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Abstract: In this paper we present a new approach for solving a class of separated con-
tinuous programming (SCP) problems using convex combination property of intervals. By
convex combination property of intervals, we transform the SCP problems to the correspond-
ing linear problems. Moreover, discretization method is applied to convert the new problem
to a discrete-time problem which we solve it by linear programming methods. Finally, some
numerical examples are given to show the efficiency of the proposed approach.

Keywords: SCP problem; Convex combination; Discretization; linear programming.

1. Introduction

We consider the following class of separated continuous programming (SCP) problem:

minimize
∫ T

0
c(t)y(t)dt (1)

subject to B(t)y(t) +
∫ t

0
F (t, s, x(s))ds = p(t)

G(t)y(t) ≤ q(t), t ∈ [0, T ]

0 ≤ x(t) ≤ M, y(t) ≥ 0, t ∈ [0, T ]

where B(·) is a given k × n matrix, G(·) is a given s × n matrix, and F (·, ·, ·) are given k vectors, c(·)
is given n vector, q(.) is a given s vector, M is given m vector, y(·) is a n vector, and x(·) is a m vector.
The elements of vectors F (·, ·, ·), c(·), p(·), d(·) and Matrices B(·) and G(·) are continuous functions
on [0, T ]. In SCP problem (1) the vectors functions x(·) and y(·) are unknown. Firstly, Anderson [1,2]
introduced separated continuous linear programs (SCLP). The 1987 book of Anderson and Nash [3]
summarizes the theory developed by Anderson. Some special cases of SCLP were solved by Anderson
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and Philpott [4,5]. The series of papers on SCLP by Pullan [6–11] deals with solution structure, duality
theory, and numerical algorithms. In addition, Erfanian [12] introduced the methods for solving SCLP
and SCP by measure theory. Here we illustrate a new Technique for obtaining optimal solutions of SCP
problem (1) that arise in communications, manufacturing and urban traffic control, etc. In this paper is
used the convex combination property of interval to transform problem (1) to the corresponding linear
problem. The vector function x(·) is bounded on interval [0, T ] and the bounds of component of this
function are applied for convex combinations.

The structure of the paper is as follows. In Section 2, by convex combination property of intervals we
firstly convert the SCP problem (1) to the corresponding linear problem. In Section 3, the new problem
is transformed to the discrete-time problem using discretization methods. Finally, numerical examples
are given in Section 4.

2. Linearization

In this section, we initially state and prove the following theorem:

Theorem 1 Let Ψ : [a1, b1] × [a2, b2] × A → R be a continuous function where A is a compact and
connected set in Rn, then for any arbitrary but fixed (t, s) ∈ [a1, b1]× [a2, b2]. The set {Ψ(t, s, x) : x ∈
A} is a closed interval in R.

Proof. Let (t, s) ∈ [a1, b1]× [a2, b2] be given and Φ(x) = Ψ(t, s, x). Then Φ(·) is a continuous function
on set A. But, image of compact and connected set A by continuous function Φ(·) is compact and
connected set in R . So {Φ(x) : x ∈ A} is compact and connected set in R. Hence, {Ψ(t, s, x) : x ∈ A}
is a closed interval in R.

Now suppose F = (F1, . . . , Fk) and M = (M1, . . . ,Mm). In addition, for any t, s ∈ [0, T ] × [0, T ]

we may suppose the lower and upper bounds of interval {Fi(t, s, x) : x ∈ ∏m
j=1[0,Mj]} are gi(t, s) and

wi(t, s) for i = 1, 2, . . . , k, respectively. Thus for (t, s) ∈ [0, T ]× [0, T ] and i = 1, 2, . . . , k

gi(t, s) ≤ Fi(t, s, x) ≤ wi(t, s) (2)

So, we have for all (t, s) ∈ [0, T ]× [0, T ]:

wi(t, s) = max{Fi(t, s, x) : x ∈
m∏
j=1

[0,Mj]} (3)

gi(t, s) = min{Fi(t, s, x) : x ∈
m∏
j=1

[0,Mj]}

Theorem 2 Let functions and for all be defined by relations (3). Then they are uniformly continuous on
[0, T ]× [0, T ].

Proof. We will show that gi(., .) for all i = 1, 2, . . . , k is a uniformly continuous function. It is sufficient
that we show for any ε > 0 , there exists delta > 0 such that if (t1, s1) ∈ Nδ(t2, s2) then |gi(t1, s1) −
gi(t2, s2)| < ε where Nδ(z) is a neighborhood of z by radius δ. We know each continuous function
on compact set is a uniformly continuous function. Thus function Fi(., ., .) on compact set [0, T ] ×
[0, T ] × ∏

P j = 1m[0,Mj] is a uniformly continuous function. It means that for any ε > 0, there is
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δ > 0, such that if (t1, s1, y) ∈ Nδ(t2, s2, x) then |Fi(t1, s1, x)− Fi(t2, s2, x)| < ε. Thus Fi(t1, s1, x) <

Fi(t2, s2, x) + ε . Moreover, gi(t1, s1) ≤ Fi(t1, s1, x), So we have gi(t1, s1) < Fi(t2, s2, x) + ε and
gi(t1, s1) ≤ gi(t2, s2) + ε or gi(t1, s1)− gi(t2, s2) ≤ ε. Also by a similar procedure, we have gi(t2, s2)−
gi(t1, s1) ≤ ε. Thus |gi(t1, s1) − gi(t2, s2)| ≤ ε. The proof of uniformly continuity of the function
wi(·, ·), i = 1, 2, . . . , k is similar.

Now, by relation (2) and Theorem (1) we have for all i = 1, 2, . . . , k:

αi(t) ≤
∫ t

0
Fi(t, s, x(s))ds ≤ βi(t), t ∈ [0, T ] (4)

where αi(t) =
∫ t
0 gi(t, s)ds and βi(t) =

∫ t
0 wi(t, s)ds. By convex combination property of intervals and

relation (4) we also have for any t ∈ [0, T ] and i = 1, 2, . . . , k:∫ t

0
Fi(t, s, x(s))ds = (βi()t)− αi(t)λi(t) + αi(t), λi(t) ∈ [0, 1] (5)

Thus we may convert the SCP problem (1) by relation (5) as follows:

minimize
∫ T

0
c(t)y(t)dt (6)

subject to B(t)y(t) + ⟨β(t)− α(t), λ(t)⟩ = p(t)− α(t)

G(t)y(t) ≤ q(t)

0 ≤ λ(t) ≤ 1, y(t) ≥ 0, t ∈ [0, T ]

where
λ(·) = (λ1(·), . . . , λk(·))t, α(·) = (α1(·), . . . , αk(·))t, β(·) = (β1(·), . . . , βk(·))t

and
⟨β(t)− α(t), λ(t)⟩ = ((β1(t)− α1(t))λ1(t), . . . , (βk(t)− αk(t))λk(t))

t

Note that decision variables in the continuous-time problem (6) are y(·) and λ(·). in the next section,
problem (6) is converted to a corresponding discrete-time problem.

3. Discrete-time problem

In this section, discretization method is used to transform continuous problem (6) to the corresponding
discrete form. We write problem (6) as follows:

minimize
∫ T

0

n∑
j=1

cj(t)yj(t)dt (7)

subject to
n∑

j=1

Bij(t)yj(t) + (βi(t)− αi(t))λi(t) = pi(t)− αi(t)

n∑
j=1

Grj(t)yj(t) ≤ qr(t)

0 ≤ λi(t) ≤ 1, yj(t) ≥ 0, t ∈ [0, T ]

r = 1, 2, . . . , s, i = 1, 2, . . . , k, j = 1, 2, . . . , n

where Bij(·) and Grj(·) are elements of matrixes B(·) and G(·), respectively. For transformation
problem (7) to the discrete form, we choose the large number w and consider the equidistance points
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t0 = 0 < t1 < t2 < . . . < tm = T of interval [0, T ] which tv = T
w
v for all v = 0, 1, . . . , w. Now, by

trapezoidal approximation, problem (7) is converted to the following problem:

minimize
n∑

j=1

(
T

2m
cj(t0)yj,0 +

T

m

n−1∑
v=1

cj(tv)yj,v +
T

2m
cj(tm)yj,m

)
(8)

subject to
n∑

j=1

Bij(tv)yj,v + (βi(tv)− αi(tv)), λiv⟩ = pi(tv)− αi(tv)

n∑
j=1

Grj(tv)yj,v ≤ qr(tv)

0 ≤ λi,v ≤ 1, yj,v(t) ≥ 0, t ∈ [0, T ]

r = 1, 2, . . . , s, i = 1, 2, . . . , k, v = 1, 2, . . . , w, j = 1, 2, . . . , n

where λi,v = λi(tv) and yj,v = yj(tv) for all v = 0, 1, . . . ,m, j = 1, 2, . . . , n and i = 1, 2, . . . , k are
decision variables of this problem. By solving problem (8), we can obtain the optimal solutions λ∗

i,v and
y∗j,v for all v = 0, 1, . . . ,m, j = 1, 2, . . . , n and i = 1, 2, . . . , k.

4. Numerical examples

Here we obtain the numerical solutions of several SCP problems by proposed approach in above. For
solving linear programming problem (8) we use the simplex method (see [8]) in Matlab software.

Example 1 Consider the following SCP problem:

minimize
∫ 1

0
(2t− 1)y(t)dt (9)

subject to y(t) +
∫ t

0
(s+ tx(s))ds = t2

0 ≤ x(t) ≤ 2, y(t) ≥ 0, t ∈ [0, 1]

Assume F (t, s, x) = s+ tx for (t, s, x) ∈ [0, 1]× [0, 1]× [0, 2]. So by (3) for (t, s) ∈ [0, 1]× [0, 1]:

g(t, s) = min{s+ tx : x ∈ [0, 2]} = s

w(t, s) = max{s+ tx : x ∈ [0, 2]} = s+ 2t

In addition, we have:

α(t) =
∫ t

0
g(t, s)ds =

∫ t

0
sds =

t2

2
, t ∈ [0, 1]

β(t) =
∫ t

0
w(t, s)ds =

∫ t

0
(s+ 2t)ds =

5t2

2
, t ∈ [0, 1]

We assume that w = 100 and tv =
v

100
for all v = 1, 2, . . . , 100 and write problem (8) as follows:

minimize
1

200
(2tv − 1)y0 +

1

100

99∑
v=1

(2tv − 1)yv +
1

200
(2tv − 1)y100 (10)

subject to yv + 2t2vλv =
t2v
2

0 ≤ λv ≤ 1, yv ≥ 0, v = 0, 1, 2, . . . , 100
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Figure 1. The optimal solution y∗(·) of Example 1

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time

La
m

bd
a

Figure 2. The optimal solution λ∗(·) of Example 1
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We give the optimal solution y∗(·) of problem (9) by solving problem (10) which is illustrated in Fig. 1.
Also the optimal solution λ∗(·) of problem (10) is showed in Fig. 2. The obtained optimal solution of
objective function is −0.0052.

Example 2 Consider the following SCP problem:

minimize
∫ 1

0
sin(3πt)y(t)dt (11)

subject to y(t)−
∫ t

0
tan(

π

8
x3(s) + s)ds = 0.2e−t

y(t) ≤ 1

0 ≤ x(t) ≤ 1, y(t) ≥ 0, t ∈ [0, 1]

We have p(t) = 0.2e−t, F (t, s, x) = − tan(π
8
x3(s) + s) and c(t) = sin(3πt) for all (t, s, x) ∈ [0, 1] ×

[0, 1]× [0, 2]. By relations (3):

g(t, s) = min
{
− tan(

π

8
x3 + s) : x ∈ [0, 1]

}
= − tan(

π

8
+ s), (t, s) ∈ [0, 1]× [0, 1]

w(t, s) = max
{
− tan(

π

8
x3 + s) : x ∈ [0, 1]

}
= − tan(s), (t, s) ∈ [0, 1]× [0, 1]

Hence

α(t) = −
∫ t

0
tan(

π

8
+ s)ds = ln(cos(

π

8
) + t)− ln(cos(

π

8
)), t ∈ [0, 1]

β(t) = −
∫ t

0
tan(s)ds = ln(cos(t)), t ∈ [0, 1]

We assume w = 100 and tv = v
100

for all v = 0, 1, . . . , 100. We obtain the optimal solution y∗(·) of
problem (11) by solving the corresponding problem (8) which is illustrated in Fig. 1. In addition the
corresponding optimal solution λ∗(·) of problem (11) is showed in Fig. 2. Moreover the obtained optimal
solution of objective function is 0.0340.
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Figure 3. The optimal solution y∗(·) of Example 2
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Figure 4. The optimal solution λ∗(·) of Example 2

5. Conclusion

In this paper, the convex combination property of intervals was applied to linearization the nonlinear
terms in constraints of SCP problems. By this approach, we can convert the nonlinear problems to the
corresponding linear problems. We also used the discretization method and obtained a discrete-time
problem which is a linear programming problem. The linear programming methods, such as simplex
method, can be used for solving the obtained linear programming problem. Thus by this approach, we
can solve a wide class of SCP problems.
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