base classifiers.

123

Author's personal copy



Making Diversity Enhancement Based on Multiple Classifier System 71

Fig. 7 Basic steps of DICDEM
method

2.3.1 PSO parameters and steps

In the following algorithm, C is the number of classifiers, K is the number of classes, and
F is the number of features in input data space. If one base classifier is tuned for one class
of input data, total number of base classifiers necessary for making MCS is K , such that
C = K . It is possible to tune more classifiers for each class (for example, m classifiers per
class), in this case, total number of classifiers in the MCS is C = m× K . In another approach,
it is possible to tune more classifiers for complex classes than simple ones. In this case, the
number of classifiers is more than the number of classes (C > K ).

Since PSO is a population based algorithm, basic parameters of the algorithm are pop-
ulation size, structure and size of each individual, and fitness function. Figure 8 shows the
structure of one individual with details. In this figure, each base classifier has one input, two
hidden and one output layers.

Network weights are grouped in three disjoint matrices W1,2, W2,3 and W3,4. Each indi-
vidual is a string formed by concatenation of all the rows of these three matrices as shown
in Fig. 8. If L is the size of each individual, and n1 through n4 are the number of neurons in
each layer, L is computed based on (15):

L = n1 × n2 + n2 × n3 + n3 × n4 (15)
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72 M. Salkhordeh Haghighi et al.

Fig. 8 Structure of each individual in the population

Fig. 9 Structure of CM for a
classifier

In Fig. 8 the assumptions used are n1 = F + 1 because one neuron for each feature
in input layer and a bias are needed, n2 = K because output vector is used, W1,2 ={
wi, j

}
n1×n2

, W2,3 = {
wi, j

}
n2×n3

, and W3,4 = {
wi, j

}
n3×n4

.

Therefore, with initial population size P , the population is initialized with P copies of
the weights obtained following the training process of the base classifiers. As mentioned
above, each individual includes all weights of a base classifier; therefore, each weight in the
individual is a particle. As a result, velocities of particles form a matrix V as V = {Vi, j }P×L .
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PSO algorithm 
1-  Input: W1,2, W2,3, W3,4 weights of the selected base classifier; 
2- Output: W'1,2, W'2,3, W'3,4 adjusted weights of the selected classifier; 
3-     Initialize parameters of PSO: 
4-  L=size(W1,2)+size(W2,3)+size(W3,4)  ; size of each particle; 
5- PopulationSize=100; 
6- X=generate random population; 
7- For  iteration = 1: maximum iteration 
8-         Fx=compute_    fitness(); 
9-         Compute_displacement_for_particles(); 
10-        Update_particle_values_based_on_displacement(); 
11- End for 
12- [W1,2, W2,3, W3,4]= particle with maximum fitness(); 
end

Fig. 10 PSO algorithm for adjusting weights of one classifier

This value is used in line 10 in Fig. 10 to compute new values for particles. Initially, all the
velocities are set randomly. Therefore, it causes random distribution of the particles in input
space.

One of the key points in the PSO algorithm is to determine proper fitness function. Since
primary goal of this algorithm is to adjust weights of the selected classifier such that it can
distinguish one class of input data called desired class from others with higher accuracy, total
diversity of MCS is also enhanced. To design a fitness function such that both accuracy and
diversity are considered, two vital requirements for the fitness function are validating data
and confusion matrix (CM). Structure of the CM is shown in Fig. 9.

Nevertheless, according to the CM obtained for the validation data, three criteria is defined
such that the fitness function is properly designed. These three criteria for the selected clas-
sifier are total accuracy (TA), desired class accuracy (DCA) and other class accuracy (OCA).
As Fig. 9 shows, with K classes, numbered 1 through K , if d is the desired class for the
selected classifier, cmi, j indicates the number of validation data in class j which are classified
in class i . if i and j are the same, the value of cmi, j is the number of validation data that
correctly classified by the selected classifier. Since the CM is a square matrix, cmi, j with
i = j is a diagonal element. If i �= j, cmi, j is total number of validation data in class j that
incorrectly classified in class i .

In the PSO algorithm, the classifier assigned to the desired class is adjusted such that
accuracy of determining the desired class is enhanced. As a result, TA indicates ratio of the
number of correctly classified validation data (sum of diagonal elements of CM) with respect
to total number of validation data (sum of all elements of CM) as defined by equation (16).

TA =
∑K

i=1 cmi,i
∑K

i=1
∑K

j=1 cmi, j
(16)

On the other hand, it is expected that the fitness function returns higher values for the
individuals having higher accuracy in detecting desired class of validation data (d). For this
to happen, another criterion called DCA is defined. For class d , DCA is the ratio of the num-
ber of correctly classified validation data in class d

(
cmd,d

)
to total validation data in class d

(sum of the elements in column p of CM) as shown by equation (17). It is obvious that for
the individuals with higher DCA, the fitness function should also return higher values.

DCA = cmd,d
∑K

i=1 cmi,d
(17)

123

Author's personal copy



74 M. Salkhordeh Haghighi et al.

Nevertheless, DCA is not sufficient for determining fitness of individuals. This is because
increasing the accuracy of detecting the desired class may also result the accuracy of detect-
ing other classes to decrease. Therefore, another criterion called OCA is defined. The need
for OCA in the fitness function is due to the fact that for the selected classifier to be tuned
to distinguish the desired class with the highest possible accuracy, the accuracy of detecting
other classes of data should not be decreased. Since OCA shows accuracy of detecting other
classes of data except the desired class, this parameter should be considered in the fitness
function. Based on the structure of confusion matrix, OCA is the ratio of the number of
correctly classified validation data except desired class d to total number of validation data
except desired class as shown in (18).

OCA =
∑K

i=1,
i �=d

cmi,i

∑K
i=1,
i �=d

∑K
j=1 cmi, j

(18)

Typically, fitness function should combine DCA and OCA in a proper manner. Since the
main goal of PSO is to maximize DCA while taking OCA into consideration, the fitness
function is defined as equation (19).

f i tness = α × DCA + (1 − α) × OCA (19)

where, α is a parameter that reflects the influence of OCA.
As a result, defining such fitness function not only increases accuracy of detecting desired

class, but also increases the diversity of MCS. Accuracy of each base classifier in detecting
the desired class is satisfied by the first term in fitness function (DCA). The second term
in the fitness function tries to keep accuracy of detecting the other classes by factor α. The
fitness function forces the base classifiers to cover input data space for detecting each class of
input data with maximum possible accuracy while increasing total diversity of MCS. Details
of the PSO algorithm is shown in Fig. 10.

In Fig. 10, inputs to the algorithm are weights of the base classifier selected for tuning.
Since the base classifiers have one input, two hidden and one output layer, matrix W1,2

contains weights of connections between input layer and first hidden layer. In the same way,
W2,3 contains weights of the connections between first and second hidden layer. Finally, W3,4

have weights of the connections between second hidden layer and output layer. Therefore,
Size of each individual is also determined by equation (15). As it is possible to assign more
than one classifier for detecting each class of input data, variable ‘m’ is defined to show the
number of classifiers per class. On the other hand, the algorithm tunes weights of one classi-
fier in each call. Therefore, for each class of input data, the number of calls of the algorithm
and the number of classifiers for adjusting is ‘m’.

3 Experiments and results analysis

In this section, accuracy of the new classifier fusion method based on special diversity
enhancement strategy is examined and compared with some other known methods of clas-
sifier fusion. The datasets are selected from UCI repository of machine learning databases
[29]. The datasets selected with specification details are listed in Table 2.
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Table 2 Specification of the
datasets

# of samples # of features # of classes

Iris 150 4 3

Glass 214 9 6

Wine 178 13 3

Wpbc 198 32 2

Ecoli 336 8 8

Liver 345 7 2

Solar 1389 10 12

3.1 Experiment and test procedure

Validation procedure of the proposed method has three basic steps. It should be noted that the
number of classifiers used in the new method depends on the number of classes in each data-
set. Therefore, in the MCS, the default number for classifier per class is 1. On the other hand,
for each classifier, a unique class of data is assigned such that the classifier is responsible for
distinguishing the class from others with maximum accuracy.

In step 1, once the dataset is determined, the number of classifiers is set to the number of
classes for the selected dataset. Next, three groups of data are defined namely as train, test,
and validation data. Using training data, base classifiers are trained. Since the base classifiers
are MLP, one of the defined training methods such as back propagation is used. This training
process continues until acceptable accuracy for all the training data is achieved. Therefore,
at the end of step 1, final weights of the classifier are saved for next step.

As a result, the weights determined at the end of step 1, are used as input to step 2. The
selected classifier is assigned to one of the classes of input data. Moreover, the classifier
should be tuned such that it can distinguish the class of data assigned to the classifier with
higher accuracy than other classes. In this step, validation data are used to validate accuracy
of the classifier.

3.1.1 PSO algorithm initialization

The weights determined in the step 1, are used as primary weights of the classifier at the
beginning of step 2. In this step, the PSO algorithm is used to tune these initial weights such
that accuracy of detecting the assigned class gains the possible maximum while keeping the
accuracy of detecting other classes.

First, PSO parameters should be initialized. With population size P and individual length
L which is the number of weights of the selected classifier, P copies of the individual is pro-
duced to form initial population. To randomly distribute the individuals in the input space,
each individual is assigned a velocity vector of size L . Initially, these vectors are assigned
randomly. During successive iterations of PSO, the vectors are updated.

3.1.2 Fitness function evaluation

Since each individual in the PSO is formed with all weights of the selected classifier, fitness
function for each individual should construct CM for the selected classifier based on both
weights of the classifier determined by the individual and the validation data. Then, according
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to the equation (19), fitness value of the individual is determined. Therefore, in each call of
the fitness function, all validation data should be evaluated by the classifier with the weights
of the individual.

Nevertheless, the PSO algorithm computes fitness of all individuals during iterations where
velocity matrix should be updated such that new values for individuals are evaluated. Finally,
after completion of all iterations, the individual with highest fitness value is selected as final
result. Therefore, the weights of the best individual are assigned to the selected classifier
which is adjusted for the class of data assigned to.

3.1.3 Test process of MCS

During iterations of step 2, one of the classifiers trained in step 1 is selected for weight
tuning. Next, one of the unassigned classes is assigned to the selected classifier. The PSO
algorithm is run with the weights of the selected classifier to tune them for detecting data
of the assigned class with highest accuracy. The process of step 2 is repeated for all the
trained base classifiers. After tuning of each base classifier for one of the classes, step 3
starts. In this step, overall MCS, constructed with the adjusted classifiers, is tested with
the defined test data where a combiner is needed to combine outputs of the adjusted base
classifiers.

As a result, for better comparison of efficiency of the new method with other classifier
fusion methods, different methods are tested with the test data described in Table 2. Next
subsection presents more details.

3.2 Experiments and analysis

Based on the procedure described in previous subsection, test is carried out with different
known benchmark datasets from UCI repository of machine learning as described in Table 2
[29].

Since the main idea of the new method called DICDEM is to increase total diversity of
the MCS, it is worth to measure the diversity before and after tuning process of the algorithm
described in Fig. 10. Different measures of diversity are used to show how the diversity
increases by the new method. Different diversity measures used here are Correlation (ρ),
Q_static (Q), Disagreement (D), Double fault (DF), Interrater agreement (k), Entropy (Ent),
Measure of difficulty (θ), and Kohavi–Wolpert variance (KW).

It should also be noted that some of these measures are directly related to the diversity
such that by increasing the diversity, the value of these measures are increased. On the other
hand, some of the measures inversely related to the diversity because by increasing diversity,
the value of these measures decreases. Moreover, each measure has special increasing or
decreasing rate with special range determined by the equations described in Sect. 1. In order
to show direct or inverse relations, symbols ↑ and ↓ are used respectively. In Table 3, the
results of the experiments done on different datasets before and after adjustment process
done by algorithm of Fig. 7 is shown.

By more analyzing the DICDEM method, it should be noted that the primary goal of
the method to increase diversity is mainly based on margin theory [30]. The margin for an
object is related to the certainty of its classification. The larger the margin of an input data,
the more certain is its label. In contrast, narrow margins increase incorrect classification. A
small margin will cause instability of the classification label, that is, one input data might
be assigned to different classes by two similar classifiers. One of the ways to measure the
margin for an input data x is by degree of support of the data. For a dataset with C classes,
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Table 3 Different measures of diversity before and after tuning

Dataset Method

ρ(↓) Q(↓) D(↑) DF(↓) k(↓) Ent (↑) θ(↓) K W (↑)

Iris before → 0.4426 0.8915 0.0844 0.0333 0.8720 0.1266 0.04197 0.0281

Iris after → 0.4008 0.8847 0.0888 0.0311 0.8653 0.1333 0.0404 0.0296

Glass before → 0.3760 0.7799 0.1585 0.0694 0.7454 0.2523 0.0608 0.0660

Glass after → 0.3647 0.7645 0.1607 0.0676 0.7443 0.2542 0.0593 0.0670

Wine before → 0.6227 0.9027 0.1872 0.4925 0.6000 0.2808 0.18 0.0624

Wine after → 0.4979 0.7951 0.2471 0.4681 0.5170 0.3707 0.1600 0.0823

Wpbc before→ 0.1840 0.8529 0.0404 0.0050 0.8850 0.0808 0.0145 0.0101

WPBC after→ 0.1435 0.7725 0.0505 0.0050 0.8562 0.1010 0.0168 0.0126

Ecoli before → 0.6931 0.9649 0.0837 0.1180 0.8506 0.1241 0.0980 0.0366

Ecoli after → 0.6861 0.9634 0.0847 0.1154 0.8501 0.1250 0.0963 0.0370

Liver before → 0.8573 0.9914 0.0521 0.2144 0.8831 0.1043 0.1701 0.0130

Liver after → 0.8440 0.9894 0.0579 0.2173 0.8712 0.1159 0.1716 0.0144

Solar before → 0.6819 0.9442 0.1195 0.1863 0.7907 0.1770 0.1361 0.0497

Solar after → 0.6668 0.9315 0.1304 0.1917 0.7739 0.1882 0.1370 0.0543

μk (x) , k = 1 . . . C is the support value of x to class k. By this definition, the margin for
input data x is defined by equation (20), where ωk is known class label of x [1].

m (x) = μk (x) − max j �=k{μ j (x)},
C∑

j=1

μ j (x) = 1 (20)

However, in the new method presented in this article to increase diversity, each base clas-
sifier is trained more to distinguish one class of data more than others. The measures used
here, namely DCA and OCA, are computed based on the CM. In order to label input data x ,
if k is the actual class label for x , after tuning each base classifier for one of the input classes,
the decision for label of x is made based on decision profile (DP) of x . therefore, the label of
x is determined by equation (21) for a dataset with C classes.

Label(x) = k|D Pk,k = max
{

D Pi,i , i = 1 . . . C
}

(21)

To increase certainty of the decision, a defined margin should be maximized. Therefore,
a new definition for margin is done by equation (22):

m (x) = D Pk,k − max
{

D Pj, j
}
, j �= k (22)

Moreover, the algorithm shown in Fig. 10 for tuning the base classifiers is the main source
of increasing the margin defined by equation (22). Therefore, for each dataset, all the methods
are tested and compared with the new method after tuning is done by algorithm of Fig. 10
and using equation (21). The results of these experiments are shown in Table 4.

Taking into account the equation (22) it is clearly identified that an expansion in margin is
achieved resulting in significance in decision making. In addition, as equation (23) comprises
two components namely accuracy and diversity, both components are carefully taken care
off.
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Table 4 Errors in DICDEM vs. others methods

DS DT NB BG ADB DICDEM

Iris 2.96 2.96 5.19 5.93 5.19 2.22

Glass 9.52 9.52 9.05 10.57 7.62 9.52

Wine 0 0 0 0 1.31 1.58

Wpbc 9.47 9.47 6.32 6.32 5.85 2.34

Ionosphere 0.63 0.95 0.95 1.9 0.92 0.95

Ecoli 17.27 17.27 18.48 18.79 13.47 11.78

Liver 18.30 17.65 18.30 8.30 17.67 17.32

Solar 27.28 27.78 23.26 22.92 25.78 20.49

eMC S = 1

2

(
f − t

)2 = 1

B

∑

i

1

2
( fi − t)2 − κ

1

B

∑

i

1

2

(
fi − f

)2
(23)

The first term in the right side of this equation is the weighted average error of the base
classifiers. The second term is the amount of variability among the base classifiers indicating
the diversity among them. The κ ∈ [0, 1] is a scaling coefficient indicating the emphasis on
either diversity or error [31].

Basically, the classifier fusion methods used for testing in Table 4 are Dempster Shafer
(DS), Decision Template (DT), Bagging (BG), AdaBoost (ADB), and Naïve Bayes (NB). It
should also be noted that in the algorithm of Fig. 10, weights of each classifier are adjusted
such that minimum decrease in recognition rate of all other classes except the desired class
is taken place. Moreover, in train, test and tuning procedures, k-fold cross validation is used
for more accurate results with k = 10. As a result, by evaluating Table 4 it is obvious that
tuning procedure can effectively increase performance of total MCS. Although in some cases,
reduction in error rate is not significant in general, however, the results are acceptable even
with large datasets.

Moreover, there are some key points about the results obtained in Table 4. In Table 4,
the right most columns indicates the error results obtained after tuning weights of the base
classifiers in the MCS by the algorithm of Fig. 10. The algorithm tries to change weights of
each base classifier based on equation (19) such that each base classifier is tuned for one of
the classes of input data by a search strategy. Moreover, AdaBoost results are produced with
the same number of base classifiers used for the other methods in the table. It is obvious that
by using more base classifiers better results for the method is obtained.

4 Conclusion

In this article, a new method based on enhancing diversity is introduced for classifier fusion.
As a general rule, using multiple classifiers in an MCS can be more efficient than a single
classifier if the base classifiers used are diverse enough in the input space. Using identical
classifiers makes no major improvement in efficiency of the system. On the other hand, diver-
sity and accuracy in their general form are against each other, therefore, increasing diversity,
decreases accuracy of the MCS. As a result, both diversity and accuracy of the system should
be considered simultaneously.
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Our new method not only increases diversity of a MCS, but also monitors accuracy such
that no decrease in accuracy with respect to initially trained system is resulted. To do this,
each base classifier is assigned a unique class of data such that the classifier is responsible to
detect the class of data with highest reachable accuracy. Therefore, having several different
base classifiers each one responsible for detecting one class of data, makes the classifiers as
diverse as possible while it is possible to have maximum accuracy.

Since base classifiers are neural networks, tuning each one for detecting one of the classes
on input data is implemented by manipulating network weights. Besides, a new measure of
diversity is also introduced based on the method used for increasing diversity. Further research
can be done to evaluate diversity enhancement by using various types of base classifiers.
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