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There is a conjecture in the literature that indicates the tree-level S-matrix elements of graviton become

symmetric under the SLð2; ZÞ transformation after including the loops and the nonperturbative effects.

Using the Ward identity corresponding to the global S-duality transformations, this conjecture can be

extended to other S-matrix elements as well. While the SLð2; ZÞ transformation on the background dilaton

is nonlinear, the Ward identity dictates the S-duality transformations on external states should be the

linearized SLð2; RÞ transformations. We examine in detail various S-matrix elements involving massless

closed string and/or open string vertex operators on the world volume of the D3-brane in favor of this

conjecture.

DOI: 10.1103/PhysRevD.84.126019 PACS numbers: 11.25.Mj

I. INTRODUCTION

It is known that type II superstring theory is invariant
under T duality [1–5] and S duality [5–11]. At the classical
level, these dualities appear in the equations of motion and
in their solutions [12–15]. At the quantum level, these
dualities should appear in the S-matrix elements. The
contact terms of the sphere-level S-matrix elements of
graviton are speculated to be invariant under the
S duality after including the loops and the nonperturbative
effects [16–32]. This idea has been extended to the
S-matrix elements on the world volume of D3-branes as
well [33–35]. The S duality may also be used to find the
S-matrix elements on the world volume of the
F1-string/NS5-brane from the corresponding S-matrix ele-
ments on the world volume of the D1-string/D5-brane [36].

The S duality holds order by order in �0 and is non-
perturbative in the string loop expansion [5]. In order to
study the S duality of a S-matrix element, one has to first�0
expand the amplitude in the Einstein frame and then study
its S duality at each order of �0. Let us consider the disk-
level S-matrix element of two gravitons on the world
volume of D3-branes whose S duality has been studied in
[33]. The leading �0-order terms of this amplitude are
invariant under the S duality because the graviton in the
Einstein frame is invariant. On the other hand, the non-
leading order terms which include the background dilaton
factors as well are speculated to become symmetric after
including the loops and the nonperturbative effects [16].
Using the fact that the S-matrix elements should satisfy the
Ward identity corresponding to the global S-duality trans-
formations, the above proposal has been extended to all
S-matrix elements in [36]. The S-dual Ward identity in-
dicates that an n-point function must transform to an
n-point function under the S duality. Hence, in order to
study the S-dual Ward identity of a S-matrix element one
has to consider the linearized SLð2; RÞ transformations on

the external states [36]. More specifically, the S-matrix
element of n� closedþm� open strings must transform
to the S-matrix element of n� closedþm� open strings;
hence, the S-duality transformations of the external closed
strings and the external open strings must be separately
linear. The transformation of the background fields, how-
ever, should be the nonlinear S-duality transformation. In
general, imposing the invariance of the S-matrix element
under this later transformation requires one to include the
loops and the nonperturbative contributions to the tree-
level S-matrix element.
All S-matrix elements of two massless Ramond-

Ramond (RR) and/or Neveu Schwarz–Neveu Schwarz
states [37,38] on the world volume of the D3-brane have
been analyzed in [35,36] in favor of this proposal. In this
paper we would like to test this proposal by examining in
detail the S-matrix elements which involve the open string
states as well. In particular, using the linear S-duality
transformation of the gauge field [39], we will show that
the leading �0-order terms of the S-matrix elements com-
bine into linear S-duality invariant multiplets. The back-
ground dilaton factors in the nonleading order terms which
are not invariant under the S duality may then be extending
to the SLð2; ZÞ invariant functions after including the loops
and the nonperturbative effects, as in [33].
The leading �0-order terms of the disk-level S-matrix

elements, in general, have both contact terms as well as
massless poles. The contact terms along which produce the
low energy effective actions may not satisfy the S-dual
Ward identity. In fact, the low energy effective action of a
single D3-brane which is given by the combination of the
Abelian Born-Infeld action [40,41] and the Chern-Simons
action [42,43] is not invariant under the S duality.
However, it is known that their equations of motion are
invariant under the S duality [39,44,45].
In general, an effective action can be separated into two

parts, i.e.,

S ¼ S1 þ S2; (1)*garousi@ferdowsi.um.ac.ir
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where S1 includes the couplings which are invariant under
the linear S duality, and S2 includes the couplings which
must be combined, in the momentum space, with some
massless poles to become invariant under the linear
S duality. We will show that the Born-Infeld action has
such a structure. That is, its F4 terms are invariant under
the linear S duality; however, its F6 terms and higher may
be combined with some massless poles to become invariant
under the linear S duality. We will discuss how this prop-
erty may be used iteratively to find all couplings of the
effective action of D3-branes.

The outline of this paper is as follows: In Sec. II, using
the standard S-duality transformations at the linear order,
we show that the S-matrix elements of one massless open
string and one massless closed string vertex operators on
the world volume of a D3-brane can be written in a linear
S-duality invariant form. In Sec. III we show that the
leading �0-order terms of the disk-level S-matrix element
of two open string and one closed string states can be
combined into linear S-duality invariant combinations.
Following [33,34], the background dilaton factors in the
nonleading order terms may be extended to the nonlinear
SLð2; ZÞ invariant functions. In Sec. IV, we show the same
procedure can be applied for the S-matrix element of four
Abelian gauge field vertex operators. We discuss our re-
sults in Sec. V.

II. ONE GAUGE FIELD AMPLITUDES

In this section we consider the S-matrix elements of one
gauge field and one closed string vertex operator. These
amplitudes in the string frame have been calculated in [46].
In the Einstein frame, they are

AðD3; �1; B2Þ � �T3e
��0F1abB

ab
2 �4ðka1 þ pa

2Þ;
AðD3; �1; C

ð2Þ
2 Þ � T3

2
F1a0a1C2a2a3�

a0���a3�4ðka1 þ pa
2Þ;

(2)

where �0 is the constant dilaton background, �1 is the
polarization of the gauge field, and F1ab ¼ iðk1a�1b �
k1b�1aÞ is its field strength.1 B2 andC

ð2Þ
2 are the polarization

of the B field and the RR two-form, respectively. We have
normalized the amplitudes such that they become consis-
tent with T duality. We have not, however, fixed the nu-
merical factor of the amplitudes in this paper. To study the
T duality one should first change the Einstein frame metric

gE�� to the string frame metric gS�� as g
S
�� ¼ e�0=2gE��, and

then apply the linear T-duality transformation as in
[47,48]. In particular, the T duality along a world-volume
direction maps the string frame tension as T3�

4ðka1 þ
pa
2Þ ! T2�

3ðka1 þ pa
2Þ and the string frame coupling

F1abB
ab
2 ! F1abB

ab
2 þ � � � , where dots refer to some cou-

plings involving the transverse scalar fields in which we are
not interested in this section. The D3-brane tension in the
string frame is T3 ¼ e��0ð2�Þ�3ð�0Þ�2, where �0 is in the

string frame. In the Einstein frame �0 ! e��0=2�0 and
hence the tension becomes T3 ¼ ð2�Þ�3ð�0Þ�2 which is
invariant under the S duality.
Now we have to show that the above amplitudes can be

combined into a linear SLð2; RÞ invariant form. The non-
linear transformation of the gauge field and the axion
dilaton, 	 ¼ Cþ ie��, are given by [39]

Fab ! sFab þ r �Gab;

Gab ! pGab � q � Fab;

	 ! p	þ q

r	þ s
;

(3)

where the antisymmetric tensor Gab is given by

Gab ¼ � 2

T3

@L

@Fab
; (4)

where L is the Lagrangian. Using �� ¼ �1, one can write
the transformation of gauge field as

�F
G

� �
! ð��1ÞT �F

G

� �
; � ¼ p q

r s

� �
: (5)

The B field and the RR two-form also appear as a doublet
under the SLð2; RÞ transformation [45]

B � B
Cð2Þ

� �
! ð��1ÞT B

Cð2Þ
� �

: (6)

Unlike the transformations (3), the above transformation is
linear.
The S-matrix elements (2) involve both the background

fields as well as the external open and closed string fluc-
tuations. The invariance of the S-matrix elements under the
linear S duality is such that the SLð2; RÞ transformation on
the background fields is nonlinear and on the external
states is linear [36]. For the closed string amplitudes con-
sidered in [36], this transforms an n-point function to
another n-point function. In the cases that the S-matrix
elements involve both open and closed strings, the trans-
formation on the external states must be in such a way that
an S-matrix element of n� closedþm� open string ver-
tex operators transforms to another S-matrix element of
n� closedþm� open vertex operators. So the transfor-
mation of the open and closed strings should be separately
linear, i.e., the open string should transform to open string,
and the closed string should transform to closed string.
Since the gauge field in the amplitudes (2) is an open string
quantum fluctuation, we have to consider vector to vector
transformation on this field. To have a linear vector field in
Gab, we have to consider the quadratic vector terms in the
Lagrangian. Therefore, we have to consider the following
D3-brane action in the Einstein frame [39]:

1Our index convention is that the Greek letters (�; �; . . . ) are
the indices of the space-time coordinates, the letters (a; b; c; . . . )
are the world-volume indices, and the letters (i; j; k; . . . ) are the
normal bundle indices.

MOHAMMAD R. GAROUSI PHYSICAL REVIEW D 84, 126019 (2011)

126019-2



L ¼ T3ð�1
4e

��0FabF
ab þ 1

4C0Fabð�FÞabÞ; (7)

where ð�FÞab ¼ �abcdFcd=2 and �0, C0 are the back-
ground fields. Note that there is no higher derivative cor-
rections to the quadratic terms in (7). The antisymmetric
tensor Gab becomes

Gab ¼ e��0Fab � C0ð�FÞab; (8)

which is linear in the vector field and has no higher
derivative corrections at this order.

Now, considering the transformation (5) for the closed
string fields and the following linearized transformation:

F ab � ð�FÞab
e��0Fab � C0ð�FÞab

� �

! ð��1ÞT ð�FÞab
e��0Fab � C0ð�FÞab

� �
(9)

for the open string field, the amplitudes (2) can be extended
to

A ðD3; �1;B2Þ � T3ðF T
1 ÞabN ðB2Þab�4ðka1 þ pa

2Þ; (10)

where F 1 and B2 are the polarizations of the F field and
the B field, respectively. The SLð2; RÞ matrix N is

N ¼ 0 1
�1 0

� �
; (11)

which has the property

N ¼ �N�T: (12)

The amplitude (10) is manifestly invariant under the linear
SLð2; RÞ transformation. There is no background dilaton
factor left over in (10); hence, there would be no need to
include loops and nonperturbative effects to make the
amplitude fully invariant under the S duality. The tree-level
S-matrix element of 1� closedþ 1� open string vertex
operators is the only S-matrix element which is fully
invariant under the linear S duality. In all other cases,
one needs to add the loops and the nonperturbative effects
to make the tree-level amplitudes fully invariant under the
S duality. The observation that the amplitude (10) is in-
variant under the S duality is consistent with the fact that
the loop effects in the 1� closedþ 1� open amplitude
are zero.

The S-dual amplitude (10) includes the S-matrix ele-
ments (2) as well as the following 2-point function in the
presence of a constant axion:

A ðD3;C0;�1;B2Þ�T3

2
C0F1a0a1B2a2a3�

a0���a3�4ðka1þpa
2Þ;
(13)

which is a standard coupling in the Chern-Simons part
of the D3-brane action. This S-matrix element can be

calculated with a disk-level 3-point function of one gauge
field, one B field, and one RR scalar vertex operator in
which the RR scalar is a constant. For the nonconstant RR
field, the amplitude has the complicated structure of the
S-matrix element of two closed and one open string vertex
operators [49]; however, for a constant field it should be
reduced to (13). The disk-level 3-point function of one
gauge field, one B field, and one RR vertex operator has
been recently calculated in [50]. It is easy to verify that for
a constant RR scalar, it reduces to (13).

III. TWO GAUGE FIELDS AMPLITUDES

The S-matrix element of two gauge fields and one closed
string is nonzero when the closed string is dilaton, RR
scalar, or graviton [46,51]. Since graviton is invariant
under the S duality, one expects the S-matrix element of
one graviton and two gauge fields to be invariant under the
linear S duality. On the other hand, the dilaton and the RR
scalar transform as (3). So we expect the S-matrix elements
of the dilaton and the axion to combine into a linear S-dual
multiplet. Let us first consider the graviton amplitude.
The S-matrix element of two gauge fields and one

graviton is given in [46,51]. In the Einstein frame, it is

AðD3; �1; �2; h3Þ � T3e
��0

�
Fc
1aF2bch

ab
3

� 1

4
F1abF

ab
2 hc3c

�
�ð1� 2te��0=2Þ
½�ð1� te��0=2Þ�2 ;

(14)

where h3 is the polarization of the graviton and the
Mandelstam variable t is t ¼ ��0k1 � k2. There is also a
conservation of momentum factor �4ðka1 þ ka2 þ pa

3Þ. Here
again we have normalized the amplitude such that it be-
comes consistent with linear T duality. The �0 in the
Mandelstam variable t, which is in the Einstein frame, is
invariant under the S duality; however, the dilaton factor in
the gamma functions in (14) is not invariant under the
S duality. Hence, we have to expand the gamma functions
in order to study the S duality of this amplitude. The �0
expansion of the gamma functions is

�ð1� 2te��0=2Þ
½�ð1� te��0=2Þ�2 ¼ 1þ t2�ð2Þe��0 þ 2t3�ð3Þe�3�0=2

þ 19

4
t4�ð4Þe�2�0 þ � � � : (15)

The first term is invariant; hence, to show that the leading
�0-order term of (14) is invariant under the linear S duality
one should be able to write the kinematic factor in (14) in
linear SLð2; RÞ invariant form. To this end, consider the
matrix M

M ¼ e�
j	j2 C
C 1

� �
; (16)
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which transforms under the SLð2; RÞ transformation as2

M ! �M�T: (17)

Using this matrix, one finds

ðF T
1 ÞcaM0F 2bc ¼ e��0½ð�F1Þcað�F2Þbc þ Fc

1aF2bc�; (18)

whereM0 is the matrixM for constant background fields
�0 and C0. Using the identity

�cdea �fgbc ¼ �
abð
df
eg � 
dg
efÞ
þ �f

að�d
b


eg � �e
b


dgÞ � �g
að�d

b

ef � �e

b

dfÞ;
(19)

one finds

ðF T
1 ÞcaM0F 2bc ¼ e��0½�1

2F1cdF
cd
2 
ab þ Fc

1aF2bc

þ Fc
1bF2ac�: (20)

Using the above relation, one observes that the kinematic
factor in (14) is invariant under the linear S duality.3

Therefore, the leading term of the amplitude (14) which
is of �00 order, is invariant under the linear S duality. All
other terms are the higher derivative terms. Since the linear
S-duality transformation (9) has no higher derivative cor-
rections, all the higher derivative terms of (14) are the
higher derivatives of the kinematic factor. Hence, they all
are invariant under the linear S duality. The �02-order term,
however, has the constant dilaton factor e��0 which is not
invariant under the nonlinear S duality. The terms with the
higher order of �0 have other dilaton factors. None of them
are invariant under the S duality. Since the background
dilaton and axion transform nonlinearly as (3) under the
S duality, one should extend each of the dilaton factors to a
function of both dilaton and axion to make them invariant
under the S duality. In this way, one can find the exact
dependence of the amplitude on the background dilaton

and axion. By adding the one-loop and the D-instanton
effects to the �02-order term, which may be done by
replacing e��0 with the regularized nonholomorphic
Eisenstein series E1ð�0; C0Þ, one may extend the
�02-order term to the S-dual invariant form [33–35]. The

dilaton factor �ð3Þe�3�0=2 in the �03-order term may be
extended to the nonholomorphic Eisenstein series
E3=2ð�0; C0Þ [34]. In general, the dilaton factor

�ðnÞe�n�0=2 may be extended to the nonholomorphic
Eisenstein series En=2ð�0; C0Þ after including the loops

and the nonperturbative effects.
Therefore, the amplitude (14) may be extended to

AðD3; �1; �2; h3Þ
� T3

2
ðF T

1 ÞcaM0F 2bch
ab
3 ð1þ �2t

2E1ð�0; C0Þ
þ �3t

3E3=2ð�0; C0Þ þ � � �Þ; (22)

where �n’s are some number, i.e., �2 ¼ 1, �3 ¼ 2, and so
on. This amplitude is invariant under the linear SLð2; RÞ
transformation on the external states and is invariant under
the nonlinear SLð2; ZÞ transformation on the background
fields. One may expect the replacement of the dilaton
factors in the tree-level amplitude with the appropriate
nonholomorphic Eisenstein series includes all the loops
and the noperturbative corrections to the tree-level ampli-
tude; however, this does not mean that an exact S-matrix
element can be found in this way. In general, there are
many new terms in the loop amplitudes which have struc-
ture different than those in the tree level. We expect the
dilaton factors in the new terms at each loop order to
become invariant under the S duality after including the
higher loop effects.
Now consider the S-matrix elements of the dilaton and

axion which are given in [46,51]. In the Einstein frame they
are

AðD3; �1; �2; �3Þ

� T3e
��0F1abF

ab
2 �3

�ð1� 2te��0=2Þ
½�ð1� te��0=2Þ�2 ;

AðD3; �1; �2; C3Þ

� T3F1abð�F2ÞabC3

�ð1� 2te��0=2Þ
½�ð1� te��0=2Þ�2 ; (23)

where �3 is the polarization of the dilaton, and C3 is the
polarization of the axion. These polarizations are one;
however, for clarity we keep them in the amplitudes.
There is also a conservation of momentum factor �4ðka1 þ
ka2 þ pa

3Þ in each amplitude.

To write the kinematic factors in (23) in a linear S-dual
form, consider the variation of the matrix M in (16). It is
given by

2Note that the matrixM here is the inverse of the matrixM in
[39].

3The kinematic factor of two Abelian gauge fields and two
transverse scalars can be read from the expansion of Dirac-Born-
Infeld (DBI) action. In the Einstein frame it is

Kð�1;�2;�3;�4Þ¼e��0 ðFc
1aF2bc�

i;a
3 �j;b

4 
ij

� 1
4F1abF

ab
2 �i;c

3 �j;d
4 
ij
cdÞþð1$2Þ;

where commas denote partial differentiation in the momentum
space. This is similar to the kinematic factor in (14). The
transverse scalar fields are invariant under the S duality. Using
(20), one can write this kinematic factor as

Kð�1; �2;�3;�4Þ ¼ ðF T
1 ÞcaM0F 2bc�

i;a
3 �j;b

4 
ij; (21)

which is manifestly invariant under the linear S duality.
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�M¼ �ðe���C2e�Þ��þ2Ce��C Ce���þe��C
Ce���þe��C e���

� �
:

(24)

This matrix transforms under the SLð2; RÞ transformation
as

�M ! ��M�T: (25)

Consider the case in which the variations are the external
states, i.e., �� ¼ �3 and �C ¼ C3, and the dilaton and the
axion are the constant background fields �0 and C0, re-
spectively. We call this matrix �M3. Using this matrix,
one finds the following relation:

ðF T
1 Þab�M3F ab

2 ¼ 2e��0F1abF
ab
2 �3 þ 2F1abð�F2ÞabC3;

(26)

which is invariant under the linear S duality. Using this
relation, one can write the kinematic factor in
AðD3; �1; �2; �3Þ þAðD3; �1; �2; C3Þ in linear SLð2; RÞ
invariant form. Adding the loops and the nonperturbative
effects as in the previous case, one may extend the dilaton
factors in the �0 expansion of the gamma functions to the
SLð2; ZÞ invariant nonholomorphic Eisenstein series.
Therefore, one may write the amplitudes (23) as

AðD3; �1; �2; �3 þ C3Þ
� T3

2
ðF T

1 Þab�M3F ab
2 ð1þ �2t

2E1ð�0; C0Þ
þ �3t

3E3=2ð�0; C0Þ þ � � �Þ; (27)

which is manifestly invariant under the linear SLð2; RÞ
transformation on the quantum fluctuations and is invariant
under the nonlinear SLð2; ZÞ transformations on the back-
ground fields �0, C0.

IV. FOUR GAUGE FIELDS AMPLITUDE

The disk-level scattering amplitude of four gauge bosons
on the world volume of a single D3-brane and for 1234
ordering of the vertex operators is calculated in [52]. In the
Einstein frame, it is

A 1234 � T3�
02Kð�1; �2; �3; �4Þ

� �ð�se��0=2Þ�ð�te��0=2Þ
�ð1� se��0=2 � te��0=2Þ�

4ðka1 þ ka2 þ ka3 þ ka4Þ;
(28)

where s ¼ �2�0k1 � k2, t ¼ �2�0k1 � k4, and the kine-
matic factor is [52]

K ¼ �e�2�0k1 � k2ð�1 � k4�3 � k2�2 � �4
þ �2 � k3�4 � k1�1 � �3 þ �1 � k3�4 � k2�2 � �3
þ �2 � k4�3 � k1�1 � �4Þ � e�2�0k2 � k3k2 � k4�1
� �2�3 � �4 þ f1; 2; 3; 4 ! 1; 3; 2; 4g
þ f1; 2; 3; 4 ! 1; 4; 3; 2g: (29)

This kinematic factor is symmetric under any permutation
of the external states and satisfies the Ward identity asso-
ciated with the gauge transformation. The �0 expansion of
the gamma functions is

�ð�se��0=2Þ�ð�te��0=2Þ
�ð1� se��0=2 � te��0=2Þ
¼ e�0

st
� �2

6
� �ð3Þðsþ tÞe��0=2

� �4

360
ð4s2 þ stþ 4t2Þe��0 þ � � � :

The total amplitude includes all noncyclic permutation of
the external states, i.e.,

A ¼ A1234 þA1243 þA1324 þA1342

þA1423 þA1432: (30)

The �0 expansion of the amplitude A can be written as

A � T3�
02Kð�1; �2; �3; �4Þ�4ðka1 þ ka2 þ ka3 þ ka4Þ

� X1
n¼�2

aðnÞ; (31)

where aðnÞ’s are functions of the Mandelstam variables. For
the Abelian case in which we are interested, these func-
tions are [53]

að�2Þ ¼ að�1Þ ¼ 0;

að0Þ ¼ ��2;

að1Þ ¼ 0;

að2Þ ¼ ��2

4
ðt2 þ s2 þ u2Þ�ð2Þe��0 ;

að3Þ ¼ ��2stu�ð3Þe�3�0=2;

að4Þ ¼ � 9�2

48
ðs2 þ t2 þ u2Þ2�ð4Þe�2�0 ; � � � ;

(32)

where sþ tþ u ¼ 0.
To show that the amplitude satisfies the Ward identity

corresponding to the global S-duality transformations, we
first use the observation in [54] that indicates the leading
contact terms ofA are reproduced by the quartic terms of
the BI action, i.e., TrðF4Þ=8� ðTrðF2ÞÞ2=32, where the
traces are over the world volume of the matrix Fab.
Using this observation, one can rewrite the kinematic
factor in (31) as
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K ¼ K1234 þK1243 þK1324 þK1342 þK1423

þK1432; (33)

where

K1234 ¼ e�2�0½12 TrðF1F2F3F4Þ � 1
16 TrðF1F2ÞTrðF3F4Þ

� 1
16 TrðF4F1ÞTrðF2F3Þ�: (34)

Then using the relation (20), one can write K in the
following simple form:

K ¼ 1
4½TrðF T

1M0F 2F T
3M0F 4Þ

þ TrðF T
1M0F 3F T

2M0F 4Þ
þ TrðF T

1M0F 4F T
2M0F 3Þ�; (35)

which is invariant under the linear SLð2; RÞ transformation.
Therefore, the amplitude (30) at order �02 is invariant
under the linear SLð2; RÞ transformation. Apart from the
dilaton factors, all higher order terms are the derivatives of
the leading order terms which are then invariant under the
linear S duality. The dilaton factor �ð2Þe��0 in the
�04-order terms may be extended to the regularized non-
holomorphic Eisenstein series E1ð�0; C0Þ after including
the loop and the nonperturbative effects [16,33]. The dila-

ton factor �ð3Þe�3�0=2 in the �05-order terms may be ex-
tended to the nonholomorphic Eisenstein series
E3=2ð�0; C0Þ [34], and so on.

The �0 expansion of the S-matrix element of two gauge
fields and two scalars is the same as (31), i.e.,

A�T3�
02Kð�1;�2;�3;�4Þ�4ðka1þka2þka3þka4Þ

� X1
n¼�2

aðnÞ: (36)

The kinematic factor is the same as the four gauge boson
case (29) in which the condition � � k ¼ 0 is imposed and
an extra factor of e�0 is added because the indices of the
scalars is uppercase, i.e., �i, whereas the indices of the
gauge fields are lowercase, i.e., Aa. It is shown in (21) that
the kinematic factor can be written in linear SLð2; RÞ
invariant form. So the amplitude can be extended to a
S-dual form by including the loops and nonperturbative
effects as in the case of four gauge bosons.

Finally, the �0 expansion of the S-matrix element of four
scalars is the same as (31), i.e.,

A� T3�
02Kð�1;�2;�3;�4Þ�4ðka1 þ ka2 þ ka3 þ ka4Þ

� X1
n¼�2

aðnÞ: (37)

The kinematic factor is the same as the four gauge boson
case (29) in which the condition � � k ¼ 0 is imposed and

an extra factor of e2�0 is added. So there is no dilaton in the
kinematic factor. The scalars are invariant under the
S duality,4 hence, the kinematic factor is invariant under
the S duality. The amplitude can be extended to the
SLð2; ZÞ invariant form as in the case of four gauge fields.
This ends our illustration of consistency of the S-matrix
elements on the world volume of the Abelian D3-brane
with the Ward identity corresponding to the global
S-duality transformations.

V. DISCUSSION

In this paper, by working on some examples, we have
shown that the S-matrix elements of n� closedþm�
open string vertex operators on the world volume of a
single D3-brane at the leading order of �

0 can be combined
into multiplets which are invariant under the linear
SLð2; RÞ transformations. The extra dilaton factors in the
nonleading order terms may become invariant under
S duality after including the loops and the nonperturbative
effects [16,33].
The S-duality transformations on the quantum fluctua-

tions (classical fields) must be linear (nonlinear) [36].
Moreover, since the S-matrix element of n open strings is
totally different from the S-matrix element of n closed
strings, the linear S duality should transform open string
to open string and closed string to closed string. In all
examples we have worked out, the leading �0-order terms
of the multiplets are invariant under the above linear
SLð2; RÞ transformations.
The D3-brane is invariant under the S duality, so the

fundamental string excitation of the D3-brane at weak
coupling should transform to the (p; q)-string excitation
of the D3-brane under the SLð2; ZÞ transformation.
Moreover, the external string should transform to the
(p; q) string as well. The massless spectrum of these strings

is invariant under the linear S duality, e.g., the Cð2Þ of the
fundamental closed string at weak coupling maps to Bð2Þ of
the closed D string at strong coupling, or the electric
components of the gauge field strength F of the fundamen-
tal open string at weak coupling maps to the magnetic
components of the gauge field strength of the open
D string at strong coupling.
In general, one expects an S-matrix element at weak

coupling transforms under the linear S duality to another
S-matrix element at strong coupling which is different
from the original one. Consider, for example, the weak

4The invariance of the transverse scalar fields under the
S duality for the Abelian case that we are interested in for this
paper is as expected because there is no way to construct the
combination of the scalars to have either two antisymmetric
world-volume indices to contract with the world-volume form
under the S duality, or three antisymmetric traverse indices to
contract with the transverse volume form under the S duality. For
the non-Abelian case, however, the second possibility can occur
which has been considered in [55].
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coupling S-matrix element (14) which is at zero axion
background and has two external massless open and one
massless closed fundamental string. This amplitude trans-
forms under the linear S duality to the S-matrix element of
two open and one closed D string at strong coupling. At
zero axion background, it is given by

AðD3; �1; �2; h3Þ
� T3e

��0

�
Fc
1aF2bch

ab
3 � 1

4
F1abF

ab
2 hc3c

�

� �ð1� 2te�0=2Þ
½�ð1� te�0=2Þ�2 ; (38)

where now the gauge fields and the graviton are the mass-
less modes of the external D strings. The poles of the
gamma functions show the open D-string excitation of
the D3-brane [36]. The above amplitude cannot be calcu-
lated in the perturbative string theory. The kinematic fac-
tors in the two amplitudes are the same; however, the
gamma functions are different as expected. The difference
between the above amplitude and the amplitude (14) stems
from the fact that the original amplitude (14) does not
include the loops and the nonperturbative effects.
Obviously, if one includes these effects which may be
given by (22), then the transformed amplitude would be
the same as the original one.

The linear S-duality invariance of the leading �0-order
terms of the S-matrix elements indicates that the low
energy effective field theory on the world volume of the
D3-brane may not be invariant under the linear S duality.
To see this consider the following discussion: The leading
�0-order terms of the S-matrix element (31) are reproduced
by the F4 terms of the BI action [54]. Hence, the F4 terms
of BI action are invariant under the linear S-duality trans-
formations. On the other hand, up to a total derivative term
the F2 term of this action which is not invariant under the
S duality is zero when the gauge field is on shell. So the on-
shell BI action is invariant under the linear S duality up to
F4 terms. What happens for the F6 and the higher order
terms? Are they invariant under the linear S duality as
well? Consider the expansion of the BI action in the
Einstein frame, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detð
ab þ e��0=2FabÞ

q
� 1

¼ � e��0

4
TrðF2Þ � e�2�0

8

�
TrðF4Þ � 1

4
ðTrðF2ÞÞ2

�

� e�3�0

12

�
TrðF6Þ � 3

8
TrðF2ÞTrðF4Þ

þ 1

32
ðTrðF2ÞÞ3

�
þ � � � : (39)

One may use the relations specific to four dimensions to
write the above terms in alternative ways. For example, one
can show the following relation for F6 terms:

Tr ðF6Þ � 3
4 TrðF2ÞTrðF4Þ þ 1

8ðTrðF2ÞÞ3 ¼ 0: (40)

Using this relation one may rewrite the F6 terms in (39) in
a different form.
Now, using (20) one finds the following expressions are

invariant under the linear SLð2; RÞ transformation:

0 ¼ TrðF TM0F Þ;

4e�2�0

�
TrðF4Þ � 1

4
ðTrðF2ÞÞ2

�

¼ TrðF TM0FF TM0F Þ;

8e�3�0

�
TrðF6Þ � 3

4
TrðF2ÞTrðF4Þ þ 1

8
ðTrðF2ÞÞ3

�

¼ TrðF TM0FF TM0FF TM0F Þ:

(41)

The first two terms are the same as the first two terms in the
on-shell BI action (39). However, the F6 terms in (41) are
not the same as the corresponding terms in (39). In fact,
they add up to zero. More generally, one can show that the
couplings which are invariant under the linear S duality are

TrðF TM0F ���F TM0F Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ð2n�1Þ

¼0;

TrðF TM0F ���F TM0F Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ð2nÞ

¼4e�2n�0½TrðF4Þ
� 1

4ðTrðF2ÞÞ2�n; (42)

where in the first case the number of F TM0F is odd and
in the second case it is even. There are no such simple
relations for the corresponding terms in (39).
The reason that the F6 terms of the BI action are not

invariant under the linear SLð2; RÞ transformation is that
the S-matrix element of the six gauge field vertex operators
at leading order has both contact terms and massless poles.
The contact terms are reproduced by the F6 of the BI action
(39), and the massless poles are reproduced by the F4 terms
of (39). The massless pole in the ðk1 þ k2 þ k3Þ2 channel,
for example, is given by the following Feynman amplitude:

A123 ¼ Vað�1; �2; �3; AÞGabðAÞVbðA; �4; �5; �6Þ; (43)

where the propagator can be read from the F2 term of (39)
and the vertices can be read from the F4 terms of (39).
Neither the F6-massless poles nor the F6-contact terms are
invariant under the linear S duality. According to the
S-duality proposal, the combination of these two terms,
i.e. (F6 �massless polesþ F6 � contact terms), must be
invariant under the linear S duality.5 A similar observation
has been made in [48] in trying to extend the anomalous

5It has been shown in [56,57] that the tree-level scattering
amplitudes generated by BI action conserve helicity which might
be a result of the S duality.
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Chern-Simons couplings at order �02 to be consistent with
the linear T duality. In that case also one observes that only
the combination of the contact terms and massless poles is
fully invariant under the T duality.

One may find the F2n terms of the BI action by
imposing the linear S duality of (F2n�
massless polesþ F2n � contact terms). Starting from F4

terms which are invariant under the linear S duality, one
can construct F6-massless poles. Then imposing the linear
S duality, one may find F6-contact terms. Using the F4-
and the F6-contact terms, one can calculate the
F8-massless poles. Then using the linear S duality, one
may find the F8-contact terms, and so on. This calculation
should confirm the Abelian BI action as the effective action
of a single D-brane.

When there is more than one coincident D-brane, the
Abelian BI action should be extended to a non-Abelian

gauge theory. A non-Abelian extension of the BI action has
been proposed in [58,59] which includes the symmetric
trace prescription. This proposal works for F2 and
F4 terms; however, there are various discussions that in-
dicate the F6; F8; . . . terms of the D-branes are not cor-
rectly captured by the non-Abelian BI action [60,61]. One
may extend the above linear S duality of (F2n �
massless polesþ F2n � contact terms) to the non-
Abelian case to find the Fn terms of the non-Abelian
D3-branes action. It would be interesting then to study
the Ward identity corresponding to the global S-duality
transformations for the non-Abelian cases.
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